8 research outputs found

    Review on the Research for Separated Continuous Linear Programming: With Applications on Service Operations

    Get PDF
    We give a review on the research for a class of optimization model—separated continuous linear programming (SCLP). SCLP takes several similar forms and can be used to find the dynamic control of a multiclass fluid network. We review the duality theory and solution methods for it. We also present application examples of SCLP on service operations

    Robust Fluid Processing Networks

    Get PDF
    Fluid models provide a tractable and useful approach in approximating multiclass processing networks. However, they ignore the inherent stochasticity in arrival and service processes. To address this shortcoming, we develop a robust fluid approach to the control of processing networks. We provide insights into the mathematical structure, modeling power, tractability, and performance of the resulting model. Specifically, we show that the robust fluid model preserves the computational tractability of the classical fluid problem and retains its original structure. From the robust fluid model, we derive a (scheduling) policy that regulates how fluid from various classes is processed at the servers of the network. We present simulation results to compare the performance of our policies to several commonly used traditional methods. The results demonstrate that our robust fluid policies are near-optimal (when the optimal can be computed) and outperform policies obtained directly from the fluid model and heuristic alternatives (when it is computationally intractable to compute the optimal).National Science Foundation (U.S.) (Grant CNS-1239021)National Science Foundation (U.S.) (Grant IIS-1237022)United States. Army Research Office (Grant W911NF-11-1-0227)United States. Army Research Office (Grant W911NF-12-1-0390)United States. Office of Naval Research (Grant N00014-10-1-0952

    Stochastic Separated Continuous Conic Programming: Strong Duality and a Solution Method

    Get PDF
    We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic control. Based on the relationship among SSCCP, its dual, and their discretization counterparts, we develop a strong duality theory for the SSCCP. We also suggest a polynomial-time approximation algorithm that solves the SSCCP to any predefined accuracy

    On Solving Continuous-time Dynamic Network Flows

    Get PDF
    Temporal dynamics is a crucial feature of network flow problems occurring in many practical applications. Important characteristics of real-world networks such as arc capacities, transit times, transit and storage costs, demands and supplies etc. are subject to fluctuations over time. Consequently, also flow on arcs can change over time which leads to so-called dynamic network flows. While time is a continuous entity by nature, discrete time models are often used for modeling dynamic network flows as the resulting problems are in general much easier to handle computationally
    corecore