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Abstract In this paper, we propose a Ward-like hierarchical clustering algo-
rithm including spatial/geographical constraints. Two dissimilarity matrices
D0 and D1 are inputted, along with a mixing parameter α ∈ [0, 1]. The dis-
similarities can be non-Euclidean and the weights of the observations can be
non-uniform. The first matrix gives the dissimilarities in the “feature space”
and the second matrix gives the dissimilarities in the “constraint space”. The
criterion minimized at each stage is a convex combination of the homogeneity
criterion calculated with D0 and the homogeneity criterion calculated with
D1. The idea is then to determine a value of α which increases the spatial
contiguity without deteriorating too much the quality of the solution based
on the variables of interest i.e. those of the feature space. This procedure is
illustrated on a real dataset using the R package ClustGeo.
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1 Introduction

The difficulty of clustering a set of n objects into k disjoint clusters is one that
is well known among researchers. Many methods have been proposed either to
find the best partition according to a dissimilarity-based homogeneity crite-
rion, or to fit a mixture model of multivariate distribution function. However,
in some clustering problems, it is relevant to impose constraints on the set of
allowable solutions. In the literature, a variety of different solutions have been
suggested and applied in a number of fields, including earth science, image pro-
cessing, social science, and - more recently - genetics. The most common type
of constraints are contiguity constraints (in space or in time). Such restric-
tions occur when the objects in a cluster are required not only to be similar
to one other, but also to comprise a contiguous set of objects. But what is a
contiguous set of objects?

Consider first that the contiguity between each pair of objects is given by a
matrix C = (cij)n×n, where cij = 1 if the ith and the jth objects are regarded
as contiguous, and 0 if they are not. A cluster C is then considered to be con-
tiguous if there is a path between every pair of objects in C (the subgraph is
connected). Several classical clustering algorithms have been modified to take
this type of constraint into account (see e.g. [14], [12], [4]). Surveys of some of
these methods can be found in [9] and [15]. For instance, the standard hierar-
chical procedure based on Lance and Williams formula [10] can be constrained
by merging only contiguous clusters at each stage. But what defines “contigu-
ous” clusters? Usually, two clusters are regarded as contiguous if there are
two objects, one from each cluster, which are linked in the contiguity matrix.
But this can lead to reversals (i.e. inversions, upward branching in the tree)
in the hierarchical classification. It was proven that only the complete link al-
gorithm is guaranteed to produce no reversals when relational constraints are
introduced in the ordinary hierarchical clustering procedure [8]. Recent im-
plementation of strict constrained clustering procedures are available in the R
package const.clust [11] and in the python library clusterpy1. Hierarchical
clustering of SNPs (Single Nucleotide Polymorphism) with strict adjacency
constraint is also proposed in [7] and implemented in the R package BALD2.
The recent R package Xplortext [3] implements also chronogically constrained
agglomerative hierarchical clustering for the analysis of textual data.

The previous procedures which impose strict contiguity may separate ob-
jects which are very similar into different clusters, if they are spatially apart.
Other non-strict constrained procedures have then been developed, including
those referred to as soft contiguity or spatial constraints. For example, Oliver
et al. [16] and Bourgault et al. [5] suggest running clustering algorithms on a
modified dissimilarity matrix . This dissimilarity matrix is a combination of
the matrix of geographical distances and the dissimilarity matrix computed
from non geographical variables. According to the weights given to the geo-

1 http://www.rise-group.org/risem/clusterpy/
2 http://www.math-evry.cnrs.fr/logiciels/bald
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graphical dissimilarities in this combination, the solution will have more or
less spatially contiguous clusters. However, this approach raises the problem
of defining weight in an objective manner.

In image processing, there are many approaches for image segmentation in-
cluding for instance usage of convolution and wavelet transforms. In this field
non-strict spatially constrained clustering methods have been also developed.
Objects are pixels and the most common choices for the neighborhood graph
are the four and eight neighbors graphs. A contiguity matrix C is used (and
not a geographical dissimilarity matrix as previously) but the clusters are not
strictly contiguous, as a cluster of pixels does not necessarily represent a single
region on the image. Ambroise et al. [1] [2] suggest a clustering algorithm for
Markov random fields based on an EM (Expectation-Maximization) algorithm.
This algorithm maximizes a penalized likelihood criterion and the regulariza-
tion parameter gives more or less weight to the spatial homogeneity term (the
penalty term). Recent implementations of spatially-located data clustering al-
gorithms are available in SpaCEM33, dedicated to Spatial Clustering with
EM and Markov Models. This software uses the model proposed in [18] for
gene clustering via integrated Markov models. In a similar vein, Miele et al.
[13] proposed a model-based spatially constrained method for the clustering
of ecological networks. This method embeds geographical information within
a EM regularization framework by adding some constraints to the maximum
likelihood estimation of parameters. The associated R package is available at
http://lbbe.univ-lyon1.fr/geoclust. Note that all these methods are partition-
ing methods and that the constraints are neighborhood constraints.

In this paper, we propose a hierarchical clustering (and not partition-
ing) method including spatial constraints (not necessarily neighborhood con-
straints). This Ward-like algorithm uses two dissimilarity matrices D0 and D1

and a mixing parameter α ∈ [0, 1]. The dissimilarities are not necessarily Eu-
clidean (or non Euclidean) distances and the weights of the observations can
be non-uniform. The first matrix gives the dissimilarities in the ‘feature space’
(socio-economic variables or grey levels for instance). The second matrix gives
the dissimilarities in the ‘constraint space’. For instance, D1 can be a matrix
of geographical distances or a matrix built from the contiguity matrix C. The
mixing parameter α sets the importance of the constraint in the clustering
procedure. The criterion minimized at each stage is a convex combination of
the homogeneity criterion calculated with D0 and the homogeneity criterion
calculated with D1. The parameter α (the weight of this convex combination)
controls the weight of the constraint in the quality of the solutions. When
α increases, the homogeneity calculated with D0 decreases whereas the ho-
mogeneity calculated with D1 increases. The idea is to determine a value of
α which increases the spatial-contiguity without deteriorating too much the
quality of the solution on the variables of interest. The R package ClustGeo [6]
implements this constrained hierarchical clustering algorithm and a procedure
for the choice of α.

3 spacem3.gforge.inria.fr
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4 Marie Chavent et al.

The paper is organized as follows. After a short introduction (this sec-
tion), Section 2 presents the criterion optimized when the Lance-Williams
parameters [10] as used in Ward’s minimum variance method but dissimilari-
ties are not necessarily Euclidean (or non-Euclidean) distances. We also show
how to implement this procedure with the package ClustGeo (or the R func-
tion hclust) when non-uniform weights are used. In Section 3 we present the
constrained hierarchical clustering algorithm which optimizes a convex com-
bination of this criterion calculated with two dissimilarity matrices. Then the
procedure for the choice of the mixing parameter is presented as well as a
description of the functions implemented in the package ClustGeo. In Section
4 we illustrate the proposed hierarchical clustering process with geographi-
cal constraints using the package ClustGeo before a brief discussion given in
Section 5.

Throughout the paper, a real dataset is used for illustration and repro-
ducibility purposes. This dataset contains 303 French municipalities described
based on four socio-economic variables. The matrix D0 will contain the socio-
economic distances between municipalities and the matrix D1 will contain the
geographical distances. The results will be easy to visualize on a map.

2 Ward-like hierarchical clustering with dissimilarities and
non-uniform weights

Let us consider a set of n observations. Let wi be the weight of the ith obser-
vation for i = 1, . . . , n. Let D = [dij ] be a n×n dissimilarity matrix associated
with the n observations, where dij is the dissimilarity measure between ob-
servations i and j. Let us recall that the considered dissimilarity matrix D
is not necessarily a matrix of Euclidean (or non Euclidean) distances. When
D is not a matrix of Euclidean distances, the usual inertia criterion (also re-
ferred to as variance criterion) used in Ward hierarchical clustering approach
[19] is meaningless and the Ward algorithm implemented with the Lance and
Williams [10] formula has to be re-interpreted. The Ward method has already
been generalized to use with non Euclidean distances, see e.g. [17] for l1 norm
or Manhattan distances. In this section the more general case of dissimilari-
ties is studied. We first present the homogeneity criterion which is optimized
in that case and the underlying aggregation measure which leads to a Ward-
like hierarchical clustering process. We then provide an illustration using the
package ClustGeo and the well-known R function hclust.

2.1 The Ward-like method

Pseudo-inertia. Let us consider a partition PK = (C1, . . . , CK) in K clusters.
The pseudo-inertia of a cluster Ck generalizes the inertia to the case of dissim-

Author-produced version of the article published in Computational Statistics, 2018, 33(4), 1799-1822 
The original publication is available at https://link.springer.com/article/10.1007%2Fs00180-018-0791-1 

doi : 10.1007/s00180-018-0791-1
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ilarity data (Euclidean or not) in the following way :

I(Ck) =
∑
i∈Ck

∑
j∈Ck

wiwj
2µk

d2ij (1)

where µk =
∑
i∈Ck wi is the weight of Ck. The smaller the pseudo-inertia I(Ck)

is, the more homogenous are the observations belonging to the cluster Ck.

The pseudo within-cluster inertia of the partition PK is therefore:

W (PK) =
K∑
k=1

I(Ck).

The smaller this pseudo within-inertia W (PK) is, the more homogenous is the
partition in K clusters.

Spirit of the Ward hierarchical clustering. To obtain a new partition PK in K
clusters from a given partition PK+1 in K+1 clusters, the idea is to aggregate
the two clusters A and B of PK+1 such that the new partition has minimum
within-cluster inertia (heterogeneity, variance), that is:

arg min
A,B∈PK+1

W (PK), (2)

where PK = PK+1\{A,B} ∪ {A ∪ B} and

W (PK) = W (PK+1)− I(A)− I(B) + I(A ∪ B).

Since W (PK+1) is fixed for a given partition PK+1, the optimization problem
(2) is equivalent to:

min
A,B∈PK+1

I(A ∪ B)− I(A)− I(B). (3)

The optimization problem is therefore achieved by defining

δ(A,B) := I(A ∪ B)− I(A)− I(B)

as the aggregation measure between two clusters which is minimized at each
step of the hierarchical clustering algorithm. Note that δ(A,B) = W (PK) −
W (PK+1) can be seen as the increase of within-cluster inertia (loss of homo-
geneity).
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6 Marie Chavent et al.

Ward-like hierarchical clustering process for non-Euclidean dissimilarities.
The interpretation of the Ward hierarchical clustering process in the case of
dissimilarity data is the following:

– Step K = n: initialization.
The initial partition Pn in n clusters (i.e. each cluster only contains an
observation) is unique.

– Step K = n − 1, . . . , 2: obtaining the partition in K clusters from the
partition in K + 1 clusters.
At each step K, the algorithm aggregates the two clusters A and B of
PK+1 according to the optimization problem (3) such that the increase of
the pseudo within-cluster inertia is minimum for the selected partition over
the other ones in K clusters.

– Step K = 1: stop. The partition P1 in one cluster (containing the n obser-
vations) is obtained.

The hierarchically-nested set of such partitions {Pn, . . . ,PK , . . . ,P1} is
represented graphically by a tree (also called dendrogram) where the height
of a cluster C = A ∪ B is h(C) := δ(A,B).

In practice, the aggregation measures between the new cluster A ∪ B and
any cluster D of PK+1 are calculated at each step thanks to the well-known
Lance and Williams [10] equation:

δ(A ∪ B,D) =
µA + µD

µA + µB + µD
δ(A,D) +

µB + µD
µA + µB + µD

δ(B,D)

− µD
µA + µB + µD

δ(A,B).

(4)

In the first step the partition is Pn and the aggregation measures between
the singletons are calculated with

δij := δ({i}, {j}) =
wiwj
wi + wj

d2ij ,

and stored in the n × n matrix ∆ = [δij ]. For each subsequent step K, the
Lance and Williams formula (4) is used to build the corresponding K × K
aggregation matrix.

The hierarchical clustering process described above is thus suited for non-
Euclidean dissimilarities and then for non-numerical data. In this case, it op-
timises the pseudo within-cluster inertia criterion (3).

Case when the dissimilarities are Euclidean distances. When the dissimilar-
ities are Euclidean distances calculated from a numerical data matrix X of
dimension n× p for instance, the pseudo-inertia of a cluster Ck defined in (1)
is now equal to the inertia of the observations in Ck:

I(Ck) =
∑
i∈Ck

wid
2(xi, gk)
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ClustGeo: an R package for hierarchical clustering with spatial constraints 7

where xi ∈ <p is the ith row of X associated with the ith observation, and
gk = 1

µk

∑
i∈Ck wixi ∈ Rp is the center of gravity of Ck. The aggregation

measure δ(A,B) between two clusters is written then as:

δ(A,B) =
µAµB
µA + µB

d2(gA, gB).

2.2 Illustration using the package ClustGeo

Let us examine how to properly implement this procedure with R. The dataset
is made up of n = 303 French municipalities described based on p = 4 quan-
titative variables and is available in the package ClustGeo. A more complete
description of the data is provided in Section 4.1.

> library(ClustGeo)

> data(estuary)

> names(estuary)

[1] "dat" "D.geo" "map"

To carry out Ward hierarchical clustering, the user can use the function hclustgeo

implemented in the package ClustGeo taking the dissimilarity matrixD (which
is an object of class dist, i.e. an object obtained with the function dist or a
dissimilarity matrix transformed in an object of class dist with the function
as.dist) and the weights w = (w1, . . . , wn) of observations as arguments.

> D <- dist(estuary$dat)

> n <- nrow(estuary$dat)

> tree <- hclustgeo(D,wt=rep(1/n,n))

Remarks.

– The function hclustgeo is a wrapper of the usual function hclust with
the following arguments:
– method = "ward.D",
– d = ∆,
– members = w.

For instance, when the observations are all weighted by 1/n , the argument

d must be the matrix ∆ = D2

2n and not the dissimilarity matrix D:

> tree <- hclust(D^2/(2*n),method="ward.D")

– As mentioned before, the user can check that the sum of the heights in the
dendrogram is equal to the total pseudo-inertia of the dataset:

> inertdiss(D,wt=rep(1/n,n)) # the pseudo-inertia of the data

[1] 1232.769

> sum(tree$height)

[1] 1232.769

– When the weights are not uniform, the calculation of the matrix ∆ takes
a few lines of code and the use of the function hclustgeo is clearly more
convenient than hclust:
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8 Marie Chavent et al.

> w <- estuary$map@data$POPULATION # non-uniform weights

> tree <- hclustgeo(D,wt=w)

> sum(tree$height)

[1] 1907989

versus

> Delta <- D

> for (i in 1:(n-1)) {

for (j in (i+1):n) {

Delta[n*(i-1) - i*(i-1)/2 + j-i] <-

Delta[n*(i-1) - i*(i-1)/2 + j-i]^2*w[i]*w[j]/(w[i]+w[j])}}

> tree <- hclust(Delta,method="ward.D",members=w)

> sum(tree$height)

[1] 1907989

3 Ward-like hierarchical clustering with two dissimilarity matrices

Let us consider again a set of n observations, and let wi be the weight of
the ith observation for i = 1, . . . , n. Let us now consider that two n × n
dissimilarity matrices D0 = [d0,ij ] and D1 = [d1,ij ] are provided. For instance,
let us assume that the n observations are municipalities, D0 can be based
on a numerical data matrix of p0 quantitative variables measured on the n
observations and D1 can be a matrix containing the geographical distances
between the n observations.

In this section, a Ward-like hierarchical clustering algorithm is proposed. A
mixing parameter α ∈ [0, 1] allows the user to set the importance of each dis-
similarity matrix in the clustering procedure. More specifically, if D1 gives the
dissimilarities in the constraint space, the mixing parameter α sets the impor-
tance of the constraint in the clustering procedure and controls the weight of
the constraint in the quality of the solutions.

3.1 Hierarchical clustering algorithm with two dissimilarity matrices

For a given value of α ∈ [0, 1], the algorithm works as follows. Note that the
partition in K clusters will be hereafter indexed by α as follows: PαK .

Definitions. The mixed pseudo inertia of the cluster Cαk (called mixed inertia
hereafter for sake of simplicity) is defined as

Iα(Cαk ) = (1− α)
∑
i∈Cαk

∑
j∈Cαk

wiwj
2µαk

d20,ij + α
∑
i∈Cαk

∑
j∈Cαk

wiwj
2µαk

d21,ij , (5)

where µαk =
∑
i∈Cαk

wi is the weight of Cαk and d0,ij (resp. d1,ij) is the normal-

ized dissimilarity between observations i and j in D0 (resp. D1).
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ClustGeo: an R package for hierarchical clustering with spatial constraints 9

The mixed pseudo within-cluster inertia (called mixed within-cluster inertia
hereafter for sake of simplicity) of a partition PαK = (Cα1 , . . . , CαK) is the sum
of the mixed inertia of its clusters:

Wα(PαK) =
K∑
k=1

Iα(Cαk ). (6)

Spirit of the Ward-like hierarchical clustering. As previously, in order to obtain
a new partition PαK in K clusters from a given partition PαK+1 in K+1 clusters,
the idea is to aggregate the two clusters A and B of PK+1 such that the
new partition has minimum mixed within-cluster inertia. The optimization
problem can now be expressed as follows:

arg min
A,B∈PαK+1

Iα(A ∪ B)− Iα(A)− Iα(B). (7)

Ward-like hierarchical clustering process.

– Step K = n: initialization.
The dissimilarities can be re-scaled between 0 and 1 to obtain the same
order of magnitude: for instance,

D0 ←
D0

max(D0)
and D1 ←

D1

max(D1)
.

Note that this normalization step can also be done in a different way.
The initial partition Pαn =: Pn in n clusters (i.e. each cluster only contains
an observation) is unique and thus does not depend on α.

– Step K = n − 1, . . . , 2: obtaining the partition in K clusters from the
partition in K + 1 clusters.
At each step K, the algorithm aggregates the two clusters A and B of
PαK+1 according to the optimization problem (7) such that the increase
of the mixed within-cluster inertia is minimum for the selected partition
over the other ones in K clusters.
More precisely, at step K, the algorithm aggregates the two clusters A and
B such that the corresponding aggregation measure

δα(A,B) := Wα(PαK+1)−Wα(PαK) = Iα(A ∪ B)− Iα(A)− Iα(B)

is minimum.

– Step K = 1: stop. The partition Pα1 =: P1 in one cluster is obtained. Note
that this partition is unique and thus does not depend on α.

In the dendrogram of the corresponding hierarchy, the height of a cluster A∪B
is given by δα(A,B).
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10 Marie Chavent et al.

In practice, the Lance and Williams equation (4) remains true in this con-
text (where δ must be replaced by δα). The aggregation measure between two
singletons are written now:

δα({i}, {j}) = (1− α)
wiwj
wi + wj

d20,ij + α
wiwj
wi + wj

d21,ij .

The Lance and Williams equation is then applied to the matrix

∆α = (1− α)∆0 + α∆1.

where ∆0 (resp. ∆1) is the n×n matrix of the values δ0,ij =
wiwj
wi+wj

d20,ij (resp.

δ1,ij =
wiwj
wi+wj

d21,ij).

Remarks.

– The proposed procedure is different from applying directly the Ward algo-
rithm to the “dissimilarity” matrix obtained via the convex combination
Dα = (1−α)D0+αD1. The main benefit of the proposed procedure is that
the mixing parameter α clearly controls the part of pseudo inertia due to
D0 and D1 in (5). This is not the case when applying directly the Ward
algorithm to Dα since it is based on a unique pseudo inertia.

– When α = 0 (resp. α = 1), the hierarchical clustering is only based on the
dissimilarity matrix D0 (resp. D1). A procedure to determine a suitable
value for the mixing parameter α is proposed hereafter, see Section 3.2.

3.2 A procedure to determine a suitable value for the mixing parameter α

The key point is the choice of a suitable value for the mixing parameter
α ∈ [0, 1]. This parameter logically depends on the number of clusters K
and this logical dependence is an issue when it comes to decide an optimal
value for the parameter α. In this paper a practical (but not globally optimal)
solution to this issue is proposed : conditioning on K and choosing α that
best compromises between loss of socio-economic and loss of geographical ho-
mogeneity. Of course other solutions than conditioning on K could be explore
(conditioning on α or defining a global criterion) but these solutions seems to
be more difficult to implement in a sensible procedure.

To illustrate the idea of the proposed procedure, let us assume that the dis-
similarity matrix D1 contains geographical distances between n municipalities,
whereas the dissimilarity matrix D0 contains distances based on a n× p0 data
matrix X0 of p0 socio-economic variables measured on these n municipalities.
An objective of the user could be to determine a value of α which increases
the geographical homogeneity of a partition in K clusters without adversely
affecting socio-economic homogeneity. These homogeneities can be measured
using the appropriate pseudo within-cluster inertias.
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ClustGeo: an R package for hierarchical clustering with spatial constraints 11

Let β ∈ [0, 1]. Let us introduce the notion of proportion of the total mixed
(pseudo) inertia explained by the partition PαK in K clusters:

Qβ(PαK) = 1− Wβ(PαK)

Wβ(P1)
∈ [0, 1].

Some comments on this criterion.

– When β = 0, the denominator W0(P1) is the total (pseudo) inertia based
on the dissimilarity matrix D0 and the numerator is the (pseudo) within-
cluster inertia W0(PαK) based on the dissimilarity matrix D0, i.e. only from
the socio-economic point of view in our illustration.
The higher the value of the criterion Q0(PαK), the more homogeneous the
partition PαK is from the socio-economic point of view (i.e. each cluster
Cαk , k = 1, . . . ,K has a low inertia I0(Cαk ) which means that individuals
within the cluster are similar).
When the considered partition PαK has been obtained with α = 0, the cri-
terion Q0(PαK) is obviously maximal (since the partition P0

K was obtained
by using only the dissimilarity matrix D0), and this criterion will naturally
tend to decrease as α increases from 0 to 1.

– Similarly, when β = 1, the denominatorW1(P1) is the total (pseudo) inertia
based on the dissimilarity matrix D1 and the numerator is the (pseudo)
within-cluster inertia W1(PαK) based on the dissimilarity matrix D1, i.e.
only from a geographical point of view in our illustration.
Therefore, the higher the value of the criterion Q1(PαK), the more homo-
geneous the partition PαK from a geographical point of view.
When the considered partition PαK has been obtained with α = 1, the cri-
terion Q1(PαK) is obviously maximal (since the partition P1

K was obtained
by using only the dissimilarity matrix D1), and this criterion will naturally
tend to decrease as α decreases from 1 to 0.

– For a value of β ∈]0, 1[, the denominator Wβ(P1) is a total mixed (pseudo)
inertia which can not be easily interpreted in practice, and the numerator
Wβ(PαK) is the mixed (pseudo) within-cluster inertia. Note that when
the considered partition PαK has been obtained with α = β, the criterion
Qβ(PαK) is obviously maximal by construction, and it will tend to decrease
as α moves away from β.

– Finally, note that this criterion Qβ(PαK) is decreasing in K. Moreover,
∀β ∈ [0, 1], it is easy to see that Qβ(Pn) = 1 and Qβ(P1) = 0. The more
clusters there are in a partition, the more homogeneous these clusters are
(i.e. with a low inertia). Therefore this criterion can not be used to select
an appropriate number K of clusters.

How to use this criterion to select the mixing parameter α. Let us focus on
the above mentioned case where the user is interested in determining a value
of α which increases the geographical homogeneity of a partition in K clusters
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without deteriorating too much the socio-economic homogeneity. For a given
number K of clusters (the choice of K is discussed later), the idea is the
following:

– Let us consider a given grid of J values for α ∈ [0, 1]:

G = {α1 = 0, α1, . . . , αJ = 1}.

For each value αj ∈ G, the corresponding partition PαjK in K clusters is
obtained using the proposed Ward-like hierarchical clustering algorithm.

– For the J partitions {PαjK , j = 1, . . . , J}, the criterion Q0(PαjK ) is evalu-
ated. The plot of the points {(αj , Q0(PαjK )), j = 1, . . . , J} provides a visual
way to observe the loss of socio-economic homogeneity of the partition PαjK
(from the “pure” socio-economic partition P0

K) as αj increases from 0 to
1.

– Similarly, for the J partitions {PαjK , j = 1, . . . , J}, the criterion Q1(PαjK ) is
evaluated. The plot of the points {(αj , Q1(PαjK )), j = 1, . . . , J} provides a
visual way to observe the loss of geographical homogeneity of the partition
PαjK (from the “pure” geographical partition P1

K) as αj decreases from 1
to 0.

– These two plots (superimposed in the same figure) allow the user to choose
a suitable value for α ∈ G which is a trade-off between the loss of socio-
economic homogeneity and greater geographical cohesion (when viewed
through increasing values of α) .

Case where the two total (pseudo) inertias W0(P1) and W1(P1) used in Q0(PαK)
and Q1(PαK) are very different. Let us consider for instance that the dissim-
ilarity matrix D1 is a “neighborhood” dissimilarity matrix, constructed from
the corresponding adjacency matrix A: that is D1 = 1n−A with 1n,ij = 1 for
all (i, j), aij equal to 1 if observations i and j are neighbors and 0 otherwise,
and aii = 1 by convention. With this kind of local dissimilarity matrix D1, the
geographical cohesion for few clusters is often small: indeed, W1(P1) could be
very small and thus the criterion Q1(PαK) takes values generally much smaller
than those obtained by the Q0(PαK). Consequently, it is not easy for the user
to select easily and properly a suitable value for the mixing parameter α since
the two plots are in two very different scales.

One way to remedy this problem is to consider a renormalization of the
two plots.

Rather than reasoning in terms of absolute values of the criterion Q0(PαK)
(resp. Q1(PαK)) which is maximal in α = 0 (resp. α = 1), we will renor-
malize Q0(PαK) and Q1(PαK) as follows: Q∗0(PαK) = Q0(PαK)/Q0(P0

K) and
Q∗1(PαK) = Q1(PαK)/Q1(P1

K) and we then reason in terms of proportions of
these criteria. Therefore the corresponding plot {(αj , Q∗0(PαjK )), j = 1, . . . , J}
(resp. {(αj , Q∗1(PαjK )), j = 1, . . . , J}) starts from 100% and decreases as αj
increases from 0 to 1 (resp. as αj decreases from 1 to 0).
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The choice of the number K of clusters. The proposed procedure to select
a suitable value for the mixing parameter α works for a given number K of
clusters. Thus, it is first necessary to select K.

One way of achieving this is to focus on the dendrogram of the hierarchically-
nested set of such partitions {P0

n = Pn, . . . ,P0
K , . . . ,P0

1 = P1} only based on
the dissimilarity matrix D0 (i.e. for α = 0, that is considering only the socio-
economic point of view in our application). According to the dendrogram, the
user can select an appropriate number K of clusters with their favorite rule.

3.3 Description of the functions of the package ClustGeo

The previous Ward-like hierarchical clustering procedure is implemented in
the function hclustgeo with the following arguments:

hclustgeo(D0, D1 = NULL, alpha = 0, scale = TRUE, wt = NULL)

where:

– D0 is the dissimilarity matrix D0 between n observations. It must be an
object of class dist, i.e. an object obtained with the function dist. The
function as.dist can be used to transform object of class matrix to object
of class dist.

– D1 is the dissimilarity matrix D1 between the same n observations. It must
be an object of class dist. By default D1=NULL and the clustering is per-
formed using D0 only.

– alpha must be a real value between 0 and 1. The mixing parameter α gives
the relative importance of D0 compared to D1. By default, this parameter
is equal to 0 and only D0 is used in the clustering process.

– scale must be a logical value. If TRUE (by default), the dissimilarity ma-
trices D0 and D1 are scaled between 0 and 1 (that is divided by their
maximum value).

– wt must be a n-dimensional vector of the weights of the observations. By de-
fault, wt=NULL corresponds to the case where all observations are weighted
by 1/n.

The function hclustgeo returns an object of class hclust.

The procedure to determine a suitable value for the mixing parameter α is
applied through the function choicealpha with the following arguments:

choicealpha(D0, D1, range.alpha, K, wt = NULL, scale = TRUE,

graph = TRUE)

where:

– D0 is the dissimilarity matrix D0 of class dist, already defined above.
– D1 is the dissimilarity matrix D1 of class dist, already defined above.
– range.alpha is the vector of the real values αj (between 0 and 1) consid-

ered by the user in the grid G of size J .
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– K is the number of clusters chosen by the user.
– wt is the vector of the weights of the n observations, already defined above.
– scale is a logical value that allows the user to rescale the dissimilarity

matrices D0 and D1, already defined above.
– graph is a logical value. If graph=TRUE, the two graphics (proportion and

normalized proportion of explained inertia) are drawn.

This function returns an object of class choicealpha which contains

– Q is a J × 2 real matrix such that the jth row contains Q0(PαjK ) and
Q1(PαjK ).

– Qnorm is a J × 2 real matrix such that the jth row contains Q∗0(PαjK ) and
Q∗1(PαjK )..

– range.alpha is the vector of the real values αj considered in the G.

A plot method is associated with the class choicealpha.

4 An illustration of hierarchical clustering with geographical
constraints using the package ClustGeo

This section illustrates the procedure of hierarchical clustering with geograph-
ical constraints on a real dataset using the package ClustGeo. The complete
procedure and methodology for the choice of the mixing parameter α is pro-
vided with two types of spatial constraints (with geographical distances and
with neighborhood contiguity). We have provided the R code of this case study
so that readers can reproduce our methodology and obtain map representa-
tions from their own data.

4.1 The data

Data were taken from French population censuses conducted by the National
Institute of Statistics and Economic Studies (INSEE). The dataset is an ex-
traction of p = 4 quantitative socio-economic variables for a subsample of
n = 303 French municipalities located on the atlantic coast between Royan
and Mimizan:

– employ.rate.city is the employment rate of the municipality, that is the
ratio of the number of individuals who have a job to the population of work-
ing age (generally defined, for the purposes of international comparison, as
persons of between 15 and 64 years of age).

– graduate.rate refers to the level of education of the population, i.e. the
highest qualification declared by the individual. It is defined here as the
ratio for the whole population having completed a diploma equal to or
greater than two years of higher education (DUT, BTS, DEUG, nursing
and social training courses, la licence, mâıtrise, DEA, DESS, doctorate, or
Grande Ecole diploma).

– housing.appart is the ratio of apartment housing.
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– agri.land is the part of agricultural area of the municipality.

We consider here two dissimilarity matrices:

– D0 is the Euclidean distance matrix between the n municipalities per-
formed with the p = 4 available socio-economic variables,

– D1 is a second dissimilarity matrix used to take the geographical proximity
between the n municipalities into account.

> library(ClustGeo)

> data(estuary) # list of 3 objects (dat, D.geo, map)

# where dat= socio-economic data (n*p data frame),

# D.geo = n*n data frame of geographical distances,

# map = object of class "SpatialPolygonsDataFrame"

# used to draw the map

> head(estuary$dat)

employ.rate.city graduate.rate housing.appart agri.land

17015 28.08 17.68 5.15 90.04438

17021 30.42 13.13 4.93 58.51182

17030 25.42 16.28 0.00 95.18404

17034 35.08 9.06 0.00 91.01975

17050 28.23 17.13 2.51 61.71171

17052 22.02 12.66 3.22 61.90798

> D0 <- dist(estuary$dat) # the socio-economic distances

> D1 <- as.dist(estuary$D.geo) # the geographic distances between the municipalities

4.2 Choice of the number K of clusters

To choose the suitable numberK of clusters, we focus on the Ward dendrogram
based on the p = 4 socio-economic variables, that is using D0 only.

> tree <- hclustgeo(D0)

> plot(tree,hang=-1,label=FALSE, xlab="",sub="", main="")

> rect.hclust(tree,k=5,border=c(4,5,3,2,1))

> legend("topright",legend=paste("cluster",1:5),fill=1:5,bty="n",border="white")

The visual inspection of the dendrogram in Figure 1 suggests to retain K = 5
clusters. We can use the map provided in the estuary data to visualize the
corresponding partition in five clusters, called P5 hereafter.

> P5 <- cutree(tree,5) # cut the dendrogram to get the partition in 5 clusters

> sp::plot(estuary$map,border="grey",col=P5) # plot an object of class sp

> legend("topleft",legend=paste("cluster",1:5),fill=1:5,bty="n",border="white")

Figure 2 shows that municipalities of cluster 5 are geographically compact,
corresponding to Bordeaux and the 15 municipalities of its suburban area and
Arcachon. On the contrary, municipalities in cluster 3 are scattered over a
wider geographical area from North to South of the study area. The composi-
tion of each cluster is easily obtained, as shown for cluster 5:

# list of the municipalities in cluster 5

> city_label <- as.vector(estuary$map$"NOM_COMM")

> city_label[which(P5==5)]

[1] "ARCACHON" "BASSENS" "BEGLES"
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Fig. 1 Dendrogram of the n = 303 municipalities based on the p = 4 socio-economic
variables (that is using D0 only).
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Fig. 2 Map of the partition P5 in K = 5 clusters only based on the socio-economic variables
(that is using D0 only).

[4] "BORDEAUX" "LE BOUSCAT" "BRUGES"

[7] "CARBON-BLANC" "CENON" "EYSINES"

[10] "FLOIRAC" "GRADIGNAN" "LE HAILLAN"

[13] "LORMONT" "MERIGNAC" "PESSAC"

[16] "TALENCE" "VILLENAVE-D’ORNON"
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The interpretation of the clusters according to the initial socio-economic
variables is interesting. Figure 7 shows the boxplots of the variables for each
cluster of the partition (left column). Cluster 5 corresponds to urban mu-
nicipalities, Bordeaux and its outskirts plus Arcachon, with a relatively high
graduate rate but low employment rate. Agricultural land is scarce and munic-
ipalities have a high proportion of apartments. Cluster 2 corresponds to sub-
urban municipalities (north of Royan; north of Bordeaux close to the Gironde
estuary) with mean levels of employment and graduates, a low proportion of
apartments, more detached properties, and very high proportions of farmland.
Cluster 4 corresponds to municipalities located in the Landes forest. Both the
graduate rate and the ratio of the number of individuals in employment are
high (greater than the mean value of the study area). The number of apart-
ments is quite low and the agricultural areas are higher to the mean value of
the zone. Cluster 1 corresponds to municipalities on the banks of the Gironde
estuary. The proportion of farmland is higher than in the other clusters. On
the contrary, the number of apartments is the lowest. However this cluster
also has both the lowest employment rate and the lowest graduate rate. Clus-
ter 3 is geographically sparse. It has the highest employment rate of the study
area, a graduate rate similar to that of cluster 2, and a collective housing rate
equivalent to that of cluster 4. The agricultural area is low.

4.3 Obtaining a partition taking into account the geographical constraints

To obtain more geographically compact clusters, we can now introduce the
matrix D1 of geographical distances into hclustgeo. This requires a mixing
parameter to be selected α to improve the geographical cohesion of the 5
clusters without adversely affecting socio-economic cohesion.

Choice of the mixing parameter α. The mixing parameter α ∈ [0, 1] sets the
importance of D0 and D1 in the clustering process. When α = 0 the geo-
graphical dissimilarities are not taken into account and when α = 1 it is the
socio-economic distances which are not taken into account and the clusters are
obtained with the geographical distances only.
The idea is to perform separate calculations for socio-economic homogeneity
and the geographic cohesion of the partitions obtained for a range of different
values of α and a given number of clusters K.
To achieve this, we can plot the quality criterion Q0 and Q1 of the partitions
PαK obtained with different values of α ∈ [0, 1] and choose the value of α which
is a trade-off between the lost of socio-economic homogeneity and the gain of
geographic cohesion. We use the function choicealpha for this purpose.

> cr <- choicealpha(D0,D1,range.alpha=seq(0,1,0.1),K=5,graph=TRUE)

> cr$Q # proportion of explained pseudo-inertia

Q0 Q1

alpha=0 0.8134914 0.4033353

alpha=0.1 0.8123718 0.3586957

alpha=0.2 0.7558058 0.7206956
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alpha=0.3 0.7603870 0.6802037

alpha=0.4 0.7062677 0.7860465

alpha=0.5 0.6588582 0.8431391

alpha=0.6 0.6726921 0.8377236

alpha=0.7 0.6729165 0.8371600

alpha=0.8 0.6100119 0.8514754

alpha=0.9 0.5938617 0.8572188

alpha=1 0.5016793 0.8726302

> cr$Qnorm # normalized proportion of explained pseudo-inertias

Q0norm Q1norm

alpha=0 1.0000000 0.4622065

alpha=0.1 0.9986237 0.4110512

alpha=0.2 0.9290889 0.8258889

alpha=0.3 0.9347203 0.7794868

alpha=0.4 0.8681932 0.9007785

alpha=0.5 0.8099142 0.9662043

alpha=0.6 0.8269197 0.9599984

alpha=0.7 0.8271956 0.9593526

alpha=0.8 0.7498689 0.9757574

alpha=0.9 0.7300160 0.9823391

alpha=1 0.6166990 1.0000000

Figure 3 gives the plot of the proportion of explained pseudo-inertia calculated
with D0 (the socio-economic distances) which is equal to 0.81 when α = 0 and
decreases when α increases (black solid line). On the contrary, the proportion
of explained pseudo-inertia calculated with D1 (the geographical distances) is
equal to 0.87 when α = 1 and decreases when α decreases (dashed line).
Here, the plot would appear to suggest choosing α = 0.2 which corresponds
to a loss of only 7% of socio-economic homogeneity, and a 17% increase in
geographical homogeneity.

Final partition obtained with α = 0.2. We perform hclustgeo with D0 and
D1 and α = 0.2 and cut the tree to get the new partition in five clusters, called
P5bis hereafter.

> tree <- hclustgeo(D0,D1,alpha=0.2)

> P5bis <- cutree(tree,5)

> sp::plot(estuary$map,border="grey",col=P5bis)

> legend("topleft",legend=paste("cluster",1:5),fill=1:5,bty="n",border="white")

The increased geographical cohesion of this partition P5bis can be seen in
Figure 4. Figure 7 shows the boxplots of the variables for each cluster of the
partition P5bis (middle column). Cluster 5 of P5bis is identical to cluster 5
of P5 with the Blaye municipality added in. Cluster 1 keeps the same interpre-
tation as in P5 but has gained spatial homogeneity. It is now clearly located
on the banks of the Gironde estuary, especially on the north bank. The same
applies for cluster 2 especially for municipalities between Bordeaux and the
estuary. Both clusters 3 and 4 have changed significantly. Cluster 3 is now a
spatially compact zone, located predominantly in the Médoc.

It would appear that these two clusters have been separated based on pro-
portion of farmland, because the municipalities in cluster 3 have above-average
proportions of this type of land, while cluster 4 has the lowest proportion of
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Fig. 3 Choice of α for a partition in K = 5 clusters when D1 is the geographical distances
between municipalities. Top: proportion of explained pseudo-inertias Q0(PαK) versus α (in
black solid line) and Q1(PαK) versus α (in dashed line). Bottom: normalized proportion of
explained pseudo-inertias Q∗

0(PαK) versus α (in black solid line) and Q∗
1(PαK) versus α (in

dashed line).

farmland of the whole partition. Cluster 4 is also different because of the in-
crease in clarity both from a spatial and socio-economic point of view. In
addition, it contains the southern half of the study area. The ranges of all
variables are also lower in the corresponding boxplots.

4.4 Obtaining a partition taking into account the neighborhood constraints

Let us construct a different type of matrix D1 to take neighbouring munici-
palities into account when clustering the 303 municipalities.
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Fig. 4 Map of the partition P5bis in K = 5 clusters based on the socio-economic distances
D0 and the geographical distances between the municipalities D1 with α = 0.2.

Two regions with contiguous boundaries, that is sharing one or more bound-
ary point, are considered as neighbors. Let us first build the adjacency matrix
A.

> list.nb <- spdep::poly2nb(estuary$map,row.names=rownames(estuary$dat)) #list of neighbors

It is possible to obtain the list of the neighbors of a specific city. For instance,
the neighbors of Bordeaux (which is the 117th city in the R data table) is
given by the script:

> city_label[list.nb[[117]]] # list of the neighbors of BORDEAUX

[1] "BASSENS" "BEGLES" "BLANQUEFORT" "LE BOUSCAT" "BRUGES"

[6] "CENON" "EYSINES" "FLOIRAC" "LORMONT" "MERIGNAC"

[11] "PESSAC" "TALENCE"

The dissimilarity matrix D1 is constructed based on the adjacency matrix A
with D1 = 1n −A.

> A <- spdep::nb2mat(list.nb,style="B") # build the adjacency matrix

> diag(A) <- 1

> colnames(A) <- rownames(A) <- city_label

> D1 <- 1-A

> D1[1:2,1:5]

ARCES ARVERT BALANZAC BARZAN BOIS

ARCES 0 1 1 0 1

ARVERT 1 0 1 1 1

> D1 <- as.dist(D1)

Choice of the mixing parameter α. The same procedure for the choice of α is
then used with this neighborhood dissimilarity matrix D1.

> cr <- choicealpha(D0,D1,range.alpha=seq(0,1,0.1),K=5,graph=TRUE)

> cr$Q # proportion of explained pseudo-inertia

> cr$Qnorm # normalized proportion of explained pseudo-inertia
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Fig. 5 Choice of α for a partition in K = 5 clusters when D1 is the neighborhood dissimi-
larity matrix between municipalities. Top: proportion of explained pseudo-inertias Q0(PαK)
versus α (in black solid line) and Q1(PαK) versus α (in dashed line). Bottom: normalized
proportion of explained pseudo-inertias Q∗

0(PαK) versus α (in black solid line) and Q∗
1(PαK)

versus α (in dashed line).

With these kinds of local dissimilarities in D1, the neighborhood within-cluster
cohesion is always very small. Q1(PαK) takes small values: see the dashed line
of Q1(PαK) versus α at the top of Figure 5. To overcome this problem, the user
can plot the normalized proportion of explained inertias (that is Q∗0(PαK) and
Q∗1(PαK)) instead of the proportion of explained inertias (that is Q0(PαK) and
Q1(PαK)). At the bottom of Figure 5, the plot of the normalized proportion of
explained inertias suggests to retain α = 0.2 or 0.3. The value α = 0.2 slightly
favors the socio-economic homogeneity versus the geographical homogeneity.
According to the priority given in this application to the socio-economic as-
pects, the final partition is obtained with α = 0.2.

Final partition obtained with α = 0.2. It remains only to determine this fi-
nal partition for K = 5 clusters and α = 0.2, called P5ter hereafter. The
corresponding map is given in Figure 6.

> tree <- hclustgeo(D0,D1,alpha=0.2)
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> P5ter <- cutree(tree,5)

> sp::plot(estuary$map,border="grey",col=P5ter)

> legend("topleft",legend=paste("cluster",1:5),fill=1:5,bty="n",border="white")

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

Fig. 6 Map of the partition P5ter in K = 5 clusters based on the socio-economic distances
D0 and the “neighborhood” distances of the municipalities D1 with α = 0.2.

Figure 6 shows that clusters of P5ter are spatially more compact than that
of P5bis. This is not surprising since this approach builds dissimilarities from
the adjacency matrix which gives more importance to neighborhoods. However
since our approach is based on soft contiguity constraints, municipalities that
are not neighbors are allowed to be in the same clusters. This is the case for
instance for cluster 4 where some municipalities are located in the north of
the estuary whereas most are located in the southern area (corresponding to
forest areas). The quality of the partition P5ter is slightly worse than that of
partition P5ter according to criterion Q0 (72.69% versus 75.58%). However
the boxplots corresponding to partition P5ter given in Figure 7 (right column)
are very similar to those of partition P5bis. These two partitions have thus
very close interpretations.

5 Concluding remarks

In this paper, a Ward-like hierarchical clustering algorithm including soft spa-
cial constraints has been introduced and illustrated on a real dataset. The
corresponding approach has been implemented in the R package ClustGeo

available on the CRAN. When the observations correspond to geographical
units (such as a city or a region), it is then possible to represent the clustering
obtained on a map regarding the considered spatial constraints. This Ward-
like hierarchical clustering method can also be used in many other contexts
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Fig. 7 Comparison of the final partitions P5, P5bis and P5ter in terms of variables.
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where the observations do not correspond to geographical units. In that case,
the dissimilarity matrix D1 associated with the “constraint space?” does not
correspond to spatial constraints in its current form.

For instance, the user may have at his/her disposal a first set of data of
p0 variables (e.g. socio-economic items) measured on n individuals on which
he/she has made a clustering from the associated dissimilarity (or distance)
matrix. This user also has a second data set of p1 new variables (e.g. environ-
mental items) measured on these same n individuals, on which a dissimilarity
matrix D1 can be calculated. Using the ClusGeo approach, it is possible to
take this new information into account to refine the initial clustering without
basically disrupting it.
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