
Research Article
Stochastic Separated Continuous Conic Programming:
Strong Duality and a Solution Method

Xiaoqing Wang

Lingnan (University) College, Sun Yat-sen University, Guangzhou, Guangdong 510275, China

Correspondence should be addressed to Xiaoqing Wang; xqwang2@gmail.com

Received 3 November 2013; Accepted 29 November 2013; Published 9 January 2014

Academic Editor: Dongdong Ge

Copyright © 2014 Xiaoqing Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP
is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in
robust optimization and sign-constrained linear-quadratic control. Based on the relationship among SSCCP, its dual, and their
discretization counterparts, we develop a strong duality theory for the SSCCP. We also suggest a polynomial-time approximation
algorithm that solves the SSCCP to any predefined accuracy.

1. Introduction

Stochastic programming is one of the branches of optimiza-
tion which enjoys a fast development in recent years. It tries
to find optimal decisions in problems involving uncertain
data, so it is also called “optimization under uncertainty” [1].
Since the problems in reality often involve uncertain data,
stochastic programming has a lot of applications.

Many deterministic optimization models have their
stochastic counterpart; for example, the stochastic counter-
part of linear programming is stochastic linear programming.
In this paper, we consider the stochastic counterpart of a
kind of optimization model called separated continuous conic
programming (SCCP) which has the following form:

(SCCP) max ∫
𝑇

0

[(𝛾 + (𝑇 − 𝑡) 𝑐)
󸀠
𝑢 (𝑡) + 𝑑

󸀠
𝑥 (𝑡)] 𝑑𝑡

s.t. 𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡) ∈K
1
,

𝑏 − 𝐻𝑢 (𝑡) ∈K
2
,

𝑢 (𝑡) ∈K
3
, 𝑥 (𝑡) ∈K

4
, 𝑡 ∈ [0, 𝑇] .

(1)

Here the control and state variables (both are decision
variables), 𝑢(𝑡) and 𝑥(𝑡), are vectors of bounded measurable

functions of time 𝑡 ∈ [0, 𝑇]. K
𝑖
, 𝑖 = 1, 2, 3, 4, are closed

convex cones in the Euclidean space with appropriate
dimensions, 𝛾, 𝑐, 𝑑, 𝛼, 𝑎, 𝑏 are vectors, 𝐺, 𝐹,𝐻 are matrices,
and the superscript 󸀠 denotes the transpose operation.

SCCP was first studied by Wang et al. [2]. They devel-
oped a strong duality theory for SCCP under some mild
and verifiable conditions and suggested an approximation
algorithm to solve SCCP with predefined precision. SCCP
has a variety of applications in robust optimization and
sign-constrained linear-quadratic control. However, many
applications of SCCP are stochastic in nature in the sense that
the values of some parameters in the resulted SCCP models
may change over time with some probability distribution.
To incorporate this kind of randomness into the SCCP
model, we introduce the following stochastic counterpart of
SCCP which we call stochastic separated continuous conic
programming (SSCCP) problem:

max ∫
𝑇
1

0

[(𝛾 + (𝑇 − 𝑡) 𝑐)
󸀠
𝑢 (𝑡) + 𝑑

󸀠
𝑥 (𝑡)] 𝑑𝑡

+ E
𝜉
(∫
𝑇
2

𝑇
1

[(𝛾 (𝜉)+(𝑇 − 𝑡) 𝑐 (𝜉))
󸀠
𝑢 (𝑡)+𝑑(𝜉)

󸀠
𝑥 (𝑡)]𝑑𝑡)

s.t. 𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡) ∈K
1
, 𝑡 ∈ [0, 𝑇

1
] ,
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𝑏 − 𝐻𝑢 (𝑡) ∈K
2
, 𝑡 ∈ [0, 𝑇

1
] ,

𝑢 (𝑡) ∈K
3
, 𝑥 (𝑡) ∈K

4
, 𝑡 ∈ [0, 𝑇

1
] ,

𝛼 + 𝑇
1
𝑎 + (𝑡 − 𝑇

1
) 𝑎 (𝜉) − ∫

𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑇
1

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡) ∈K(𝜉)1,

𝑡 ∈ [𝑇
1
, 𝑇
2
] ,

𝑏 (𝜉) − 𝐻𝑢 (𝑡) ∈K(𝜉)2, 𝑡 ∈ [𝑇
1
, 𝑇
2
] ,

𝑢 (𝑡) ∈K(𝜉)3, 𝑥 (𝑡) ∈K(𝜉)4, 𝑡 ∈ [𝑇
1
, 𝑇
2
] ,

(2)

where 𝜉 is a random variable.
SSCCP is formulated with the similar idea as that of the

stochastic linear programming [1, 3]. There are two stages in
this problem; the values of some parameters in the second
stage depend on the value of a random variable 𝜉.

Our goal in this paper is developing the strong duality
for SSCCP and suggesting a solution method to solve it
approximately with predefined precision. Here is a summary
of our main results. Through discretization, we connect
SSCCP and its dual to two ordinary conic programs, and we
show that strong duality holds for SSCCP and its dual under
some mild (and verifiable) conditions on these two ordinary
conic programs. Furthermore, the optimal values of those
two conic programs provide an explicit bound on the duality
gap between SSCCP and its dual, based on which we sug-
gest a polynomial-time approximation algorithm that solves
SSCCP to any predefined accuracy. According to our knowl-
edge, we are the first to raise the SSCCPmodel and there have
been no other results on SSCCP besides those in this paper.

The paper is organized as follows. In Section 2, we present
an overview on the related literature. We also give a concrete
example to show the application of SSCCP. In Section 3, we
construct a dual for SSCCP. We also discretize 𝑆SCCP and
its dual into two ordinary conic programs, and bring out
their relations. In Section 4, we discuss the strong feasibility
for SSCCP, its dual, and their discretizations. We then
establish the strong duality result for SSCCP and its dual
in Section 5. This leads to a polynomial-time approximation
algorithm with an explicit error bound, detailed in Section 6.
In Section 7, we summarize what we get for SSCCP and point
out some future research directions.

For simpler presentation, in the remainder of this paper,
we will concentrate on the following problem, which is the
corresponding SSCCP when 𝜉 is a discrete variable and only
takes two different values with probability 𝜃 and 1−𝜃, that is,
there are only two scenarios in the second stage of SSCCP:

max ∫
𝑇
1

0

[(𝛾 + (𝑇 − 𝑡) 𝑐)
󸀠
𝑢 (𝑡) + 𝑑

󸀠
𝑥 (𝑡)] 𝑑𝑡

+ ∫
𝑇

𝑇
1

[( ̆𝛾
1
+ (𝑇 − 𝑡) ̆𝑐1)

󸀠V (𝑡) + ̆𝑑
󸀠

1
𝑦 (𝑡)] 𝑑𝑡

+ ∫
𝑇

𝑇
1

[( ̆𝛾
2
+ (𝑇 − 𝑡) ̆𝑐2)

󸀠
𝑤 (𝑡) + ̆𝑑

󸀠

2
𝑧 (𝑡)] 𝑑𝑡

s.t. 𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡) ∈K
1
, 𝑡 ∈ [0, 𝑇

1
] ,

𝑏 − 𝐻𝑢 (𝑡) ∈K
2
, 𝑡 ∈ [0, 𝑇

1
] ,

𝑢 (𝑡) ∈K
3
, 𝑥 (𝑡) ∈K

4
, 𝑡 ∈ [0, 𝑇

1
] ,

𝛼
1
+ 𝑡𝑎
1
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑇
1

𝐺V (𝑠) 𝑑𝑠 − 𝐹𝑦 (𝑡) ∈K
11
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝑏
1
− 𝐻V (𝑡) ∈K

21
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

V (𝑡) ∈K
31
, 𝑦 (𝑡) ∈K

41
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝛼
2
+ 𝑡𝑎
2
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑇
1

𝐺𝑤 (𝑠) 𝑑𝑠 − 𝐹𝑧 (𝑡) ∈K
12
,

𝑡 ∈ (𝑇
1
, 𝑇] ,

𝑏
2
− 𝐻𝑤 (𝑡) ∈K

22
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝑤 (𝑡) ∈K
32
, 𝑧 (𝑡) ∈K

42
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

(3)

where the first-stage control and state variables are 𝑢(𝑡) and
𝑥(𝑡), 𝑡 ∈ [0, 𝑇

1
], and the second-stage control and state

variables are V(𝑡), 𝑤(𝑡), 𝑦(𝑡), and 𝑧(𝑡), 𝑡 ∈ (𝑇
1
, 𝑇]. Also 𝛼

1
=

𝛼+𝑇
1
𝑎−𝑇
1
𝑎
1
,𝛼
2
= 𝛼+𝑇

1
𝑎−𝑇
1
𝑎
2
, ̆𝛾
1
= 𝜃𝛾
1
, ̆𝑐
1
= 𝜃𝑐
1
, ̆𝑑
1
= 𝜃𝑑
1
,

̆𝛾
2
= (1 − 𝜃)𝛾

2
, ̆𝑐
2
= (1 − 𝜃)𝑐

2
, ̆𝑑
2
= (1 − 𝜃)𝑑

2
.

Note that although (3) is a deterministic optimization
problem, it is not an SCCP. To see why this is the case, one
can try to formulate (3) into the form of SCCP and it then
becomes clear that (3) cannot fit into the SCCP form.

In the rest of this paper, we will use some results on conic
programming without explanations. Interested readers can
consult the books on conic programming (e.g., [4]) for the
related results.

2. Literature Review

Bellman [5, 6] first introduced the so-called continuous linear
programming (CLP), which has the following form:

(CLP) max ∫
𝑇

0

𝑐(𝑡)
󸀠
𝑥 (𝑡) 𝑑𝑡

s.t. 𝐵𝑥 (𝑡) − ∫
𝑡

0

𝐾𝑥 (𝑠) 𝑑𝑠 ≤ 𝑏 (𝑡)

𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] .

(4)

Here 𝑥(𝑡) is a decision variable. The model has wide-ranging
applications (e.g., the bottleneck problem [5]). But CLP is
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very difficult to solve in its general form. Later, Anderson [7]
introduced separated continuous linear programming (SCLP)
(see (5)), a special case of CLP, to model the job-shop
scheduling problems:

(SCLP) max ∫
𝑇

0

[(𝛾 + (𝑇 − 𝑡) 𝑐)
󸀠
𝑢 (𝑡) + 𝑑

󸀠
𝑥 (𝑡)] 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 + 𝐹𝑥 (𝑡) ≤ 𝛼 + 𝑡𝑎,

𝐻𝑢 (𝑡) ≤ 𝑏,

𝑢 (𝑡) ≥ 0, 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] .

(5)

Theword “separated” refers to the fact that there are two kinds
of constraints in SCLP: the constraints involving integration
and the instantaneous constraints [7].

Anderson et al. [8] studied the properties of the extreme
solutions of the SCLP, based onwhichAnderson and Philpott
[9] developed a simplex type of algorithm for a network-
based SCLP. Refer to Anderson and Philpott [10] and
Anderson and Nash [11] for their other results on SCLP.
Pullan [12–18] continues studying SCLP in a series of papers.
He systematically developed a duality theory and solution
algorithms for the SCLP.

There are other researches focused on other forms of
SCLP, including Luo and Bertsimas [19], Shapiro [20], Fleis-
cher and Sethuraman [21], Weiss [22], and Nasrabadi et al.
[23].

One of the extensions of SCLP is SCCP introduced
by Wang et al. [2] in which the constraints involve the
convex cone in their right hand side. When all the convex
cones are nonnegative orthants, SCCP reduces to SCLP.
In [2], based on the relationship among SCCP, its dual,
and their discretization counterparts, they develop a strong
duality theory for the SCCP.They also suggest a polynomial-
time approximation algorithm that solves the SCCP to any
predefined accuracy.

Wang [24, 25] extends SCCP to generalized separated
continuous conic programming (GSCCP) by allowing the
parameters in (1) to be piece-wise constants and extends the
results of [2] for SCCP to GSCCP. In this paper, we extend
SCCP to SSCCP by allowing the changes of values of some
parameters in SCCP in the second stage. We also extend the
results of [2] for SCCP to SSCCP.

2.1. A Motived Example for SSCCP. We consider a problem
which appears in [2]; for completeness, we reproduce the
problem description and the formulation below.

A network processes a continuous flow of jobs at two
machines. The jobs visit machines 1 and 2 in the order 1 →
2 → 1, that is, a total of three processing steps; see Figure 1.
Corresponding to each processing step, there is a buffer
holding the fluid. At 𝑡 = 0, the initial levels of fluid at the three
steps are 50, 20, and 120 units. The input rates of fluid from
outside to the three buffers are 0.01, 0.01, and 0.01. To process
each unit of job (“fluid”), the time requirements at the three
steps are 0.4, 0.8, and 0.2 time units.

Machine 1 Machine 2

1 2

3

Figure 1: The fluid network in the example in Section 2.1.

The problem is to find the processing rates at the three
steps, 𝑢

𝑖
(𝑡), 𝑖 = 1, 2, 3, which determine the fluid levels

in the three buffers, 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, 3, during a given time

interval [0, 𝑇] such that the fluid levels in the three buffers
are maintained as close as possible to a prespecified constant
level 𝑑 = (30 10 80)

󸀠.
The problem can be formulated as follows:

min ∫
𝑇

0

[(𝑥 (𝑡) − 𝑑)
󸀠
(𝑥 (𝑡) − 𝑑)] 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 + 𝑥 (𝑡) = 𝛼 + 𝑡𝑎,

𝑏 − 𝐻𝑢 (𝑡) ≥ 0,

𝑢 (𝑡) ≥ 0, 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(6)

where

𝐺 = (

1 0 0

−1 1 0

0 −1 1

) , 𝐻 = (
0.4 0 0.2

0 0.8 0
) ,

𝛼 = (

50

20

120

) , 𝑎 = (

0.01

0.01

0.01

) , 𝑏 = (
1

1
) .

(7)

We can further express the above problem in the form of
SCCP. Please refer to [2] for the details.

In reality, the values of 𝑎 and 𝑏 could be changed during
[0, 𝑇] for example, when the machine 1 experiences partial
breakdown within [𝑇

1
, 𝑇]; where 0 ≤ 𝑇

1
≤ 𝑇, the

corresponding value of capacity vector for machine 1, 𝑏
1
, will

change during [𝑇
1
, 𝑇]. This makes the formulation of the

problem an SSCCP. We omit the details here.

3. The Dual and Discretizations

3.1. The Dual. The dual of SSCCP that we will focus on is the
following problem:

(SSCCP∗)

min ∫
𝑇−𝑇
1

0

[(𝛼
1
+ (𝑇 − 𝑡) 𝑎1)

󸀠
ℎ (𝑡) + 𝑏

󸀠

1
𝑙 (𝑡)] 𝑑𝑡

+ ∫
𝑇−𝑇
1

0

[(𝛼
2
+ (𝑇 − 𝑡) 𝑎2)

󸀠
𝑝 (𝑡) + 𝑏

󸀠

2
𝑞 (𝑡)] 𝑑𝑡

+ ∫
𝑇

𝑇−𝑇
1

[(𝛼 + (𝑇 − 𝑡) 𝑎)
󸀠
𝑓 (𝑡) + 𝑏

󸀠
𝑔 (𝑡)] 𝑑𝑡
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s.t. ∫
𝑡

0

𝐺
󸀠
ℎ (𝑠) 𝑑𝑠 + 𝐻

󸀠
𝑙 (𝑡) − ( ̆𝛾1 + 𝑡 ̆𝑐1) ∈K

∗

31
,

𝑡 ∈ [0, 𝑇 − 𝑇
1
] ,

𝐹
󸀠
ℎ (𝑡) − ̆𝑑

1
∈K
∗

41
, 𝑡 ∈ [0, 𝑇 − 𝑇

1
] ,

ℎ (𝑡) ∈K
∗

11
, 𝑙 (𝑡) ∈K

∗

21
, 𝑡 ∈ [0, 𝑇 − 𝑇

1
] ,

∫
𝑡

0

𝐺
󸀠
𝑝 (𝑠) 𝑑𝑠 + 𝐻

󸀠
𝑞 (𝑡) − ( ̆𝛾2 + 𝑡 ̆𝑐2) ∈K

∗

32
,

𝑡 ∈ [0, 𝑇 − 𝑇
1
] ,

𝐹
󸀠
𝑝 (𝑡) − ̆𝑑

2
∈K
∗

42
, 𝑡 ∈ [0, 𝑇 − 𝑇

1
] ,

𝑝 (𝑡) ∈K
∗

12
, 𝑞 (𝑡) ∈K

∗

22
, 𝑡 ∈ [0, 𝑇 − 𝑇

1
] ,

∫
𝑇−𝑇
1

0

𝐺
󸀠
(ℎ (𝑠) + 𝑝 (𝑠)) 𝑑𝑠

+ ∫
𝑡

𝑇−𝑇
1

𝐺
󸀠
𝑓 (𝑠) 𝑑𝑠 + 𝐻

󸀠
𝑔 (𝑡) − (𝛾 + 𝑡𝑐) ∈K

∗

3
,

𝑡 ∈ (𝑇 − 𝑇
1
, 𝑇] ,

𝐹
󸀠
𝑓 (𝑡) − 𝑑 ∈K

∗

4
, 𝑡 ∈ (𝑇 − 𝑇

1
, 𝑇] ,

𝑓 (𝑡) ∈K
∗

1
, 𝑔 (𝑡) ∈K

∗

2
, 𝑡 ∈ (𝑇 − 𝑇

1
, 𝑇] ,

(8)

where the decision variables ℎ(𝑡), 𝑙(𝑡), 𝑝(𝑡), 𝑞(𝑡), 𝑓(𝑡), and
𝑔(𝑡) are boundedmeasurable functions.K∗

𝑖
,K∗
𝑖𝑗
are the dual

cones ofK
𝑖
andK

𝑖𝑗
, 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, respectively.

The derivation of the above dual problem is similar to the
derivation of the dual problem for LP (see, e.g., [26]) and
we omit the details here. Because SSCCP involves time, to
achieve some degree of symmetry in the dual (to facilitate
the later analysis), we choose to write the dual in the reversed
time; that is, 𝑡 in the dual is 𝑇 − 𝑡 in the primal.

The following weak duality is readily shown from the
derivation of (SSCCP∗).

Proposition 1. The weak duality holds between 𝑆𝑆𝐶𝐶𝑃 and
𝑆𝑆𝐶𝐶𝑃∗; that is, if 𝑢(𝑡), 𝑥(𝑡), 𝑡 ∈ [0, 𝑇

1
], V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡),

𝑡 ∈ (𝑇
1
, 𝑇] is a feasible solution for 𝑆𝑆𝐶𝐶𝑃 and ℎ(𝑡), 𝑙(𝑡), 𝑝(𝑡),

𝑞(𝑡), 𝑡 ∈ [0, 𝑇−𝑇
1
),𝑓(𝑡), 𝑔(𝑡), 𝑡 ∈ [𝑇−𝑇

1
] is a feasible solution

for 𝑆𝑆𝐶𝐶𝑃∗, then

∫
𝑇
1

0

[(𝛾 + (𝑇 − 𝑡) 𝑐)
󸀠
𝑢 (𝑡) + 𝑑

󸀠
𝑥 (𝑡)] 𝑑𝑡

+ ∫
𝑇

𝑇
1

[( ̆𝛾
1
+ (𝑇 − 𝑡) ̆𝑐1)

󸀠V (𝑡) + ̆𝑑
󸀠

1
𝑦 (𝑡)] 𝑑𝑡

+ ∫
𝑇

𝑇
1

[( ̆𝛾
2
+ (𝑇 − 𝑡) ̆𝑐2)

󸀠
𝑤 (𝑡) + ̆𝑑

󸀠

2
𝑧 (𝑡)] 𝑑𝑡

≤ ∫
𝑇−𝑇
1

0

[(𝛼
1
+ (𝑇 − 𝑡) 𝑎1)

󸀠
ℎ (𝑡) + 𝑏

󸀠

1
𝑙 (𝑡)] 𝑑𝑡

+ ∫
𝑇−𝑇
1

0

[(𝛼
2
+ (𝑇 − 𝑡) 𝑎2)

󸀠
𝑝 (𝑡) + 𝑏

󸀠

2
𝑞 (𝑡)] 𝑑𝑡

+ ∫
𝑇

𝑇−𝑇
1

[(𝛼 + (𝑇 − 𝑡) 𝑎)
󸀠
𝑓 (𝑡) + 𝑏

󸀠
𝑔 (𝑡)] 𝑑𝑡.

(9)

Next we will introduce the discretizations for SSCCP and
SSCCP∗, respectively, and discuss the relationships among
SSCCP, SSCCP∗, and their discretizations. But first, we need
the following notation and conventions which mostly follow
what is used in [2].

Notation and Conventions

(i) When we say (𝑢(𝑡), 𝑥(𝑡), V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) is a fea-
sible solution to SSCCP, we mean (𝑢(𝑡), 𝑥(𝑡), 𝑡 ∈

[0, 𝑇
1
], V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡), 𝑡 ∈ (𝑇

1
, 𝑇]) is a feasible

solution to SSCCP.
(ii) By default, all vectors are column vectors. One excep-

tion is when we denote the solutions to SSCCP
and its dual (or their variations) as (𝑢, 𝑥, V, 𝑦, 𝑤, 𝑧)
and (ℎ, 𝑙, 𝑝, 𝑞, 𝑓, 𝑔), wemean (𝑢󸀠, 𝑥󸀠, V󸀠, 𝑦󸀠, 𝑤󸀠, 𝑧󸀠)󸀠 and
(ℎ󸀠, 𝑙󸀠, 𝑝󸀠, 𝑞󸀠, 𝑓󸀠, 𝑔󸀠)

󸀠.
(iii) 𝜋 = {𝑡

0
, . . . , 𝑡

𝑚
1

, . . . , 𝑡
𝑚
1
+𝑚
2

} denotes a partition of
[0, 𝑇
1
, 𝑇] into𝑚

1
+ 𝑚
2
segments:

0 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
1

= 𝑇
1
< 𝑡
𝑚
1
+1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
1
+𝑚
2

= 𝑇,

(10)

where𝑚
1
and𝑚

2
are positive integer numbers.

(iv) Given a partition 𝜋 = {𝑡
0
, . . . , 𝑡

𝑚
} and a vector 𝑟 :=

(𝑟(𝑡
0
), 𝑟(𝑡
1
), . . . , 𝑟(𝑡

𝑚
)), where 𝑟(⋅) is a right continu-

ous function, the following (continuous) function

𝑟 (𝑡) = (
𝑡
𝑖
− 𝑡

𝑡
𝑖
− 𝑡
𝑖−1

) 𝑟 (𝑡
𝑖−1
) + (

𝑡 − 𝑡
𝑖−1

𝑡
𝑖
− 𝑡
𝑖−1

) 𝑟 (𝑡
𝑖
) ,

for 𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
] , 𝑖 = 1, . . . , 𝑚,

(11)

is called a piecewise linear extension of 𝑟, whereas the
following (right-continuous) function

𝑟 (𝑡) = {
𝑟 (𝑡
𝑖−1
) , 𝑡 ∈ [𝑡

𝑖−1
, 𝑡
𝑖
) , for 𝑖 = 1, . . . , 𝑚,

𝑟 (𝑡
𝑚−1
) , 𝑡 = 𝑇,

(12)

is called a piecewise constant extension of 𝑟.
(v) When (𝑢(𝑡), 𝑥(𝑡), V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) is a feasible

solution to SSCCP, with 𝑢(𝑡), V(𝑡), 𝑤(𝑡) being piece-
wise constant and 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) piecewise linear,
we assume 𝑢(𝑡), V(𝑡), 𝑤(𝑡) is right continuous, and
𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) is continuous, with 𝑦(𝑇

1
+) = 𝑥(𝑇

1
),

𝑧(𝑇
1
+) = 𝑥(𝑇

1
), and the pieces of both 𝑢 and 𝑥

correspond to a common partition for [0, 𝑇
1
], and the

pieces of both V, 𝑤 and 𝑦, 𝑧 correspond to a common
partition for (𝑇

1
, 𝑇].
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When (ℎ(𝑡), 𝑙(𝑡), 𝑝(𝑡), 𝑞(𝑡), 𝑓(𝑡), 𝑔(𝑡)) is a feasible
solution to SSCCP∗, with ℎ(𝑡), 𝑝(𝑡), 𝑓(𝑡) being piece-
wise constant and 𝑙(𝑡), 𝑞(𝑡), 𝑔(𝑡) piecewise linear, we
assume ℎ(𝑡), 𝑝(𝑡), and 𝑓(𝑡) are right continuous and
𝑙(𝑡), 𝑞(𝑡) and 𝑔(𝑡) are continuous, with 𝑔(𝑇 − 𝑇

1
+) =

𝑙(𝑇 − 𝑇
1
) + 𝑞(𝑇 − 𝑇

1
), and the pieces of ℎ, 𝑙, 𝑝, and 𝑞

correspond to a common partition for [0, 𝑇−𝑇
1
], and

the pieces of both 𝑓 and 𝑔 correspond to a common
partition for (𝑇 − 𝑇

1
, 𝑇].

(vi) For 𝑖 = 1, 2, 3, 4, denote K
𝑖,𝑚
:= K
𝑖
× ⋅ ⋅ ⋅ ×K

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

, and

similarly denoteK∗
𝑖,𝑚
:=K
∗

𝑖
× ⋅ ⋅ ⋅ ×K

∗

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

.

3.2. The Discretizations. We start with introducing the fol-
lowing discretization of SSCCP based on the partition 𝜋 of
[0, 𝑇
1
, 𝑇], where 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
1

= 𝑇
1
< 𝑡
𝑚
1
+1
< ⋅ ⋅ ⋅ <

𝑡
𝑚
1
+𝑚
2

= 𝑇:

(SCP
1 (𝜋))

max
𝑚
1

∑
𝑖=1

((𝛾 + (𝑇 −
𝑡
𝑖
+ 𝑡
𝑖−1

2
) 𝑐)
󸀠

𝑢̂
𝑖

+𝑑
󸀠
[𝑥
𝑖
+ 𝑥
𝑖−1
]
𝑡
𝑖
− 𝑡
𝑖−1

2
)

+

𝑚
2

∑
𝑖=1

(( ̆𝛾
1
+ (𝑇 −

𝑡
𝑚
1
+𝑖
+ 𝑡
𝑚
1
+𝑖−1

2
) ̆𝑐
1
)

󸀠

V̂
𝑖

+ ̆𝑑
󸀠

1
[𝑦
𝑖
+ 𝑦
𝑖−1
]
𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

2
)

+

𝑚
2

∑
𝑖=1

(( ̆𝛾
2
+ (𝑇 −

𝑡
𝑚
1
+𝑖
+ 𝑡
𝑚
1
+𝑖−1

2
) ̆𝑐
2
)

󸀠

𝑤
𝑖

+ ̆𝑑
󸀠

2
[𝑧̂
𝑖
+ 𝑧̂
𝑖−1
]
𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

2
)

s.t. 𝛼 + 𝑡
𝑖
𝑎 − [𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑖
+ 𝐹𝑥
𝑖
] ∈K

1
,

𝑖 = 1, 2, . . . , 𝑚
1
;

(𝑡
𝑖
− 𝑡
𝑖−1
) 𝑏 − 𝐻𝑢̂

𝑖
∈K
2
, 𝑖 = 1, . . . , 𝑚

1
;

𝑢̂
𝑖
∈K
3
, 𝑥
𝑖
∈K
4
, 𝑖 = 1, . . . , 𝑚

1
;

𝛼
1
+ 𝑡
𝑚
1
+𝑖
𝑎
1
− [𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1

]

− [𝐺V̂
1
+ ⋅ ⋅ ⋅ + 𝐺V̂

𝑖
] − 𝐹𝑦

𝑖
∈K
11
,

𝑖 = 1, 2, . . . , 𝑚
2
;

(𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) 𝑏
1
− 𝐻V̂
𝑖
∈K
21
,

𝑖 = 1, . . . , 𝑚
2
;

V̂
𝑖
∈K
31
, 𝑦
𝑖
∈K
41
, 𝑖 = 1, . . . , 𝑚

2
;

𝛼
2
+ 𝑡
𝑚
1
+𝑖
𝑎
2
− [𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1

]

− [𝐺𝑤
1
+ ⋅ ⋅ ⋅ + 𝐺𝑤

𝑖
]

− 𝐹𝑧̂
𝑖
∈K
12
, 𝑖 = 1, 2, . . . , 𝑚

2
;

(𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) 𝑏
2
− 𝐻𝑤

𝑖
∈K
22
,

𝑖 = 1, . . . , 𝑚
2
;

𝑤
𝑖
∈K
32
, 𝑧̂
𝑖
∈K
42
, 𝑖 = 1, . . . , 𝑚

2
.

(13)

Note that here we require that 𝑦
0
= 𝑧̂
0
= 𝑥
𝑚
1

and

𝛼 − 𝐹𝑥
0
∈K
1
, 𝑥

0
∈K
4
. (14)

Clearly, (SCP
1
(𝜋)) is a conic program.

Lemma 2. From a feasible solution for 𝑆𝐶𝑃
1
(𝜋), one can get a

feasible solution for 𝑆𝑆𝐶𝐶𝑃 with the same objective values, if
K
1
⊆K
11
,K
1
⊆K
12
,K
4
⊆K
41
,K
4
⊆K
42
.

Proof. Suppose (𝑢̂, 𝑥, V̂, 𝑦, 𝑤, 𝑧̂) is a feasible solution for
SCP
1
(𝜋). Let

𝑢 (𝑡) =

{{{{

{{{{

{

𝑢̂
𝑖

𝑡
𝑖
− 𝑡
𝑖−1

, 𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
) , 𝑖 = 1, . . . , 𝑚

1
,

𝑢̂
𝑚
1

𝑡
𝑚
1

− 𝑡
𝑚
1
−1

, 𝑡 = 𝑡
𝑚
1

,

𝑥 (0) = 𝑥0,

𝑥 (𝑡) =
𝑡
𝑖
− 𝑡

𝑡
𝑖
− 𝑡
𝑖−1

𝑥
𝑖−1
+
𝑡 − 𝑡
𝑖−1

𝑡
𝑖
− 𝑡
𝑖−1

𝑥
𝑖
, 𝑖 = 1, . . . , 𝑚

1
,

V (𝑡) =
V̂
𝑖

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

, 𝑡 ∈ (𝑡
𝑚
1
+𝑖−1

, 𝑡
𝑚
1
+𝑖
] ,

𝑖 = 1, . . . , 𝑚
2
,

𝑦 (𝑇
1
+) = 𝑥

𝑚
1

,

𝑦 (𝑡) =
𝑡
𝑚
1
+𝑖
− 𝑡

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

𝑦
𝑖−1
+

𝑡 − 𝑡
𝑚
1
+𝑖−1

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

𝑦
𝑖
,

𝑖 = 1, . . . , 𝑚
2
,

𝑤 (𝑡) =
𝑤
𝑖

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

, 𝑡 ∈ (𝑡
𝑚
1
+𝑖−1

, 𝑡
𝑚
1
+𝑖
] ,

𝑖 = 1, . . . , 𝑚
2
,

𝑧 (𝑇
1
+) = 𝑥

𝑚
1

,

𝑧 (𝑡) =
𝑡
𝑚
1
+𝑖
− 𝑡

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

𝑧̂ (𝑡
𝑖−1
) +

𝑡 − 𝑡
𝑚
1
+𝑖−1

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

𝑧̂
𝑖
,

𝑖 = 1, . . . , 𝑚
2
;

(15)

then we have 𝑢(𝑡) ∈ K
3
, 𝑥(𝑡) ∈ K

4
, 𝑡 ∈ [0, 𝑇

1
], V(𝑡) ∈ K

31
,

𝑡 ∈ (𝑇
1
, 𝑇], 𝑤(𝑡) ∈K

32
, and 𝑡 ∈ (𝑇

1
, 𝑇].
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Because 𝑥
𝑚
1

∈ K
4
and 𝑦

0
= 𝑧̂
0
= 𝑥
𝑚
1

, 𝑦
0
∈ K
4
and

𝑧̂
0
∈K
4
. WhenK

4
⊆K
41
,K
4
⊆K
42
, we have 𝑦(𝑡) ∈K

41
,

and 𝑧(𝑡) ∈K
42
, and 𝑡 ∈ (𝑇

1
, 𝑇].

For 𝑡 = 0,

𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡)

= 𝛼 − 𝐹𝑥
0
∈K
1
.

(16)

For 𝑡 ∈ (𝑡
0
, 𝑡
1
),

𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡)

= 𝛼 + 𝑡𝑎 − 𝐺
𝑢̂
1

𝑡
1

𝑡 − 𝐹(
𝑡
1
− 𝑡

𝑡
1

𝑥
0
+
𝑡

𝑡
1

𝑥
1
)

=
𝑡

𝑡
1

(𝛼 + 𝑡
1
𝑎 − 𝐺𝑢̂

1
− 𝐹𝑥
1
) +

𝑡
1
− 𝑡

𝑡
1

(𝛼 − 𝐹𝑥
0
)

∈K
1
.

(17)

For 𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
), 𝑖 = 2, . . . , 𝑚

1
,

𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡)

= 𝛼 + 𝑡𝑎 − (∫
𝑡
1

0

𝐺𝑢 (𝑠) 𝑑𝑠+⋅ ⋅ ⋅+∫
𝑡

𝑡
𝑖−1

𝐺𝑢 (𝑠) 𝑑𝑠) − 𝐹𝑥 (𝑡)

= 𝛼+𝑡𝑎 − (𝐺
𝑢̂
1

𝑡
1
− 𝑡
0

(𝑡
1
− 𝑡
0
)+⋅ ⋅ ⋅+𝐺

𝑢̂
𝑖

𝑡
𝑖
− 𝑡
𝑖−1

(𝑡 − 𝑡
𝑖−1
))

− 𝐹(
𝑡
𝑖
− 𝑡

𝑡
𝑖
− 𝑡
𝑖−1

𝑥
𝑖−1
+
𝑡 − 𝑡
𝑖−1

𝑡
𝑖
− 𝑡
𝑖−1

𝑥
𝑖
)

=
𝑡 − 𝑡
𝑖−1

𝑡
𝑖
− 𝑡
𝑖−1

(𝛼 + 𝑡
𝑖
𝑎 − (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑖−1
+𝐺𝑢̂
𝑖
) − 𝐹𝑥

𝑖
)

+
𝑡
𝑖
− 𝑡

𝑡
𝑖
− 𝑡
𝑖−1

(𝛼+𝑡
𝑖−1
𝑎 − (𝐺𝑢̂

1
+⋅ ⋅ ⋅+𝐺𝑢̂

𝑖−1
) − 𝐹𝑥

𝑖−1
)

∈K
1
.

(18)

For 𝑡 = 𝑡
𝑚
1

,

𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡)

= 𝛼 + 𝑡
𝑚
1

𝑎 − (𝐺𝑢̂
1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1
+ 𝐺𝑢̂
𝑚
1

) − 𝐹𝑥
𝑚
1

∈K
1
.

(19)

For 𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
), 𝑖 = 1, . . . , 𝑚

1
,

𝑏 − 𝐻𝑢 (𝑡) = 𝑏 − 𝐻
𝑢̂
𝑖

𝑡
𝑖
− 𝑡
𝑖−1

=
1

𝑡
𝑖
− 𝑡
𝑖−1

((𝑡
𝑖
− 𝑡
𝑖−1
) 𝑏 − 𝐻𝑢̂

𝑖
)

∈K
2
.

(20)

For 𝑡 = 𝑡
𝑚
1

,

𝑏 − 𝐻𝑢 (𝑡) = 𝑏 − 𝐻
𝑢̂
𝑚
1

𝑡
𝑚
1

− 𝑡
𝑚
1
−1

=
1

𝑡
𝑚
1

− 𝑡
𝑚
1
−1

((𝑡
𝑚
1

− 𝑡
𝑚
1
−1
) 𝑏 − 𝐻𝑢̂

𝑚
1

)

∈K
2
.

(21)

For 𝑡 ∈ (𝑡
𝑚
1

, 𝑡
𝑚
1
+1
],

𝛼
1
+ 𝑡𝑎
1
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠 − ∫
𝑡

𝑇
1

𝐺V (𝑠) 𝑑𝑠 − 𝐹𝑦 (𝑡)

= 𝛼
1
+ 𝑡𝑎
1
− (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1
+ 𝐺𝑢̂
𝑚
1

)

− 𝐺
V̂
1

𝑡
𝑚
1
+1
− 𝑡
𝑚
1

(𝑡 − 𝑡
𝑚
1

)

− 𝐹(
𝑡
𝑚
1
+1
− 𝑡

𝑡
𝑚
1
+1
− 𝑡
𝑚
1

𝑦
0
+

𝑡 − 𝑡
𝑚
1

𝑡
𝑚
1
+1
− 𝑡
𝑚
1

𝑦
1
)

=
𝑡 − 𝑡
𝑚
1

𝑡
𝑚
1
+1
− 𝑡
𝑚
1

(𝛼
1
+𝑡
𝑚
1
+1
𝑎
1
− (𝐺𝑢̂

1
+⋅ ⋅ ⋅+𝐺𝑢̂

𝑚
1
−1

+𝐺𝑢̂
𝑚
1

) −𝐺V̂
1
− 𝐹𝑦
1
)

+
𝑡
𝑚
1
+1
− 𝑡

𝑡
𝑚
1
+1
− 𝑡
𝑚
1

(𝛼 + 𝑇
1
𝑎 − (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1

+𝐺𝑢̂
𝑚
1

) − 𝐹𝑥
𝑚
1

)

∈K
11
, when K

1
⊆K
11
.

(22)

For 𝑡 ∈ (𝑡
𝑚
1
+𝑖−1

, 𝑡
𝑚
1
+𝑖
], 𝑖 = 2, . . . , 𝑚

2
,

𝛼
1
+ 𝑡𝑎
1
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠 − ∫
𝑡

𝑇
1

𝐺V (𝑠) 𝑑𝑠 − 𝐹𝑦 (𝑡)

= 𝛼
1
+ 𝑡𝑎
1
− (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1
+ 𝐺𝑢̂
𝑚
1

)

− (𝐺
V̂
1

𝑡
𝑚
1
+1
− 𝑡
𝑚
1

(𝑡
𝑚
1
+1
− 𝑡
𝑚
1

) + ⋅ ⋅ ⋅

+𝐺
V̂
𝑖

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

(𝑡 − 𝑡
𝑚
1
+𝑖−1

)) − 𝐹𝑦 (𝑡)

= 𝛼
1
+ 𝑡𝑎
1
− (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1
+ 𝐺𝑢̂
𝑚
1

)

− (𝐺V̂
1
+ ⋅ ⋅ ⋅ + 𝐺V̂

𝑖−1
+ 𝐺

V̂
𝑖

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

(𝑡 − 𝑡
𝑚
1
+𝑖−1

))

− 𝐹(
𝑡
𝑚
1
+𝑖
− 𝑡

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

𝑦
𝑖−1
+

𝑡 − 𝑡
𝑚
1
+𝑖−1

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

𝑦
𝑖
)

=
𝑡 − 𝑡
𝑚
1
+𝑖−1

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1
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× (𝛼
1
+ 𝑡
𝑚
1
+𝑖
𝑎
1
− (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1
+ 𝐺𝑢̂
𝑚
1

)

− (𝐺V̂
1
+ ⋅ ⋅ ⋅ + 𝐺V̂

𝑖−1
+ 𝐺V̂
𝑖
) − 𝐹𝑦

𝑖
)

+
𝑡
𝑚
1
+𝑖
− 𝑡

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

× (𝛼
1
+ 𝑡
𝑚
1
+𝑖−1

𝑎
1
− (𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1
−1
+ 𝐺𝑢̂
𝑚
1

)

− (𝐺V̂
1
+ ⋅ ⋅ ⋅ + 𝐺V̂

𝑖−1
) − 𝐹𝑦

𝑖−1
)

∈K
11
.

(23)

For 𝑡 ∈ (𝑡
𝑚
1
+𝑖−1

, 𝑡
𝑚
1
+𝑖
], 𝑖 = 1, . . . , 𝑚

2

𝑏
1
− 𝐻V (𝑡) = 𝑏1 − 𝐻

V̂
𝑖

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

=
1

𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

((𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) 𝑏
1
− 𝐻V̂
𝑖
)

∈K
21
.

(24)

Similarly, ifK
1
⊆K
12
, then

𝛼
2
+ 𝑡𝑎
2
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠 − ∫
𝑡

𝑇
1

𝐺𝑤 (𝑠) 𝑑𝑠 − 𝐹𝑧 (𝑡) ∈K
12
,

𝑡 ∈ (𝑇
1
, 𝑇] ,

𝑏
2
− 𝐻𝑤 (𝑡) ∈K

22
, 𝑡 ∈ (𝑇

1
, 𝑇] .

(25)

So (𝑢(𝑡), 𝑥(𝑡), V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) is a feasible solution for
SSCCP when K

1
⊆ K
11
, K
1
⊆ K
12
, K
4
⊆ K
41
, and

K
4
⊆K
42
.

It is easy to see that the objective value of
(𝑢(𝑡), 𝑥(𝑡), V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) is the same as that of
(𝑢̂, 𝑥, V̂, 𝑦, 𝑤, 𝑧̂). We omit the details here.

We now introduce the following discretization of SSCCP∗
based on the partition 𝜋󸀠 of [0, 𝑇 − 𝑇

1
, 𝑇], 𝜋󸀠 =

{𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚
2

, . . . , 𝑡
𝑚
2
+𝑚
1

}, where 𝑡
0
= 0, 𝑡

𝑚
2

= 𝑇 − 𝑇
1
,

𝑡
𝑚
2
+𝑚
1

= 𝑇.

(SCP
2
(𝜋
󸀠
))

min
𝑚
2

∑
𝑖=1

((𝛼
1
+ (𝑇 −

𝑡
𝑖
+ 𝑡
𝑖−1

2
) 𝑎
1
)
󸀠

ℎ̂
𝑖

+𝑏
󸀠

1
[𝑙̂
𝑖
+ 𝑙̂
𝑖−1
]
𝑡
𝑖
− 𝑡
𝑖−1

2
)

+

𝑚
2

∑
𝑖=1

((𝛼
2
+ (𝑇 −

𝑡
𝑖
+ 𝑡
𝑖−1

2
) 𝑎
2
)
󸀠

𝑝
𝑖

+𝑏
󸀠

2
[𝑞
𝑖
+ 𝑞
𝑖−1
]
𝑡
𝑖
− 𝑡
𝑖−1

2
)

+

𝑚
1

∑
𝑖=1

((𝛼 + (𝑇 −
𝑡
𝑚
2
+𝑖
+ 𝑡
𝑚
2
+𝑖−1

2
) 𝑎)

󸀠

𝑓
𝑖

+𝑏
󸀠
[𝑔
𝑖
+ 𝑔
𝑖−1
]
𝑡
𝑚
2
+𝑖
− 𝑡
𝑚
2
+𝑖−1

2
)

s.t. 𝐺
󸀠
(ℎ̂
1
+ ℎ̂
2
+ ⋅ ⋅ ⋅ + ℎ̂

𝑖
) + 𝐻

󸀠
𝑙̂
𝑖

− ( ̆𝛾
1
+ 𝑡
𝑖
̆𝑐
1
) ∈K

∗

31
,

𝑖 = 1, . . . , 𝑚
2
;

𝐹
󸀠
ℎ̂
𝑖
− (𝑡
𝑖
− 𝑡
𝑖−1
) ̆𝑑
1
∈K
∗

41
, 𝑖 = 1, . . . , 𝑚

2
;

ℎ̂
𝑖
∈K
∗

11
, 𝑙̂
𝑖
∈K
∗

21
, 𝑖 = 1, . . . , 𝑚

2
;

𝐺
󸀠
(𝑝
1
+ 𝑝
2
+ ⋅ ⋅ ⋅ + 𝑝

𝑖
) + 𝐻

󸀠
𝑞
𝑖

− ( ̆𝛾
2
+ 𝑡
𝑖
̆𝑐
2
) ∈K

∗

32
,

𝑖 = 1, . . . , 𝑚
2
;

𝐹
󸀠
𝑝
𝑖
− (𝑡
𝑖
− 𝑡
𝑖−1
) ̆𝑑
2
∈K
∗

42
, 𝑖 = 1, . . . , 𝑚

2
;

𝑝
𝑖
∈K
∗

12
, 𝑞
𝑖
∈K
∗

22
, 𝑖 = 1, . . . , 𝑚

2
;

𝐺
󸀠
(

𝑚
2

∑
𝑗=1

ℎ̂
𝑗
+

𝑚
2

∑
𝑗=1

𝑝
𝑗
) + 𝐺

󸀠
(𝑓
1
+ 𝑓
2
+ ⋅ ⋅ ⋅ + 𝑓

𝑖
)

+ 𝐻
󸀠
𝑔
𝑖
− (𝛾 + 𝑡

𝑚
2
+𝑖
𝑐) ∈K

∗

3
,

𝑖 = 1, . . . , 𝑚
1
;

𝐹
󸀠
𝑓
𝑖
− (𝑡
𝑚
2
+𝑖
− 𝑡
𝑚
2
+𝑖−1

) 𝑑 ∈K
∗

4
,

𝑖 = 1, . . . , 𝑚
1
;

𝑓
𝑖
∈K
∗

1
, 𝑔
𝑖
∈K
∗

2
, 𝑖 = 1, . . . , 𝑚

1
.

(26)

Note here we require that 𝑔
0
= 𝑙̂
𝑚
2

+ 𝑞
𝑚
2

and

𝐻
󸀠
𝑙̂
0
− ̆𝛾
1
∈K
∗

31
, 𝑙̂

0
∈K
∗

21
,

𝐻
󸀠
𝑞
0
− ̆𝛾
2
∈K
∗

32
, 𝑞

0
∈K
∗

22
.

(27)

Clearly SCP
2
(𝜋󸀠) is also a conic program.

We now show the following.

Lemma 3. For any two convex conesK
1
,K
2
,

K
1
⊆K
2
⇐⇒K

∗

2
⊆K
∗

1
. (28)

Proof. ⇒: BecauseK
1
⊆ K
2
, for any 𝑥

1
∈ K
1
, 𝑥
1
∈ K
2
, so

for any 𝑦
2
∈K∗
2
, 𝑥󸀠
1
𝑦
2
≥ 0. So 𝑦

2
∈K∗
1
. SoK∗

2
⊆K∗
1
.

⇐: BecauseK∗
2
⊆K∗
1
, for any 𝑦

2
∈K∗
2
, 𝑦
2
∈K∗
1
, So for

any 𝑥
1
∈K
1
, 𝑥󸀠
1
𝑦
2
≥ 0. So 𝑥

1
∈K
2
. SoK

1
⊆K
2
.

Lemma 4. From a feasible solution for 𝑆𝐶𝑃
2
(𝜋󸀠), one can get

a feasible solution for 𝑆𝑆𝐶𝐶𝑃∗ with the same objective values,
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ifK
2
⊆K
21
,K
2
⊆K
22
,K
3
⊆K
31
,K
3
⊆K
32
, ̆𝛾
1
+ ̆𝛾
2
= 𝛾,

̆𝑐
1
+ ̆𝑐
2
= 𝑐.

Proof. Suppose (ℎ̂, 𝑙̂, 𝑝, 𝑞, 𝑓, 𝑔) is a feasible solution for
SCP
2
(𝜋󸀠). Let

ℎ (𝑡) =

{{{{{

{{{{{

{

ℎ̂
𝑖

𝑡
𝑖
− 𝑡
𝑖−1

, 𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
) , 𝑖 = 1, . . . , 𝑚

2
,

ℎ̂
𝑚
2

𝑡
𝑚
2

− 𝑡
𝑚
2
−1

, 𝑡 = 𝑡
𝑚
2

,

𝑙 (0) = 𝑙̂0,

𝑙 (𝑡) =
𝑡
𝑖
− 𝑡

𝑡
𝑖
− 𝑡
𝑖−1

𝑙̂
𝑖−1
+
𝑡 − 𝑡
𝑖−1

𝑡
𝑖
− 𝑡
𝑖−1

𝑙̂
𝑖
,

𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
] , 𝑖 = 1, . . . , 𝑚

2
,

𝑝 (𝑡) =

{{{{

{{{{

{

𝑝
𝑖

𝑡
𝑖
− 𝑡
𝑖−1

, 𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
) , 𝑖 = 1, . . . , 𝑚

2
,

𝑝
𝑚
2

𝑡
𝑚
2

− 𝑡
𝑚
2
−1

, 𝑡 = 𝑡
𝑚
2

,

𝑞 (0) = 𝑞0,

𝑞 (𝑡) =
𝑡
𝑖
− 𝑡

𝑡
𝑖
− 𝑡
𝑖−1

𝑞
𝑖−1
+
𝑡 − 𝑡
𝑖−1

𝑡
𝑖
− 𝑡
𝑖−1

𝑞
𝑖
,

𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
] , 𝑖 = 1, . . . , 𝑚

2
,

𝑓 (𝑡) =
𝑓
𝑖

𝑡
𝑚
2
+𝑖
− 𝑡
𝑚
2
+𝑖−1

, 𝑡 ∈ (𝑡
𝑚
2
+𝑖−1

, 𝑡
𝑚
2
+𝑖
] ,

𝑖 = 1, . . . , 𝑚
1
,

𝑔 (𝑇 − 𝑇
1
+) = 𝑔

0
,

𝑔 (𝑡) =
𝑡
𝑚
2
+𝑖
− 𝑡

𝑡
𝑚
2
+𝑖
− 𝑡
𝑚
2
+𝑖−1

𝑔
𝑖−1
+

𝑡 − 𝑡
𝑚
2
+𝑖−1

𝑡
𝑚
2
+𝑖
− 𝑡
𝑚
2
+𝑖−1

𝑔
𝑖
,

𝑡 ∈ (𝑡
𝑚
2
+𝑖−1

, 𝑡
𝑚
2
+𝑖
] , 𝑖 = 1, . . . , 𝑚

1
;

(29)

then ℎ(𝑡) ∈ K∗
11
, 𝑙(𝑡) ∈ K∗

21
, 𝑝(𝑡) ∈ K∗

12
, 𝑞(𝑡) ∈ K∗

22
, 𝑡 ∈

[0, 𝑇−𝑇
1
], 𝑓(𝑡) ∈K∗

1
, and 𝑡 ∈ (𝑇−𝑇

1
, 𝑇]. WhenK

2
⊆K
21
,

and K
2
⊆ K
22
, from Lemma 3, we have K∗

21
⊆ K∗
2
, and

K∗
22
⊆K∗
2
, then; because 𝑔

0
= 𝑙̂
𝑚
2

+𝑞
𝑚
2

, 𝑙̂
𝑚
2

∈K∗
21
and 𝑞
𝑚
2

∈

K∗
22
, we have 𝑔

0
∈K∗
2
, so 𝑔(𝑡) ∈K∗

2
and 𝑡 ∈ (𝑇 − 𝑇

1
, 𝑇].

The remaining proof is similar to that in proving
Lemma 2 and we omit the details here.

4. Strong Feasibility

We say that (𝑢, 𝑥, V, 𝑦, 𝑤, 𝑧) is a strongly feasible solution
to SSCCP, if for the closed and convex cones K

𝑖
, K
𝑖𝑗
,

𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, with nonempty interiors, the following
holds:

𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡) ∈ int K
1
, 𝑡 ∈ (0, 𝑇

1
] ,

𝛼 − 𝐹𝑥 (0) ∈K
1
,

𝑏 − 𝐻𝑢 (𝑡) ∈ int K
2
, 𝑡 ∈ [0, 𝑇

1
] ,

𝑢 (𝑡) ∈ int K
3
, 𝑥 (𝑡) ∈ int K

4
,

𝑡 ∈ (0, 𝑇
1
] , 𝑥 (0) ∈K

4
,

𝛼
1
+ 𝑡𝑎
1
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑇
1

𝐺V (𝑠) 𝑑𝑠 − 𝐹𝑦 (𝑡) ∈ int K
11
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝑏
1
− 𝐻V (𝑡) ∈ int K

21
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

V (𝑡) ∈ int K
31
, 𝑦 (𝑡) ∈ int K

41
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝛼
2
+ 𝑡𝑎
2
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠

− ∫
𝑡

𝑇
1

𝐺𝑤 (𝑠) 𝑑𝑠 − 𝐹𝑧 (𝑡) ∈ int K
12
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝑏
2
− 𝐻𝑤 (𝑡) ∈ int K

22
, 𝑡 ∈ (𝑇

1
, 𝑇] ,

𝑤 (𝑡) ∈ int K
32
, 𝑧 (𝑡) ∈ int K

42
, 𝑡 ∈ (𝑇

1
, 𝑇] .

(30)

We say that SSCCP is strongly feasible if there exists a
strongly feasible solution. The similar notions apply to the
dual problem SSCCP∗.

Next we will show that the strong feasibility of SSCCP
and SSCCP∗ can be determined by the strong feasibility of
the following two conic programs:

(CP
1
) max 𝑇

1
𝑐
󸀠
𝑢̂ − (𝑇

1
𝑑 − (𝑇 − 𝑇

1
) ( ̆𝑑
1
+ ̆𝑑
2
))
󸀠

𝑥

+ (𝑇 − 𝑇
1
) ̆𝑐
󸀠

1
V̂ + (𝑇 − 𝑇

1
) ̆𝑑
󸀠

1
𝑦

+ (𝑇 − 𝑇
1
) ̆𝑐
󸀠

2
𝑤 + (𝑇 − 𝑇

1
) ̆𝑑
󸀠

2
𝑧̂

s.t. 𝛼 + 𝑇
1
𝑎 − 𝐺𝑢̂ − 𝐹𝑥 ∈K

1
,

𝑇
1
𝑏 − 𝐻𝑢̂ ∈K

2
,

𝑢̂ ∈K
3
, 𝑥 ∈K

4
,

𝛼
1
+ 𝑇𝑎
1
− 𝐺𝑢̂ − 𝐺V̂ − 𝐹𝑦 ∈K

11
,

(𝑇 − 𝑇
1
) 𝑏
1
− 𝐻V̂ ∈K

21
,

V̂ ∈K
31
, 𝑦 ∈K

41
,

𝛼
2
+ 𝑇𝑎
2
− 𝐺𝑢̂ − 𝐺𝑤 − 𝐹𝑧̂ ∈K

12
,

(𝑇 − 𝑇
1
) 𝑏
2
− 𝐻𝑤 ∈K

22
,

𝑤 ∈K
32
, 𝑧̂ ∈K

42
,

(31)
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(CP
2
) min (𝑇 − 𝑇

1
) 𝑎
󸀠

1
ℎ̂ + ((𝑇 − 𝑇

1
) 𝑏
1
− 𝑇
1
𝑏)
󸀠
𝑙̂

+ (𝑇 − 𝑇
1
) 𝑎
󸀠

2
𝑝 + ((𝑇 − 𝑇

1
) 𝑏
2
− 𝑇
1
𝑏)
󸀠
𝑞

+ 𝑇
1
𝑎
󸀠
𝑓 + 𝑇
1
𝑏
󸀠
𝑔

s.t. 𝐺
󸀠
ℎ̂ + 𝐻

󸀠
𝑙̂ − ( ̆𝛾
1
+ (𝑇 − 𝑇

1
) ̆𝑐
1
) ∈K

∗

31
,

𝐹
󸀠
ℎ̂ − (𝑇 − 𝑇

1
) ̆𝑑
1
∈K
∗

41
,

ℎ̂ ∈K
∗

11
, 𝑙̂ ∈K

∗

21
,

𝐺
󸀠
𝑝 + 𝐻

󸀠
𝑞 − ( ̆𝛾

2
+ (𝑇 − 𝑇

1
) ̆𝑐
2
) ∈K

∗

32
,

𝐹
󸀠
𝑝 − (𝑇 − 𝑇

1
) ̆𝑑
2
∈K
∗

42
,

𝑝 ∈K
∗

12
, 𝑞 ∈K

∗

22
,

𝐺
󸀠
(ℎ̂ + 𝑝)+𝐺

󸀠
𝑓+𝐻
󸀠
𝑔 − (𝛾 + 𝑇𝑐)∈K

∗

3
,

𝐹
󸀠
𝑓 − 𝑇
1
𝑑 ∈K

∗

4
,

𝑓 ∈K
∗

1
, 𝑔 ∈K

∗

2
.

(32)

Note that the constraints of CP
1
and CP

2
above are the

same as the constraints of SCP
1
(𝜋) and SCP

2
(𝜋󸀠), respec-

tively, when 𝑚
1
= 𝑚
2
= 1. The objectives of CP

1
and CP

2
,

however, are different from those of SCP
1
(𝜋) and SCP

2
(𝜋󸀠).

The choice of these objectives is to facilitate the explicit
derivation of a bound on the duality gap; see the proof of
Theorem 11.

Lemma 5. If the conic programs 𝐶𝑃
1
are strongly feasible and

K
1
⊆ K
11
, K
1
⊆ K
12
, K
4
⊆ K
41
, and K

4
⊆ K
42
, then

𝑆𝑆𝐶𝐶𝑃 is strongly feasible, and so is 𝑆𝐶𝑃
1
(𝜋).

Proof. (1) We first show that when CP
1
is strongly feasible,

SSCCP is strongly feasible.
Suppose (𝑢̂, 𝑥, V̂, 𝑦, 𝑤, 𝑧̂) is a strongly feasible solution to

CP
1
. We have

𝛼 + 𝑇
1
𝑎 − 𝐺𝑢̂ − 𝐹𝑥 ∈ int K

1
,

𝑇
1
𝑏 − 𝐻𝑢̂ ∈ int K

2
,

𝑢̂ ∈ int K
3
, 𝑥 ∈ int K

4
,

𝛼
1
+ 𝑇𝑎
1
− 𝐺𝑢̂ − 𝐺V̂ − 𝐹𝑦 ∈ int K

11
,

(𝑇 − 𝑇
1
) 𝑏
1
− 𝐻V̂ ∈ int K

21
,

V̂ ∈ int K
31
, 𝑦 ∈ int K

41
,

𝛼
2
+ 𝑇𝑎
2
− 𝐺𝑢̂ − 𝐺𝑤 − 𝐹𝑧̂ ∈ int K

12
,

(𝑇 − 𝑇
1
) 𝑏
2
− 𝐻𝑤 ∈ int K

22
,

𝑤 ∈ int K
32
, 𝑧̂ ∈ int K

42
,

(33)

and 𝑥
0
is such a constant that

𝛼 − 𝐹𝑥
0
∈K
1
, 𝑥
0
∈K
4
. (34)

Let

𝑢 (𝑡) =
𝑢̂

𝑇
1

, 𝑡 ∈ [0, 𝑇
1
] ,

𝑥 (0) = 𝑥0, 𝑥 (𝑇
1
) = 𝑥,

𝑥 (𝑡) =
𝑇
1
− 𝑡

𝑇
1

𝑥
0
+
𝑡

𝑇
1

𝑥, 𝑡 ∈ (0, 𝑇
1
) ,

V (𝑡) =
V̂

𝑇 − 𝑇
1

, 𝑡 ∈ (𝑇
1
, 𝑇] ,

𝑦 (𝑇)=𝑦, 𝑦 (𝑡) =
𝑇 − 𝑡

𝑇 − 𝑇
1

𝑥+
𝑡 − 𝑇
1

𝑇 − 𝑇
1

𝑦, 𝑡 ∈ (𝑇
1
, 𝑇) ,

𝑤 (𝑡) =
𝑤

𝑇 − 𝑇
1

, 𝑡 ∈ (𝑇
1
, 𝑇] ,

𝑧 (𝑇) = 𝑧̂, 𝑧 (𝑡) =
𝑇 − 𝑡

𝑇 − 𝑇
1

𝑥 +
𝑡 − 𝑇
1

𝑇 − 𝑇
1

𝑧̂,

𝑡 ∈ (𝑇
1
, 𝑇) .

(35)
We have 𝑢(𝑡) ∈ int K

3
, 𝑡 ∈ [0, 𝑇

1
], 𝑥(𝑡) ∈ int K

4
, 𝑡 ∈

(0, 𝑇
1
], 𝑥(0) ∈ K

4
, V(𝑡) ∈ int K

31
, 𝑤(𝑡) ∈ int K

32
, and 𝑡 ∈

(𝑇
1
, 𝑇].
BecauseK

4
⊆K
41
andK

4
⊆K
42
, then 𝑦(𝑡) ∈ int K

41
,

𝑡 ∈ (𝑇
1
, 𝑇], 𝑧(𝑡) ∈ int K

42
and 𝑡 ∈ (𝑇

1
, 𝑇].

For 𝑡 = 0,
𝛼 − 𝐹𝑥 (0) = 𝛼 − 𝐹𝑥0 ∈K

1
. (36)

For 𝑡 ∈ (0, 𝑇
1
],

𝛼 + 𝑡𝑎 − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡)

= 𝛼 + 𝑡𝑎 − 𝐺
𝑢̂

𝑇
1

𝑡 − 𝐹(
𝑇
1
− 𝑡

𝑇
1

𝑥
0
+
𝑡

𝑇
1

𝑥)

=
𝑡

𝑇
1

(𝛼 + 𝑇
1
𝑎 − 𝐺𝑢̂ − 𝐹𝑥) +

𝑇
1
− 𝑡

𝑇
1

(𝛼 − 𝐹𝑥
0
)

∈ int K
1
.

(37)

For 𝑡 ∈ [0, 𝑇
1
],

𝑏 − 𝐻𝑢 (𝑡) = 𝑏 − 𝐻
𝑢̂

𝑇
1

=
1

𝑇
1

(𝑇
1
𝑏 − 𝐻𝑢̂) ∈ int K

2
. (38)

For 𝑡 ∈ (𝑇
1
, 𝑇],

𝛼
1
+ 𝑡𝑎
1
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠 − ∫
𝑡

𝑇
1

𝐺V (𝑠) 𝑑𝑠 − 𝐹𝑦 (𝑡)

= 𝛼
1
+ 𝑡𝑎
1
− 𝐺

𝑢̂

𝑇
1

𝑇
1
− 𝐺

V̂
𝑇 − 𝑇
1

(𝑡 − 𝑇
1
)

− 𝐹(
𝑇 − 𝑡

𝑇 − 𝑇
1

𝑥 +
𝑡 − 𝑇
1

𝑇 − 𝑇
1

𝑦)

=
𝑡 − 𝑇
1

𝑇 − 𝑇
1

(𝛼
1
+ 𝑇𝑎
1
− 𝐺𝑢̂ − 𝐺V̂ − 𝐹𝑦)

+
𝑇 − 𝑡

𝑇 − 𝑇
1

(𝛼 + 𝑇
1
𝑎 − 𝐺𝑢̂ − 𝐹𝑥)

∈ int K
11
.

(39)

Note that whenK
1
⊆K
11
, 𝛼 + 𝑇

1
𝑎 − 𝐺𝑢̂ − 𝐹𝑥 ∈ int K

11
.
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For 𝑡 ∈ (𝑇
1
, 𝑇],

𝑏
1
− 𝐻V (𝑡) = 𝑏1 − 𝐻

V̂
𝑇 − 𝑇
1

=
1

𝑇 − 𝑇
1

((𝑇 − 𝑇
1
) 𝑏
1
− 𝐻V̂) ∈ int K

21
.

(40)

Similarly, we can get (by noting thatK
1
⊆K
12
)

𝛼
2
+ 𝑡𝑎
2
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠 − ∫
𝑡

𝑇
1

𝐺𝑤 (𝑠) 𝑑𝑠 − 𝐹𝑧 (𝑡) ∈ int K
12
,

𝑡 ∈ (𝑇
1
, 𝑇] ,

𝑏
2
− 𝐻𝑤 (𝑡) ∈ int K

22
, 𝑡 ∈ (𝑇

1
, 𝑇] .

(41)

We can see that (𝑢(𝑡), 𝑥(𝑡), V(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) is a (two-
piece) strongly feasible solution for SSCCP. So SSCCP is
strongly feasible.

(2) Now we will show that from this strongly feasible
solution for SSCCP, we can get a strongly feasible solution
for SCP

1
(𝜋).

Let

𝑢̂
𝑖
=𝑢 (𝑡) (𝑡𝑖 − 𝑡𝑖−1) , 𝑥

𝑖
=𝑥 (𝑡
𝑖
) , 𝑖=1, . . . , 𝑚

1
;

V̂
𝑖
=V (𝑡) (𝑡𝑚

1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) , 𝑦
𝑖
=𝑦 (𝑡
𝑚
1
+𝑖
) , 𝑖=1, . . . , 𝑚

2
;

𝑤
𝑖
=𝑤 (𝑡) (𝑡𝑚

1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) , 𝑧̂
𝑖
=𝑧 (𝑡
𝑚
1
+𝑖
) , 𝑖=1, . . . , 𝑚

2
.

(42)

Then 𝑢̂
𝑖
∈ int K

3
, 𝑥
𝑖
∈ int K

4
, 𝑖 = 1, . . . , 𝑚

1
, V̂
𝑖
∈ int K

31
,

𝑦
𝑖
∈ int K

41
, 𝑤
𝑖
∈ int K

32
, 𝑧̂
𝑖
∈ int K

42
, 𝑖 = 1, . . . , 𝑚

2
.

For 𝑖 = 1, . . . , 𝑚
1
,

𝛼 + 𝑡
𝑖
𝑎 − [𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑖
+ 𝐹𝑥
𝑖
]

= 𝛼 + 𝑡
𝑖
𝑎 − [𝐺𝑢 (𝑡) (𝑡1 − 𝑡0) + ⋅ ⋅ ⋅

+ 𝐺𝑢 (𝑡) (𝑡𝑖 − 𝑡𝑖−1) + 𝐹𝑥 (𝑡𝑖)]

= 𝛼 + 𝑡
𝑖
𝑎

− [∫
𝑡
1

0

𝐺𝑢 (𝑠) 𝑑𝑠 + ⋅ ⋅ ⋅ + ∫
𝑡
𝑖

𝑡
𝑖−1

𝐺𝑢 (𝑠) 𝑑𝑠 + 𝐹𝑥 (𝑡𝑖)]

= 𝛼 + 𝑡
𝑖
𝑎 − ∫
𝑡
𝑖

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡𝑖)

∈ int K
1
,

(𝑡
𝑖
− 𝑡
𝑖−1
) 𝑏 − 𝐻𝑢̂

𝑖

= (𝑡
𝑖
− 𝑡
𝑖−1
) 𝑏 − 𝐻𝑢 (𝑡) (𝑡𝑖 − 𝑡𝑖−1)

= (𝑡
𝑖
− 𝑡
𝑖−1
) (𝑏 − 𝐻𝑢 (𝑡))

∈ int K
2
.

(43)

For 𝑖 = 1, . . . , 𝑚
2
,

𝛼
1
+ 𝑡
𝑚
1
+𝑖
𝑎
1
− [𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1

]

− [𝐺V̂
1
+ ⋅ ⋅ ⋅ + 𝐺V̂

𝑖
] − 𝐹𝑦

𝑖

= 𝛼
1
+ 𝑡
𝑚
1
+𝑖
𝑎
1
− ∫
𝑇
1

0

𝐺𝑢 (𝑠) 𝑑𝑠

− ∫
𝑡
𝑚1+𝑖

𝑇
1

𝐺V (𝑠) 𝑑𝑠 − 𝐹𝑦 (𝑡𝑚
1
+𝑖
)

∈ int K
11
,

(𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) 𝑏
1
− 𝐻V̂
𝑖

= (𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) (𝑏
1
− 𝐻V (𝑡))

∈ int K
21
.

(44)

Similarly, we can get.
For 𝑖 = 1, . . . , 𝑚

2
,

𝛼
2
+ 𝑡
𝑚
1
+𝑖
𝑎
2
− [𝐺𝑢̂

1
+ ⋅ ⋅ ⋅ + 𝐺𝑢̂

𝑚
1

] − [𝐺𝑤
1
+ ⋅ ⋅ ⋅ + 𝐺𝑤

𝑖
]

− 𝐹𝑧̂
𝑖
∈ int K

12
,

(𝑡
𝑚
1
+𝑖
− 𝑡
𝑚
1
+𝑖−1

) 𝑏
2
− 𝐻𝑤

𝑖
∈ int K

22
.

(45)

So (𝑢̂, 𝑥, V̂, 𝑦, 𝑤, 𝑧̂) is a strongly feasible solution for
SCP
1
(𝜋), and SCP

1
(𝜋) is strongly feasible.

Lemma 6. If the conic programs 𝐶𝑃
2
are strongly feasible,

K
2
⊆ K
21
,K
2
⊆ K
22
,K
3
⊆ K
31
,K
3
⊆ K
32
, ̆𝛾
1
+ ̆𝛾
2
= 𝛾,

̆𝑐
1
+ ̆𝑐
2
= 𝑐, then 𝑆𝑆𝐶𝐶𝑃∗ is strongly feasible and so is 𝑆𝐶𝑃

2
(𝜋󸀠).

Proof. The proof is similar to that of Lemma 5; the details are
omitted here.

We shall focus on one partition for [0, 𝑇
1
, 𝑇], denoted

by 𝜋(𝜖
1
, 𝜖
2
) and one partition for [0, 𝑇 − 𝑇

1
, 𝑇], denoted by

𝜋󸀠(𝜖
1
, 𝜖
2
). 𝜋(𝜖
1
, 𝜖
2
) divides the interval [0, 𝑇

1
] into 𝑚

1
equal

segments, each of length 𝜖
1
, and divides the interval [𝑇

1
, 𝑇]

into 𝑚
2
equal segments, each of length 𝜖

2
. 𝜋󸀠(𝜖
1
, 𝜖
2
) divides

the interval [0, 𝑇−𝑇
1
] into𝑚

2
equal segments, each of length

𝜖
2
, and divides the interval [𝑇−𝑇

1
, 𝑇] into𝑚

1
equal segments,

each of length 𝜖
1
.

If we reverse the inner order of 𝑢̂, 𝑥, V̂, 𝑦, 𝑤 and 𝑧̂ in
SCP
1
(𝜋(𝜖
1
, 𝜖
2
), that is, for example, change 𝑢̂ = (𝑢̂

1
, . . . , 𝑢̂

𝑚
1

)

to (𝑢̂
𝑚
1

, . . . , 𝑢̂
1
), we get the following problem:

(SCP
1
(𝜋 (𝜖
1
, 𝜖
2
)))

max ℎ
󸀠

𝑙1
𝑢̂ + 𝑑
󸀠

𝑙1
𝑥 + ℎ
󸀠

𝑙
2

V̂ + 𝑑󸀠
𝑙
2

𝑦

+ ℎ
󸀠

𝑙
3

𝑤 + 𝑑
󸀠

𝑙
3

𝑧̂ +
𝜖
1

2
𝑑
󸀠
𝑥
0
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s.t. 𝑔
𝑙1
− 𝐺
𝑚
1

𝑢̂ − 𝐹
𝑚
1

𝑥 ∈K
1,𝑚
1

,

𝑓
𝑙1
− 𝐻̂
𝑚
1

𝑢̂ ∈K
2,𝑚
1

,

𝑔
𝑙2
− 𝐺
𝑚
2
,𝑚
1

𝑢̂ − 𝐺
𝑚
2

V̂ − 𝐹
𝑚
2

𝑦 ∈K
11,𝑚
2

,

𝑓
𝑙2
− 𝐻̂
𝑚
2

V̂ ∈K
21,𝑚
2

,

𝑔
𝑙3
− 𝐺
𝑚
2
,𝑚
1

𝑢̂ − 𝐺
𝑚
2

𝑤 − 𝐹
𝑚
2

𝑧̂ ∈K
12,𝑚
2

,

𝑓
𝑙3
− 𝐻̂
𝑚
2

𝑤 ∈K
22,𝑚
2

,

𝑢̂ ∈K
3,𝑚
1

, 𝑥 ∈K
4,𝑚
1

,

V̂ ∈K
31,𝑚
2

, 𝑦 ∈K
41,𝑚
2

,

𝑤 ∈K
32,𝑚
2

, 𝑧̂ ∈K
42,𝑚
2

,

(46)

where

𝐺
𝑚
1

= 𝑚
1

{{{{

{{{{

{

(

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺 ⋅ ⋅ ⋅ 𝐺

d
...
𝐺

),

𝐺
𝑚
2

= 𝑚
2

{{{{

{{{{

{

(

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺 ⋅ ⋅ ⋅ 𝐺

d
...
𝐺

),

𝐺
𝑚
2
,𝑚
1

=
𝑚
2

{{{{

{{{{

{

(

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺
...

...
...

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

) ,

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚
1

𝐹
𝑚
1

= 𝑚
1

{{{

{{{

{

(

𝐹

𝐹

d
𝐹

) ,

𝐹
𝑚
2

= 𝑚
2

{{{

{{{

{

(

𝐹

𝐹

d
𝐹

) ,

𝐻̂
𝑚
1

= 𝑚
1

{{{

{{{

{

(

𝐻

𝐻

d
𝐻

),

𝐻̂
𝑚
2

= 𝑚
2

{{{

{{{

{

(

𝐻

𝐻

d
𝐻

),

𝑓
𝑙1
= 𝑚
1

{{{{

{{{{

{

(

𝜖
1
𝑏

𝜖
1
𝑏
...
𝜖
1
𝑏

) ,

𝑓
𝑙2
= 𝑚
2

{{{{

{{{{

{

(

𝜖
2
𝑏
1

𝜖
2
𝑏
1

...
𝜖
2
𝑏
1

), 𝑓
𝑙3
= 𝑚
2

{{{{

{{{{

{

(

𝜖
2
𝑏
2

𝜖
2
𝑏
2

...
𝜖
2
𝑏
2

),

𝑔
𝑙1
= 𝑚
1

{{{{

{{{{

{

(

𝛼 + 𝑇
1
𝑎

...
𝛼 + 2𝜖

1
𝑎

𝛼 + 𝜖
1
𝑎

) ,

𝑔
𝑙2
= 𝑚
2

{{{{

{{{{

{

(

𝛼
1
+ 𝑇𝑎
1

...
𝛼
1
+ (𝑇
1
+ 2𝜖
2
) 𝑎
1

𝛼
1
+ (𝑇
1
+ 𝜖
2
) 𝑎
1

),

𝑔
𝑙3
= 𝑚
2

{{{{

{{{{

{

(

𝛼
2
+ 𝑇𝑎
2

...
𝛼
2
+ (𝑇
1
+ 2𝜖
2
) 𝑎
2

𝛼
2
+ (𝑇
1
+ 𝜖
2
) 𝑎
2

),

ℎ
𝑙1
= 𝑚
1

{{{{{{{{

{{{{{{{{

{

(
(

(

𝛾+ (𝑇 − 𝑇
1
+
𝜖
1

2
) 𝑐

...
𝛾 + (𝑇 −

3𝜖
1

2
) 𝑐

𝛾 + (𝑇 −
𝜖
1

2
) 𝑐

)
)

)

,

ℎ
𝑙2
= 𝑚
2

{{{{{{{{

{{{{{{{{

{

(
(

(

̆𝛾
1
+
𝜖
2

2
̆𝑐
1

...
̆𝛾
1
+ (𝑇 − 𝑇

1
−
3𝜖
2

2
) ̆𝑐
1

̆𝛾
1
+ (𝑇 − 𝑇

1
−
𝜖
2

2
) ̆𝑐
1

)
)

)

,

ℎ
𝑙3
= 𝑚
2

{{{{{{{{

{{{{{{{{

{

(
(

(

̆𝛾
2
+
𝜖
2

2
̆𝑐
2

...
̆𝛾
2
+ (𝑇 − 𝑇

1
−
3𝜖
2

2
) ̆𝑐
2

̆𝛾
2
+ (𝑇 − 𝑇

1
−
𝜖
2

2
) ̆𝑐
2

)
)

)

,

𝑑
𝑙1
= 𝑚
1

{{{{{{

{{{{{{

{

(

𝜖
1

2
𝑑 +

𝜖
2

2
̆𝑑
1
+
𝜖
2

2
̆𝑑
2

same
{{

{{

{

(

𝜖
1
𝑑
...
𝜖
1
𝑑

)

),
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𝑑
𝑙2
= 𝑚
2

{{{{{{{

{{{{{{{

{

(

(

𝜖
2

2
̆𝑑
1

same
{{{

{{{

{

(

𝜖
2
̆𝑑
1

...
𝜖
2
̆𝑑
1

)

)

)

,

𝑑
𝑙3
= 𝑚
2

{{{{{{{

{{{{{{{

{

(

(

𝜖
2

2
̆𝑑
2

same
{{{

{{{

{

(

𝜖
2
̆𝑑
2

...
𝜖
2
̆𝑑
2

)

)

)

.

(47)

Note that in 𝑔
𝑙1
, the difference between two adjacent items is

𝜖
1
𝑎; in 𝑔

𝑙2
, the difference between two adjacent items is 𝜖

2
𝑎
1
;

in 𝑔
𝑙3
, the difference between two adjacent items is 𝜖

2
𝑎
2
. In

ℎ
𝑙1
, the difference between two adjacent items is 𝜖

1
𝑐; in ℎ

𝑙2
,

the difference between two adjacent items is 𝜖
2
̆𝑐
1
; in ℎ
𝑙3
, the

difference between two adjacent items is 𝜖
2
̆𝑐
2
. All the items in

𝑓
𝑙1
are the same, and this is also true for 𝑓

𝑙2
and 𝑓

𝑙3
.

The dual of SCP
1
(𝜋, 𝜖
1
, 𝜖
2
) without (𝜖

1
/2)𝑑󸀠𝑥

0
in the

objective of SCP
1
(𝜋(𝜖
1
, 𝜖
2
)) is the following problem:

(SCP∗
1
(𝜋 (𝜖
1
, 𝜖
2
))) :

min 𝑔
󸀠

𝑙1
𝑓 + 𝑓

󸀠

𝑙1
𝑔 + 𝑔
󸀠

𝑙2
ℎ̂

+ 𝑓
󸀠

𝑙2
𝑙̂ + 𝑔
󸀠

𝑙3
𝑝 + 𝑓

󸀠

𝑙3
𝑞

s.t. 𝐺
󸀠

𝑚
1

𝑓 + 𝐻̂
󸀠

𝑚
1

𝑔 + 𝐺
󸀠

𝑚
1
,𝑚
2

(ℎ̂ + 𝑝)

− ℎ
𝑙1
∈K
∗

3,𝑚
1

,

𝐹
󸀠

𝑚
1

𝑓 − 𝑑
𝑙1
∈K
∗

4,𝑚
1

,

𝑓 ∈K
∗

1,𝑚
1

, 𝑔 ∈K
∗

2,𝑚
1

,

𝐺
󸀠

𝑚
2

ℎ̂ + 𝐻̂
󸀠

𝑚
2

𝑙̂ − ℎ
𝑙2
∈K
∗

31,𝑚
2

,

𝐹
󸀠

𝑚
2

ℎ̂ − 𝑑
𝑙2
∈K
∗

41,𝑚
2

,

ℎ̂ ∈K
∗

11,𝑚
2

, 𝑙̂ ∈K
∗

21,𝑚
2

,

𝐺
󸀠

𝑚
2

𝑝 + 𝐻̂
󸀠

𝑚
2

𝑞 − ℎ
𝑙3
∈K
∗

32,𝑚
2

,

𝐹
󸀠

𝑚
2

𝑝 − 𝑑
𝑙3
∈K
∗

42,𝑚
2

,

𝑝 ∈K
∗

12,𝑚
2

, 𝑞 ∈K
∗

22,𝑚
2

.

(48)

Similarly, we have

(SCP
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
)))

min 𝑔
󸀠

𝑢2
ℎ̂ + 𝑓
󸀠

𝑢2
𝑙̂ +
𝜖
2

2
𝑏
󸀠

1
𝑙̂
0
+ 𝑔
󸀠

𝑢3
𝑝

+ 𝑓
󸀠

𝑢3
𝑞 +

𝜖
2

2
𝑏
󸀠

2
𝑞
0
+ 𝑔
󸀠

𝑢1
𝑓 + 𝑓

󸀠

𝑢1
𝑔

s.t. 𝐺
󸀠

𝑚
2

ℎ̂ + 𝐻̂
󸀠

𝑚
2

𝑙̂ − ℎ
𝑢2
∈K
∗

31,𝑚
2

,

𝐹
󸀠

𝑚
2

ℎ̂ − 𝑑
𝑢2
∈K
∗

41,𝑚
2

,

𝑓 ∈K
∗

1,𝑚
1

, 𝑔 ∈K
∗

2,𝑚
1

,

𝐺
󸀠

𝑚
2

𝑝 + 𝐻̂
󸀠

𝑚
2

𝑞 − ℎ
𝑢3
∈K
∗

32,𝑚
2

,

𝐹
󸀠

𝑚
2

𝑝 − 𝑑
𝑢3
∈K
∗

42,𝑚
2

,

ℎ̂ ∈K
∗

11,𝑚
2

, 𝑙̂ ∈K
∗

21,𝑚
2

,

𝐺
󸀠

𝑚
1
,𝑚
2

(ℎ̂ + 𝑝) + 𝐺
󸀠

𝑚
1

𝑓

+ 𝐻̂
󸀠

𝑚
1

𝑔 − ℎ
𝑢1
∈K
∗

3,𝑚
1

,

𝐹
󸀠

𝑚
1

𝑓 − 𝑑
𝑢1
∈K
∗

4,𝑚
1

,

𝑝 ∈K
∗

12,𝑚
2

, 𝑞 ∈K
∗

22,𝑚
2

,

(49)

where

𝐺
󸀠

𝑚
1

= 𝑚
1

{{{

{{{

{

(

𝐺
󸀠

𝐺󸀠 𝐺󸀠

d
𝐺󸀠 𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠

),

𝐺
󸀠

𝑚
2

= 𝑚
2

{{{

{{{

{

(

𝐺
󸀠

𝐺󸀠 𝐺󸀠

d
𝐺󸀠 𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠

),

𝐺
󸀠

𝑚
1
,𝑚
2

=
𝑚
1

{{{{

{{{{

{

(

𝐺
󸀠 𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠

𝐺󸀠 𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠

...
...

...
𝐺󸀠 𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠

),

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚
2

𝑓
𝑢1
= 𝑚
1

{{{{{

{{{{{

{

(
same

{{

{{

{

(

𝜖
1
𝑏
...
𝜖
1
𝑏

)

𝜖
1

2
𝑏

),

𝑓
𝑢2
= 𝑚
2

{{{{{

{{{{{

{

(
𝑠ame

{{

{{

{

(

𝜖
2
𝑏
1

...
𝜖
2
𝑏
1

)

𝜖
2

2
𝑏
1
+
𝜖
1

2
𝑏

),

𝑓
𝑢3
= 𝑚
2

{{{{{

{{{{{

{

(
same

{{

{{

{

(

𝜖
2
𝑏
2

...
𝜖
2
𝑏
2

)

𝜖
2

2
𝑏
2
+
𝜖
1

2
𝑏

),
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𝑔
𝑢1
= 𝑚
1

{{{{{{{{{

{{{{{{{{{

{

(
(
(

(

𝛼+ (𝑇
1
−
𝜖
1

2
) 𝑎

𝛼 + (𝑇
1
−
3𝜖
1

2
) 𝑎

...
𝛼 +

𝜖
1

2
𝑎

)
)
)

)

,

𝑔
𝑢2
= 𝑚
2

{{{{{{{{{

{{{{{{{{{

{

(
(
(

(

𝛼
1
+ (𝑇 −

𝜖
2

2
) 𝑎
1

𝛼
1
+ (𝑇 −

3𝜖
2

2
) 𝑎
1

...
𝛼
1
+ (𝑇
1
+
𝜖
2

2
) 𝑎
1

)
)
)

)

,

𝑔
𝑢3
= 𝑚
2

{{{{{{{{

{{{{{{{{

{

(
(

(

𝛼
2
+ (𝑇 −

𝜖
2

2
) 𝑎
2

𝛼
2
+ (𝑇 −

3𝜖
2

2
) 𝑎
2

...
𝛼
2
+ (𝑇
1
+
𝜖
2

2
) 𝑎
2

)
)

)

,

ℎ
𝑢1
= 𝑚
1

{{{{

{{{{

{

(

𝛾 + (𝑇 − 𝑇
1
+ 𝜖
1
) 𝑐

𝛾 + (𝑇 − 𝑇
1
+ 2𝜖
1
) 𝑐

...
𝛾 + 𝑇𝑐

) ,

ℎ
𝑢2
= 𝑚
2

{{{{

{{{{

{

(

̆𝛾
1
+ 𝜖
2
̆𝑐
1

̆𝛾
1
+ 2𝜖
2
̆𝑐
1

...
̆𝛾
1
+ (𝑇 − 𝑇

1
) ̆𝑐
1

),

ℎ
𝑢3
= 𝑚
2

{{{{

{{{{

{

(

̆𝛾
2
+ 𝜖
2
̆𝑐
2

̆𝛾
2
+ 2𝜖
2
̆𝑐
2

...
̆𝛾
2
+ (𝑇 − 𝑇

1
) ̆𝑐
2

),

𝑑
𝑢1
= 𝑚
1

{{{{

{{{{

{

(

𝜖
1
𝑑

𝜖
1
𝑑
...
𝜖
1
𝑑

) , 𝑑
𝑢2
= 𝑚
2

{{{{{

{{{{{

{

(

𝜖
2
̆𝑑
1

𝜖
2
̆𝑑
1

...
𝜖
2
̆𝑑
1

),

𝑑
𝑢3
= 𝑚
2

{{{{{

{{{{{

{

(

𝜖
2
̆𝑑
2

𝜖
2
̆𝑑
2

...
𝜖
2
̆𝑑
2

).

(50)

Note that in 𝑔
𝑢1
, the difference between two adjacent items is

𝜖
1
𝑎; in 𝑔

𝑢2
, the difference between two adjacent items is 𝜖

2
𝑎
1
;

in 𝑔
𝑢3
, the difference between two adjacent items is 𝜖

2
𝑎
2
. In

ℎ
𝑢1
, the difference between two adjacent items is 𝜖

1
𝑐; in ℎ

𝑢2
,

the difference between two adjacent items is 𝜖
2
̆𝑐
1
; in ℎ
𝑢3
, the

difference between two adjacent items is 𝜖
2
̆𝑐
2
. All the items in

𝑑
𝑢1

are the same, and this is also true for 𝑑
𝑢2

and 𝑑
𝑢3
.

Now we write down the relationships between the input
parameters in SCP

1
(𝜋(𝜖
1
, 𝜖
2
)) and SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)), and these

following relationships will be used in provingTheorem 11 in
Section 5:

𝑔
𝑢1
− 𝑔
𝑙1
= 𝑚
1
, same

{{{{

{{{{

{

(

−
𝜖
1

2
𝑎

...
−
𝜖
1

2
𝑎

) ,

𝑔
𝑢2
− 𝑔
𝑙2
= 𝑚
2
, same

{{{{

{{{{

{

(

−
𝜖
2

2
𝑎
1

...
−
𝜖
2

2
𝑎
1

),

𝑔
𝑢3
− 𝑔
𝑙3
= 𝑚
2
, same

{{{{

{{{{

{

(

−
𝜖
2

2
𝑎
2

...
−
𝜖
2

2
𝑎
2

),

𝑓
𝑢1
− 𝑓
𝑙1
= 𝑚
1
,

{{{{{

{{{{{

{

(
same

{{

{{

{

(

0
...
0

)

−
𝜖
1

2
𝑏

),

𝑓
𝑢2
− 𝑓
𝑙2
= 𝑚
2
,

{{{{{

{{{{{

{

(
same

{{

{{

{

(

0
...
0

)

−
𝜖
2

2
𝑏
1
+
𝜖
1

2
𝑏

),

𝑓
𝑢3
− 𝑓
𝑙3
= 𝑚
2
,

{{{{{

{{{{{

{

(
same

{{

{{

{

(

0
...
0

)

−
𝜖
2

2
𝑏
2
+
𝜖
1

2
𝑏

),

ℎ
𝑢1
− ℎ
𝑙1
= 𝑚
1
, same

{{{{

{{{{

{

(

𝜖
1

2
𝑐

...
𝜖
1

2
𝑐

) ,

ℎ
𝑢2
− ℎ
𝑙2
= 𝑚
2
, same

{{{{

{{{{

{

(

𝜖
2

2
̆𝑐
1

...
𝜖
2

2
̆𝑐
1

),

ℎ
𝑢3
− ℎ
𝑙3
= 𝑚
2
, same

{{{{

{{{{

{

(

𝜖
2

2
̆𝑐
2

...
𝜖
2

2
̆𝑐
2

),
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𝑑
𝑢1
− 𝑑
𝑙1
= 𝑚
1

{{{{{

{{{{{

{

(

𝜖
1

2
𝑑 −

𝜖
2

2
̆𝑑
1
−
𝜖
2

2
̆𝑑
2

same
{{

{{

{

(

0
...
0

)
),

𝑑
𝑢2
− 𝑑
𝑙2
= 𝑚
2

{{{{{

{{{{{

{

(

𝜖
2

2
̆𝑑
1

same
{{

{{

{

(

0
...
0

)
),

𝑑
𝑢3
− 𝑑
𝑙3
= 𝑚
2

{{{{{

{{{{{

{

(

𝜖
2

2
̆𝑑
2

same
{{

{{

{

(

0
...
0

)
).

(51)

5. Strong Duality

In this section, we will prove that under some mild and
verifiable conditions, strong duality holds between SSCCP
and its dual.

Let 𝜋
1
denote a partition of [0, 𝑇 − 𝑇

1
, 𝑇], 𝜋

1
=

{𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚
2

, 𝑡
𝑚
2
+1
, . . . , 𝑡

𝑚
2
+𝑚
1
+2
}, with 𝑡

0
= 0, 𝑡
𝑚
2
+1
= 𝑇−𝑇

1
,

𝑡
𝑚
2
+𝑚
1
+2
= 𝑇, and 𝑡

1
− 𝑡
0
= 𝑡
𝑚
2
+1
− 𝑡
𝑚
2

= (𝜖
2
/2), 𝑡
𝑚
2
+2
−

𝑡
𝑚
2
+1
= 𝑡
𝑚
2
+𝑚
1
+2
− 𝑡
𝑚
2
+𝑚
1
+1

= (𝜖
1
/2), while 𝑡

𝑖
− 𝑡
𝑖−1

= 𝜖
2
,

𝑖 = 2, . . . , 𝑚
2
; 𝑡
𝑗
− 𝑡
𝑗−1
= 𝜖
1
, 𝑗 = 𝑚

2
+ 3, . . . , 𝑚

2
+ 𝑚
1
+ 1.

Lemma 7. If the conic programs 𝑆𝐶𝑃
2
(𝜋
1
) are strongly feasible

and K
1
⊆ K
11
, K
1
⊆ K
12
, K
4
⊆ K
41
, K
4
⊆ K
42
, then

𝑆𝐶𝑃∗
1
(𝜋(𝜖
1
, 𝜖
2
)) is strongly feasible.

Proof. The constraints of (SCP
2
(𝜋
1
)) are:

(
𝐺󸀠
𝑚
2

𝐺󸀠 . . . 𝐺󸀠 𝐺󸀠
) ℎ̂ + (

𝐻̂󸀠
𝑚
2

𝐻󸀠
) 𝑙̂

− (
ℎ
𝑙2

̆𝛾
1
+ (𝑇 − 𝑇

1
) ̆𝑐
1

) ∈K
∗

31,𝑚
2
+1
,

(
𝐹󸀠
𝑚
2

𝐹󸀠
) ℎ̂ − (

𝑑
𝑙2

𝜖
2

2
̆𝑑
1

) ∈K
∗

41,𝑚
2
+1
,

ℎ̂ ∈K
∗

11,𝑚
2
+1
, 𝑙̂ ∈K

∗

21,𝑚
2
+1
,

(
𝐺󸀠
𝑚
2

𝐺󸀠 . . . 𝐺󸀠 𝐺󸀠
)𝑝 + (

𝐻̂󸀠
𝑚
2

𝐻󸀠
)𝑞

− (
ℎ
𝑙3

̆𝛾
2
+ (𝑇 − 𝑇

1
) ̆𝑐
2

) ∈K
∗

32,𝑚
2
+1
,

(
𝐹󸀠
𝑚
2

𝐹󸀠
)𝑝 − (

𝑑
𝑙3

𝜖
2

2
̆𝑑
2

) ∈K
∗

42,𝑚
2
+1
,

𝑝 ∈K
∗

12,𝑚
2
+1
, 𝑞 ∈K

∗

22,𝑚
2
+1
,

(
𝐺
󸀠

𝑚
1
,𝑚
2

𝐺󸀠

...
𝐺󸀠

𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠 𝐺󸀠

)(ℎ̂ + 𝑝) + (
𝐺
󸀠

𝑚
1

𝐺󸀠 ⋅ ⋅ ⋅ 𝐺󸀠 𝐺󸀠
)𝑓

+ (
𝐻̂󸀠
𝑚
1

𝐻󸀠
)𝑔 − (

ℎ
𝑙1

𝛾 + 𝑇𝑐
) ∈K

∗

3,𝑚
1
+1
,

(
𝐹󸀠
𝑚
1

𝐹󸀠
)𝑓 −

(
(

(

(𝑑
𝑙1
−(

𝜖
2

2
̆𝑑
1
+
𝜖
2

2
̆𝑑
2

0
...
0

)

𝜖
1

2
𝑑

)
)

)

∈K
∗

4,𝑚
1
+1
,

𝑓 ∈K
∗

1,𝑚
1
+1
, 𝑔 ∈K

∗

2,𝑚
1
+1
.

(52)

WhenK
1
⊆K
11
,K
1
⊆K
12
andK

4
⊆K
41
,K
4
⊆K
42
,

we have K∗
11
⊆ K∗
1
, K∗
12
⊆ K∗
1
, K∗
41
⊆ K∗
4
, K∗
42
⊆ K∗
4
.

Comparing the above with the constraints of SCP∗
1
(𝜋(𝜖
1
, 𝜖
2
)),

we observe that if

((ℎ̂
1
, . . . , ℎ̂

𝑚
2
+1
) , (𝑙̂
1
, . . . , 𝑙̂
𝑚
2
+1
) , (𝑝
1
, . . . , 𝑝

𝑚
2
+1
) ,

(𝑞
1
, . . . , 𝑞

𝑚
2
+1
) , (𝑓
1
, . . . , 𝑓

𝑚
1
+1
) , (𝑔
1
, . . . , 𝑔

𝑚
1
+1
))

(53)

is a strongly feasible solution of SCP
2
(𝜋
1
), then

((ℎ̂
1
, . . . , ℎ̂

𝑚
2

) , (𝑙̂
1
, . . . , 𝑙̂
𝑚
2

) , (𝑝
1
, . . . , 𝑝

𝑚
2

) , (𝑞
1
, . . . , 𝑞

𝑚
2

) ,

(𝑓
1
+ ℎ̂
𝑚
2
+1
+ 𝑝
𝑚
2
+1
, 𝑓
2
, . . . , 𝑓

𝑚
1

) , (𝑔
1
, . . . , 𝑔

𝑚
1

))

(54)

is a strongly feasible solution to SCP∗
1
(𝜋(𝜖
1
, 𝜖
2
)).

From Lemma 5, we know if the conic programs CP
1
are

strongly feasible and K
1
⊆ K

11
, K
1
⊆ K

12
, K
4
⊆

K
41

and K
4
⊆ K

42
, then SCP

1
(𝜋(𝜖
1
, 𝜖
2
)) is strongly

feasible.
From Lemma 6, we know if the conic programs CP

2
are

strongly feasible and K
2
⊆ K
21
, K
2
⊆ K
22
, K
3
⊆ K
31
,

K
3
⊆ K
32
, ̆𝛾
1
+ ̆𝛾
2
= 𝛾 and ̆𝑐

1
+ ̆𝑐
2
= 𝑐, SCP

2
(𝜋󸀠) is strongly

feasible. Now, from Lemma 7, if additionally K
1
⊆ K

11
,

K
1
⊆ K
12
andK

4
⊆ K
41
,K
4
⊆ K
42
, then SCP∗

1
(𝜋(𝜖
1
, 𝜖
2
))

is strongly feasible.
So under the condition that the conic programs (CP

1
)

and (CP
2
) are strongly feasible, K

1
⊆ K
11
, K
1
⊆ K
12
,

K
2
⊆ K
21
,K
2
⊆ K
22
,K
3
⊆ K
31
,K
3
⊆ K
32
,K
4
⊆ K
41
,

K
4
⊆ K
42
, ̆𝛾
1
+ ̆𝛾
2
= 𝛾, ̆𝑐

1
+ ̆𝑐
2
= 𝑐, (SCP

1
(𝜋(𝜖
1
, 𝜖
2
))) is

solvable.
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The dual of SCP
2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) without the constant terms

(𝜖
2
/2)𝑏󸀠
1
𝑙̂
0
+ (𝜖
2
/2)𝑏󸀠
2
𝑞
0
in the objective is the following:

(SCP∗
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
)))

max ℎ
󸀠

𝑢1
𝑢̂ + 𝑑
󸀠

𝑢1
𝑥 + ℎ
󸀠

𝑢2
V̂

+ 𝑑
󸀠

𝑢2
𝑦 + ℎ
󸀠

𝑢3
𝑤 + 𝑑

󸀠

𝑢3
𝑧̂

s.t. 𝑔
𝑢1
− 𝐺
𝑚
1

𝑢̂ − 𝐹
𝑚
1

𝑥 ∈K
1,𝑚
1

,

𝑓
𝑢1
− 𝐻̂
𝑚
1

𝑢̂ ∈K
2,𝑚
1

,

𝑔
𝑢2
− 𝐺
𝑚
2
,𝑚
1

𝑢̂ − 𝐺
𝑚
2

V̂ − 𝐹
𝑚
2

𝑦 ∈K
11,𝑚
2

,

𝑓
𝑢2
− 𝐻̂
𝑚
2

V̂ ∈K
21,𝑚
2

,

𝑔
𝑢3
− 𝐺
𝑚
2
,𝑚
1

𝑢̂ − 𝐺
𝑚
2

𝑤 − 𝐹
𝑚
2

𝑧̂ ∈K
12,𝑚
2

,

𝑓
𝑢3
− 𝐻̂
𝑚
2

𝑤 ∈K
22,𝑚
2

,

𝑢̂ ∈K
3,𝑚
1

, 𝑥 ∈K
4,𝑚
1

,

V̂ ∈K
31,𝑚
2

, 𝑦 ∈K
41,𝑚
2

,

𝑤 ∈K
32,𝑚
2

, 𝑧̂ ∈K
42,𝑚
2

.

(55)

We use 𝜋
2

to denote the partition {𝑡
0
, 𝑡
1
, 𝑡
2
, . . .,

𝑡
𝑚
1
+1
, . . . , 𝑡

𝑚
1
+𝑚
2
+2
}, with 𝑡

0
= 0, 𝑡

𝑚
1
+1
= 𝑇
1
, 𝑡
𝑚
1
+𝑚
2
+2
= 𝑇,

and 𝑡
1
− 𝑡
0
= 𝑡
𝑚
1
+1
− 𝑡
𝑚
1

= 𝜖
1
/2, 𝑡
𝑚
1
+2
− 𝑡
𝑚
1
+1

=

𝑡
𝑚
1
+𝑚
2
+2
− 𝑡
𝑚
1
+𝑚
2
+1

= 𝜖
2
/2, while 𝑡

𝑖
− 𝑡
𝑖−1

= 𝜖
1
,

𝑖 = 2, . . . , 𝑚
1
; 𝑡
𝑗
− 𝑡
𝑗−1
= 𝜖
2
, 𝑗 = 𝑚

1
+ 3, . . . , 𝑚

1
+ 𝑚
2
+ 1.

Lemma 8. If the conic programs 𝑆𝐶𝑃
1
(𝜋
2
) are strongly feasible

andK
2
⊆ K
21
,K
2
⊆ K
22
,K
3
⊆ K
31
andK

3
⊆ K
32
, then

𝑆𝐶𝑃∗
2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) is strongly feasible.

Proof. If we reverse the inner order of 𝑢̂, 𝑥, V̂, 𝑦, 𝑤, 𝑧̂, the
constraints of SCP

1
(𝜋
2
) are:

(
𝛼 + 𝑇
1
𝑎

𝑔
𝑢1

) − (
𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺
𝑚
1

) 𝑢̂ − (
𝐹

𝐹
𝑚
1

)𝑥 ∈K
1,𝑚
1
+1
,

(

𝜖
1

2
𝑏

𝑓
𝑢1

) − (
𝐻

𝐻̂
𝑚
1

) 𝑢̂ ∈K
2,𝑚
1
+1
,

(
𝛼
1
+ 𝑇𝑎
1

𝑔
𝑢2

) −(

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺
...
𝐺

𝐺
𝑚
2
,𝑚
1

)𝑢̂ − (
𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺
𝑚
2

) V̂

− (
𝐹

𝐹
𝑚
2

)𝑦 ∈K
11,𝑚
2
+1
,

(

𝜖
2

2
𝑏
1

𝑓
𝑢2
−(

0
...
𝜖
1

2
𝑏

)
)− (

𝐻

𝐻̂
𝑚
2

) V̂ ∈K
21,𝑚
2
+1
,

(
𝛼
2
+ 𝑇𝑎
2

𝑔
𝑢3

) −(

𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺
...
𝐺

𝐺
𝑚
2
,𝑚
1

)𝑢̂ − (
𝐺 𝐺 ⋅ ⋅ ⋅ 𝐺

𝐺
𝑚
2

)𝑤

− (
𝐹

𝐹
𝑚
2

) 𝑧̂ ∈K
12,𝑚
2
+1
,

(

𝜖
2

2
𝑏
2

𝑓
𝑢3
−(

0
...
𝜖
1

2
𝑏

)
)− (

𝐻

𝐻̂
𝑚
2

)𝑤 ∈K
22,𝑚
2
+1
,

𝑢̂ ∈K
3,𝑚
1
+1
, 𝑥 ∈K

4,𝑚
1
+1
, V̂ ∈K

31,𝑚
2
+1
,

𝑦 ∈K
41,𝑚
2
+1
, 𝑤 ∈K

32,𝑚
2
+1
, 𝑧̂ ∈K

42,𝑚
2
+1
.

(56)

When K
2
⊆ K
21
, K
2
⊆ K
22
, K
3
⊆ K
31
, K
3
⊆ K
32
,

comparing the above with the constraints of SCP∗
2
(𝜋󸀠(𝜖
1
, 𝜖
2
)),

we observe that if

((𝑢̂
1
, . . . , 𝑢̂

𝑚
1
+1
) , (𝑥
1
, . . . , 𝑥

𝑚
1
+1
) , (V̂
1
, . . . , V̂

𝑚
2
+1
) ,

(𝑦
1
, . . . , 𝑦

𝑚
2
+1
) , (𝑤
1
, . . . , 𝑤

𝑚
2
+1
) , (𝑧̂
1
, . . . , 𝑧̂

𝑚
2
+1
))

(57)

is a strongly feasible solution of SCP
1
(𝜋
2
), then

((𝑢̂
1
, . . . , 𝑢̂

𝑚
1

) , (𝑥
1
, . . . , 𝑥

𝑚
1

) , (V̂
1
+ 𝑢̂
𝑚
1
+1
, V̂
2
, . . . , V̂

𝑚
2

) ,

(𝑦
2
, . . . , 𝑦

𝑚
2
+1
) , (𝑤
1
+ 𝑢̂
𝑚
1
+1
, 𝑤
2
, . . . , 𝑤

𝑚
2

) ,

(𝑧̂
2
, . . . , 𝑧̂

𝑚
2
+1
))

(58)

is a strongly feasible solution to SCP∗
2
(𝜋󸀠(𝜖
1
, 𝜖
2
)).

From Lemma 5, we know that if the conic program (CP
1
)

is strongly feasible, and K
1
⊆ K

11
, K
1
⊆ K

12
, K
4
⊆

K
41
, K
4
⊆ K
42
, then SCP

1
(𝜋
2
) is strongly feasible. From

Lemma 8, if additionally,K
2
⊆K
21
,K
2
⊆K
22
,K
3
⊆K
31
,

K
3
⊆K
32
, we have SCP∗

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) is strongly feasible.

From Lemma 6, we know that if the conic program (CP
2
)

is strongly feasible and K
2
⊆ K
21
, K
2
⊆ K
22
, K
3
⊆ K
31
,

K
3
⊆K
32
, ̆𝛾
1
+ ̆𝛾
2
= 𝛾 and ̆𝑐

1
+ ̆𝑐
2
= 𝑐, then SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
))

is strongly feasible.
So under the condition that the conic programs CP

1
and

CP
2
are strongly feasible and K

1
⊆ K
11
, K
1
⊆ K
12
, K
2
⊆

K
21
, K
2
⊆ K
22
, K
3
⊆ K
31
, K
3
⊆ K
32
, K
4
⊆ K
41
, K
4
⊆

K
42
, ̆𝛾
1
+ ̆𝛾
2
= 𝛾, ̆𝑐
1
+ ̆𝑐
2
= 𝑐, SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) is solvable.

Now we have the following.
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Lemma 9. If the conic programs 𝐶𝑃
1
and 𝐶𝑃

2
are strongly

feasible and K
1
⊆ K
11
, K
1
⊆ K
12
, K
2
⊆ K
21
, K
2
⊆

K
22
,K
3
⊆K
31
,K
3
⊆K
32
,K
4
⊆K
41
,K
4
⊆K
42
, ̆𝛾
1
+ ̆𝛾
2
=

𝛾, ̆𝑐
1
+ ̆𝑐
2
= 𝑐, both 𝑆𝐶𝑃

1
(𝜋(𝜖
1
, 𝜖
2
)) and 𝑆𝐶𝑃

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) are

solvable, that is, they have optimal solutions and their optimal
objective values are finite.

Proposition 10. Suppose that 𝑆𝐶𝑃
1
(𝜋(𝜖
1
, 𝜖
2
)) and

𝑆𝐶𝑃
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
)) are solvable. Then, one has

V (𝑆𝐶𝑃
1
(𝜋 (𝜖
1
, 𝜖
2
))) ≤ V (𝑆𝑆𝐶𝐶𝑃) ≤ V (𝑆𝑆𝐶𝐶𝑃∗)

≤ V (𝑆𝐶𝑃
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
))) .

(59)

Proof. Because SCP
1
(𝜋(𝜖
1
, 𝜖
2
)) and SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
))

are solvable, they have finite optimal objective values
V(SCP

1
(𝜋(𝜖
1
, 𝜖
2
))) and V(SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
))).

From Lemma 2, we know the optimal solution of
SCP
1
(𝜋(𝜖
1
, 𝜖
2
)) can be extended to a feasible solution of

SSCCP, hence, the first inequality (since SSCCP is a max-
imization problem). A similar argument justifies the third
inequality. The second inequality follows from the weak
duality in Proposition 1.

Theorem 11. Suppose 𝐶𝑃
1
and 𝐶𝑃

2
are strongly feasible, with

finite optimal values. K
1
⊆ K
11
, K
1
⊆ K
12
, K
2
⊆ K
21
,

K
2
⊆ K
22
, K
3
⊆ K
31
, K
3
⊆ K
32
, K
4
⊆ K
41
,K
4
⊆ K
42
,

̆𝛾
1
+ ̆𝛾
2
= 𝛾 and ̆𝑐

1
+ ̆𝑐
2
= 𝑐. If one lets the number of intervals

in 𝜋, 𝜋󸀠, 𝑚
1
and 𝑚

2
be the same and both of them equal to 𝑚,

then there exists a constant Γ > 0, which is independent of 𝑚,
such that

V (𝑆𝐶𝑃
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
))) − V (𝑆𝐶𝑃

1
(𝜋 (𝜖
1
, 𝜖
2
))) ≤

Γ

𝑚
. (60)

Consequently, one must have V(𝑆𝑆𝐶𝐶𝑃) = V(𝑆𝑆𝐶𝐶𝑃∗); that is,
strong duality holds.

Proof. First note that strong duality follows immediately from
the inequality in (60) by letting𝑚 → ∞, taking into account
the inequalities in Proposition 10.

To establish the error bound in (60), consider the follow-
ing primal-dual pair of conic programs:

(SCP) max ℎ
󸀠

𝑢1
𝑢̂ + 𝑑
󸀠

𝑢1
𝑥 + ℎ
󸀠

𝑢2
V̂ + 𝑑󸀠
𝑢2
𝑦

+ ℎ
󸀠

𝑢3
𝑤 + 𝑑

󸀠

𝑢3
𝑧̂

s.t. 𝑔
𝑙1
− 𝐺
𝑚
1

𝑢̂ − 𝐹
𝑚
1

𝑥 ∈K
1,𝑚
1

,

𝑓
𝑙1
− 𝐻̂
𝑚
1

𝑢̂ ∈K
2,𝑚
1

,

𝑔
𝑙2
− 𝐺
𝑚
2
,𝑚
1

𝑢̂ − 𝐺
𝑚
2

V̂ − 𝐹
𝑚
2

𝑦 ∈K
11,𝑚
2

,

𝑓
𝑙2
− 𝐻̂
𝑚
2

V̂ ∈K
21,𝑚
2

,

𝑔
𝑙3
− 𝐺
𝑚
2
,𝑚
1

𝑢̂ − 𝐺
𝑚
2

𝑤 − 𝐹
𝑚
2

𝑧̂ ∈K
12,𝑚
2

,

𝑓
𝑙3
− 𝐻̂
𝑚
2

𝑤 ∈K
22,𝑚
2

,

𝑢̂ ∈K
3,𝑚
1

, 𝑥 ∈K
4,𝑚
1

, V̂ ∈K
31,𝑚
2

,

𝑦 ∈K
41,𝑚
2

, 𝑤 ∈K
32,𝑚
2

, 𝑧̂ ∈K
42,𝑚
2

,

(61)

(SCP∗) min 𝑔
󸀠

𝑙2
ℎ̂ + 𝑓
󸀠

𝑙2
𝑙̂ + 𝑔
󸀠

𝑙3
𝑝 + 𝑓

󸀠

𝑙3
𝑞

+ 𝑔
󸀠

𝑙1
𝑓 + 𝑓

󸀠

𝑙1
𝑔

s.t. 𝐺
󸀠

𝑚
2

ℎ̂ + 𝐻̂
󸀠

𝑚
2

𝑙̂ − ℎ
𝑢2
∈K
∗

31,𝑚
2

,

𝐹
󸀠

𝑚
2

ℎ̂ − 𝑑
𝑢2
∈K
∗

41,𝑚
2

,

𝐺
󸀠

𝑚
2

𝑝 + 𝐻̂
󸀠

𝑚
2

𝑞 − ℎ
𝑢3
∈K
∗

32,𝑚
2

,

𝐹
󸀠

𝑚
2

𝑝 − 𝑑
𝑢3
∈K
∗

42,𝑚
2

,

𝐺
󸀠

𝑚
1
,𝑚
2

(ℎ̂ + 𝑝) + 𝐺
󸀠

𝑚
1

𝑓 + 𝐻̂
󸀠

𝑚
1

𝑔

− ℎ
𝑢1
∈K
∗

3,𝑚
1

,

𝐹
󸀠

𝑚
1

𝑓 − 𝑑
𝑢1
∈K
∗

4,𝑚
1

,

𝑓 ∈K
∗

1,𝑚
1

, 𝑔 ∈K
∗

2,𝑚
1

, ℎ̂ ∈K
∗

11,𝑚
2

,

𝑙̂ ∈K
∗

21,𝑚
2

, 𝑝 ∈K
∗

12,𝑚
2

, 𝑞 ∈K
∗

22,𝑚
2

.

(62)

Note that the problem in (62) has the same constraints as
SCP
2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) but the objective function of SCP∗

1
(𝜋(𝜖
1
, 𝜖
2
)),

whereas the problem in (8) has the constraints of
SCP
1
(𝜋(𝜖
1
, 𝜖
2
)) but the objective function of SCP∗

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)).

Hence, both primal and dual are strongly feasible, since
SCP
1
(𝜋(𝜖
1
, 𝜖
2
)) and SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)) are. Consequently they

both have optimal solutions and their respective optimal
objective values coincide.

We denote the optimal solutions for SCP as
(𝑢̂
∗, 𝑥∗, V̂∗, 𝑦∗, 𝑤∗, 𝑧̂∗) and the optimal solution for SCP∗ as

(ℎ̂∗, 𝑙̂∗, 𝑝∗, 𝑞∗, 𝑓∗, 𝑔∗). Note that these are feasible solutions
to SCP

1
(𝜋(𝜖
1
, 𝜖
2
)) and SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)), respectively. Hence,

we have

V (SCP
1
(𝜋 (𝜖
1
, 𝜖
2
))) ≥ ℎ

󸀠

𝑙1
𝑢̂
∗
+ 𝑑
󸀠

𝑙1
𝑥
∗
+ ℎ
󸀠

𝑙
2

V̂∗

+ 𝑑
󸀠

𝑙
2

𝑦
∗
+ ℎ
󸀠

𝑙
3

𝑤
∗
+ 𝑑
󸀠

𝑙
3

𝑧̂
∗
+
𝜖
1

2
𝑑
󸀠
𝑥
0
,

V (SCP
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
))) ≤ 𝑔

󸀠

𝑢2
ℎ̂
∗
+ 𝑓
󸀠

𝑢2
𝑙̂
∗
+
𝜖
2

2
𝑏
󸀠

1
𝑙̂
0
+ 𝑔
󸀠

𝑢3
𝑝
∗

+ 𝑓
󸀠

𝑢3
𝑞
∗
+
𝜖
2

2
𝑏
󸀠

2
𝑞
0
+ 𝑔
󸀠

𝑢1
𝑓
∗
+ 𝑓
󸀠

𝑢1
𝑔
∗
.

(63)

Hence,

V (SCP
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
))) − V (SCP

1
(𝜋 (𝜖
1
, 𝜖
2
)))

≤ 𝑔
󸀠

𝑢2
ℎ̂
∗
+ 𝑓
󸀠

𝑢2
𝑙̂
∗
+
𝜖
2

2
𝑏
󸀠

1
𝑙̂
0
+ 𝑔
󸀠

𝑢3
𝑝
∗
+ 𝑓
󸀠

𝑢3
𝑞
∗

+
𝜖
2

2
𝑏
󸀠

2
𝑞
0
+ 𝑔
󸀠

𝑢1
𝑓
∗
+ 𝑓
󸀠

𝑢1
𝑔
∗
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− (ℎ
󸀠

𝑙1
𝑢̂
∗
+ 𝑑
󸀠

𝑙1
𝑥
∗
+ ℎ
󸀠

𝑙2
V̂∗ + 𝑑󸀠

𝑙2
𝑦
∗
+ ℎ
󸀠

𝑙3
𝑤
∗

+𝑑
󸀠

𝑙3
𝑧̂
∗
+
𝜖
1

2
𝑑
󸀠
𝑥
0
)

=

[
[
[
[
[
[
[
[

[

𝑔
𝑙2
−
(
(

(

𝜖
2

2
𝑎
1

𝜖
2

2
𝑎
1

...
𝜖
2

2
𝑎
1

)
)

)

]
]
]
]
]
]
]
]

]

󸀠

ℎ̂
∗

+

[
[
[
[
[

[

𝑓
𝑙2
+(

0
...
0

𝜖
1

2
𝑏 −

𝜖
2

2
𝑏
1

)

]
]
]
]
]

]

󸀠

𝑙̂
∗

+

[
[
[
[
[
[
[
[

[

𝑔
𝑙3
−
(
(

(

𝜖
2

2
𝑎
2

𝜖
2

2
𝑎
2

...
𝜖
2

2
𝑎
2

)
)

)

]
]
]
]
]
]
]
]

]

󸀠

𝑝
∗

+

[
[
[
[
[

[

𝑓
𝑙3
+(

0
...
0

𝜖
1

2
𝑏 −

𝜖
2

2
𝑏
2

)

]
]
]
]
]

]

󸀠

𝑞
∗

+

[
[
[
[
[
[
[
[

[

𝑔
𝑙1
−
(
(

(

𝜖
1

2
𝑎

𝜖
1

2
𝑎

...
𝜖
1

2
𝑎

)
)

)

]
]
]
]
]
]
]
]

]

󸀠

𝑓
∗

+

[
[
[
[
[

[

𝑓
𝑙1
−(

0
...
0
𝜖
1

2
𝑏

)

]
]
]
]
]

]

󸀠

𝑔
∗
+
𝜖
2

2
(𝑏
󸀠

1
𝑙̂
0
+ 𝑏
󸀠

2
𝑞
0
)

−

{{{{{{{{

{{{{{{{{

{

[
[
[
[
[
[
[
[

[

ℎ̂
𝑢1
−
(
(

(

𝜖
1

2
𝑐

𝜖
1

2
𝑐

...
𝜖
1

2
𝑐

)
)

)

]
]
]
]
]
]
]
]

]

󸀠

𝑢̂
∗

+

[
[
[
[
[

[

𝑑
𝑢1
−(

−
𝜖
2

2
( ̆𝑑
1
+ ̆𝑑
2
) +

𝜖
1

2
𝑑

0
...
0

)

]
]
]
]
]

]

󸀠

𝑥
∗

+

[
[
[
[
[
[
[
[

[

ℎ̂
𝑢2
−
(
(

(

𝜖
2

2
̆𝑐
1

𝜖
2

2
̆𝑐
1

...
𝜖
2

2
̆𝑐
1

)
)

)

]
]
]
]
]
]
]
]

]

󸀠

V̂∗

+

[
[
[
[
[

[

𝑑
𝑢2
−(

𝜖
2

2
̆𝑑
1

0
...
0

)

]
]
]
]
]

]

󸀠

𝑦
∗

+

[
[
[
[
[
[
[
[

[

ℎ̂
𝑢3
−
(
(

(

𝜖
2

2
̆𝑐
2

𝜖
2

2
̆𝑐
2

...
𝜖
2

2
̆𝑐
2

)
)

)

]
]
]
]
]
]
]
]

]

󸀠

𝑤
∗

+

[
[
[
[
[

[

𝑑
𝑢3
−(

𝜖
2

2
̆𝑑
2

0
...
0

)

]
]
]
]
]

]

󸀠

𝑧̂
∗
+
𝜖
1

2
𝑑
󸀠
𝑥
0

}}}}}}

}}}}}}

}

= −
𝜖
2

2
𝑎
󸀠

1
(

𝑚
2

∑
𝑗=1

ℎ̂
∗

𝑗
) + (

𝜖
1

2
𝑏 −

𝜖
2

2
𝑏
1
)
󸀠

𝑙̂
∗

𝑚
2

−
𝜖
2

2
𝑎
󸀠

2
(

𝑚
2

∑
𝑗=1

𝑝
∗

𝑗
) + (

𝜖
1

2
𝑏 −

𝜖
2

2
𝑏
2
)
󸀠

𝑞
∗

𝑚
2

−
𝜖
1

2
𝑎
󸀠
(

𝑚
1

∑
𝑗=1

𝑓
∗

𝑗
) −

𝜖
1

2
𝑏
󸀠
𝑔
∗

𝑚
1

+
𝜖
2

2
(𝑏
󸀠

1
𝑏̂ + 𝑏
󸀠

2
𝑞
0
)

− [

[

−
𝜖
1

2
𝑐
󸀠
(

𝑚
1

∑
𝑗=1

𝑢̂
∗

𝑗
)

+ (−
𝜖
2

2
( ̆𝑑
1
+ ̆𝑑
2
) +

𝜖
1

2
𝑑)
󸀠

𝑥
∗

𝑚
1

−
𝜖
2

2
̆𝑐
󸀠

1
(

𝑚
2

∑
𝑗=1

V̂∗
𝑗
) −

𝜖
2

2
̆𝑑
󸀠

1
𝑦
∗

𝑚
2

−
𝜖
2

2
̆𝑐
󸀠

2
(

𝑚
2

∑
𝑗=1

𝑤
∗

𝑗
) −

𝜖
2

2
̆𝑑
󸀠

2
𝑧̂
∗

𝑚
2

+
𝜖
1

2
𝑑
󸀠
𝑥
0
]

]

.

(64)
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If𝑚
1
= 𝑚
2
= 𝑚, then 𝜖

1
= 𝑇
1
/𝑚, 𝜖
2
= (𝑇 −𝑇

1
)/𝑚. Hence, we

have

V (SCP
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
))) − V (SCP

1
(𝜋 (𝜖
1
, 𝜖
2
)))

≤
1

2𝑚
[

[

− (𝑇 − 𝑇
1
) 𝑎
󸀠

1
(

𝑚

∑
𝑗=1

ℎ̂
∗

𝑗
)+(𝑇

1
𝑏 −(𝑇−𝑇

1
) 𝑏
1
)
󸀠
𝑙̂
∗

𝑚

− (𝑇− 𝑇
1
) 𝑎
󸀠

2
(

𝑚

∑
𝑗=1

𝑝
∗

𝑗
)+(𝑇

1
𝑏 − (𝑇 − 𝑇

1
) 𝑏
2
)
󸀠
𝑞
∗

𝑚

− 𝑇
1
𝑎
󸀠
(

𝑚

∑
𝑗=1

𝑓
∗

𝑗
)− 𝑇
1
𝑏
󸀠
𝑔
∗

𝑚
+(𝑇 − 𝑇

1
) (𝑏
󸀠

1
𝑙̂
0
+ 𝑏
󸀠

2
𝑞
0
)

+ 𝑇
1
𝑐
󸀠
(

𝑚

∑
𝑗=1

𝑢̂
∗

𝑗
) −(− (𝑇 − 𝑇

1
) ( ̆𝑑
1
+ ̆𝑑
2
)+𝑇
1
𝑑)
󸀠

𝑥
∗

𝑚

+ (𝑇 − 𝑇
1
) ̆𝑐
󸀠

1
(

𝑚

∑
𝑗=1

V̂∗
𝑗
)+(𝑇 − 𝑇

1
) ̆𝑑
󸀠

1
𝑦
∗

𝑚

+ (𝑇 − 𝑇
1
) ̆𝑐
󸀠

2
(

𝑚

∑
𝑗=1

𝑤
∗

𝑗
)+(𝑇 − 𝑇

1
) ̆𝑑
󸀠

2
𝑧̂
∗

𝑚
−𝑇
1
𝑑
󸀠
𝑥
0
]

]

.

(65)

From the primal feasibility of (𝑢̂∗, 𝑥∗, , V̂∗, 𝑦∗, 𝑤∗, 𝑧̂∗), we
have

𝛼 + 𝑇
1
𝑎 − 𝐺(

𝑚

∑
𝑖=1

𝑢̂
∗

𝑖
) − 𝐹𝑥

∗

𝑚
∈K
1
,

𝑇
1
𝑏 − 𝐻(

𝑚

∑
𝑖=1

𝑢̂
∗

𝑖
) ∈K

2
,

𝛼
1
+ 𝑇𝑎
1
− 𝐺(

𝑚

∑
𝑖=1

𝑢̂
∗

𝑖
) − 𝐺(

𝑚

∑
𝑖=1

V̂∗
𝑖
) − 𝐹𝑦

∗

𝑚
∈K
11
,

(𝑇 − 𝑇
1
) 𝑏
1
− 𝐻(

𝑚

∑
𝑖=1

V̂∗
𝑖
) ∈K

21
,

𝛼
2
+ 𝑇𝑎
2
− 𝐺(

𝑚

∑
𝑖=1

𝑢̂
∗

𝑖
) − 𝐺(

𝑚

∑
𝑖=1

𝑤
∗

𝑖
) − 𝐹𝑧̂

∗

𝑚
∈K
12
,

(𝑇 − 𝑇
1
) 𝑏
2
− 𝐻(

𝑚

∑
𝑖=1

𝑤
∗

𝑖
) ∈K

22
,

𝑚

∑
𝑖=1

𝑢̂
∗

𝑖
∈K
3
, 𝑥
∗

𝑚
∈K
4
,

𝑚

∑
𝑖=1

V̂∗
𝑖
∈K
31
,

𝑦
∗

𝑚
∈K
41
,

𝑚

∑
𝑖=1

𝑤
∗

𝑖
∈K
32
, 𝑧̂
∗

𝑚
∈K
42
.

(66)

So we know that (∑𝑚
𝑖=1
𝑢̂∗
𝑖
, 𝑥∗
𝑚
, ∑
𝑚

𝑖=1
V̂∗
𝑖
, 𝑦∗
𝑚
, ∑
𝑚

𝑖=1
𝑤∗
𝑖
, 𝑧̂∗
𝑚
) is a

feasible solution to CP
1
. Thus,

𝑇
1
𝑐
󸀠

𝑚

∑
𝑖=1

𝑢̂
∗

𝑖
− (− (𝑇 − 𝑇

1
) ( ̆𝑑
1
+ ̆𝑑
2
) + 𝑇
1
𝑑)
󸀠

𝑥
∗

𝑚

+ (𝑇 − 𝑇
1
) ̆𝑐
󸀠

1

𝑚

∑
𝑖=1

V̂∗
𝑖
+ (𝑇 − 𝑇

1
) ̆𝑑
󸀠

1
𝑦
∗

𝑚

+ (𝑇 − 𝑇
1
) ̆𝑐
󸀠

2

𝑚

∑
𝑖=1

𝑤
∗

𝑖
+ (𝑇 − 𝑇

1
) ̆𝑑
󸀠

2
𝑧̂
∗

𝑚

≤ V (CP
1
) .

(67)

Similarly, from the dual feasibility of (ℎ̂∗, 𝑙̂∗, 𝑝∗, 𝑞∗, 𝑓∗, 𝑔∗),
we have

𝐺
󸀠
(

𝑚

∑
𝑖=1

ℎ̂
∗

𝑖
) +𝐻

󸀠
𝑙̂
∗

𝑚
− ( ̆𝛾
1
+ (𝑇 − 𝑇

1
) ̆𝑐
1
) ∈K

∗

31
,

𝐹
󸀠
(

𝑚

∑
𝑖=1

ℎ̂
∗

𝑖
) − (𝑇 − 𝑇

1
) ̆𝑑
1
∈K
∗

41
,

𝐺
󸀠
(

𝑚

∑
𝑖=1

𝑝
∗

𝑖
) +𝐻

󸀠
𝑞
∗

𝑚
− ( ̆𝛾
2
+ (𝑇 − 𝑇

1
) ̆𝑐
2
) ∈K

∗

32
,

𝐹
󸀠
(

𝑚

∑
𝑖=1

𝑝
∗

𝑖
) − (𝑇 − 𝑇

1
) ̆𝑑
2
∈K
∗

42
,

𝐺
󸀠
(

𝑚

∑
𝑖=1

ℎ̂
∗

𝑖
+

𝑚

∑
𝑖=1

𝑝
∗

𝑖
) + 𝐺

󸀠
(

𝑚

∑
𝑖=1

𝑓
∗

𝑖
)

+𝐻
󸀠
𝑔
∗

𝑚
− (𝛾 + 𝑇𝑐) ∈K

∗

3
,

𝐹
󸀠
(

𝑚

∑
𝑖=1

𝑓
∗

𝑖
) − 𝑇

1
𝑑 ∈K

∗

4
,

𝑚

∑
𝑖=1

ℎ̂
∗

𝑖
∈K
∗

11
, 𝑙̂
∗

𝑚
∈K
∗

21
,

𝑚

∑
𝑖=1

𝑝
∗

𝑖
∈K
∗

12
,

𝑞
∗

𝑚
∈K
∗

22
,

𝑚

∑
𝑖=1

𝑓
∗

𝑖
∈K
∗

1
, 𝑔
∗

𝑚
∈K
∗

2
.

(68)

Hence, (∑𝑚
𝑖=1
ℎ̂∗
𝑖
, 𝑙̂∗
𝑚
, ∑
𝑚

𝑖=1
𝑝∗
𝑖
, 𝑞∗
𝑚
, ∑
𝑚

𝑖=1
𝑓∗
𝑖
, 𝑔∗
𝑚
) is a feasible

solution to CP
2
, and

(𝑇 − 𝑇
1
) 𝑎
󸀠

1
(

𝑚

∑
𝑗=1

ℎ̂
∗

𝑗
) − (𝑇

1
𝑏 − (𝑇 − 𝑇

1
) 𝑏
1
)
󸀠
𝑙̂
∗

𝑚

+ (𝑇 − 𝑇
1
) 𝑎
󸀠

2
(

𝑚

∑
𝑗=1

𝑝
∗

𝑗
) − (𝑇

1
𝑏 − (𝑇 − 𝑇

1
) 𝑏
2
)
󸀠
𝑞
∗

𝑚

+ 𝑇
1
𝑎
󸀠
(

𝑚

∑
𝑗=1

𝑓
∗

𝑗
) + 𝑇

1
𝑏
󸀠
𝑔
∗

𝑚

≥ V (CP
2
) .

(69)
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Putting the above together, we have

V (SCP
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
))) − V (SCP

1
(𝜋 (𝜖
1
, 𝜖
2
)))

≤
1

2𝑚
[ − V (CP

2
) + V (CP

1
) + (𝑇 − 𝑇

1
)

× (𝑏
󸀠

1
𝑙̂
0
+ 𝑏
󸀠

2
𝑞
0
) − 𝑇
1
𝑑
󸀠
𝑥
0
] .

(70)

Hence, we can let

Γ :=
1

2
[ − V (CP

2
) + V (CP

1
) + (𝑇 − 𝑇

1
)

× (𝑏
󸀠

1
𝑙̂
0
+ 𝑏
󸀠

2
𝑞
0
) − 𝑇
1
𝑑
󸀠
𝑥
0
] ,

(71)

and Γ < ∞, since V(CP
1
) < ∞ and V(CP

2
) < ∞ as assumed.

6. The Approximation Algorithm

Proposition 10 and Theorem 11 suggest that we can solve
SSCCP and their dual approximately through solving
their discretized versions, the ordinary conic program
SCP
1
(𝜋(𝜖
1
, 𝜖
2
)) and SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)). The latter is readily

solvable by standard algorithms, for example, SeDuMi [27],
and the (discrete) solution can then be extended into the
piecewise-constant control and piecewise-linear state vari-
ables as a feasible solution to SSCCP. Furthermore, the
explicit error bound in (60) means that we can achieve any
required accuracy by partitions 𝜋(𝜖

1
, 𝜖
2
) and 𝜋󸀠(𝜖

1
, 𝜖
2
) with a

sufficiently large number𝑚 to construct the discretized conic
programs SCP

1
(𝜋(𝜖
1
, 𝜖
2
)) and SCP

2
(𝜋󸀠(𝜖
1
, 𝜖
2
)). Specifically, if

𝛿 is the required accuracy, then we can choose

𝑚 = ⌈
Γ

𝛿
⌉ , (72)

where (refer to the end of the proof of Theorem 11)

Γ :=
1

2
[ − V (𝐶𝑃

2
) + V (𝐶𝑃

1
) + (𝑇 − 𝑇

1
)

× (𝑏
󸀠

1
𝑙̂
0
+ 𝑏
󸀠

2
𝑞
0
) − 𝑇
1
𝑑
󸀠
𝑥
0
] .

(73)

Then, from (59) and (60), we have

V (SSCCP∗) − V (SSCCP) ≤ V (SCP
2
(𝜋
󸀠
(𝜖
1
, 𝜖
2
)))

− V (SCP
1
(𝜋 (𝜖
1
, 𝜖
2
))) ≤

𝑇Γ

𝑚
≤ 𝛿.

(74)

That is, the duality gap is guaranteed to be no greater than 𝛿.
To select 𝑚 following (72), we need to first derive Γ. This

involves solving the two conic programs CP
1
and CP

2
. In

addition, we also need to determine 𝑥
0
, 𝑙̂
0
, and 𝑞

0
.This can be

accomplished by solving the following three conic programs:

max 𝑑
󸀠
𝑥
0

s.t. 𝛼 − 𝐹𝑥
0
∈K
1
,

𝑥
0
∈K
4
,

min 𝑏
󸀠
𝑙̂
0

s.t. 𝐻
󸀠
𝑙̂
0
− ̆𝛾
1
∈K
∗

31
,

𝑙̂
0
∈K
∗

21
,

min 𝑏
󸀠
𝑞
0

s.t. 𝐻
󸀠
𝑞
0
− ̆𝛾
2
∈K
∗

32
,

𝑞
0
∈K
∗

22
.

(75)

Note that the constraints of the above three problems
originate from (14) and (27). Clearly, maximizing 𝑑󸀠𝑥

0
and

minimizing both 𝑏󸀠 𝑙̂
0
and 𝑏󸀠𝑞

0
improve our estimation of the

error bound.
In summary, our algorithm amounts to solving six conic

programming problems: CP
1
, CP
2
, (75), and SCP

1
(𝜋(𝜖
1
, 𝜖
2
)).

Conic programs are known to be polynomially solvable.
Hence, ours is a polynomial-time algorithm.

Of course, with𝑚 increases, the computational burden in
terms of solving the discretized problems increases. However,
the discretized problems are all ordinary conic programming
problem and they are polynomially solvable. There exist soft-
wares (e.g., SeCuMi [27], CVXOPT [28], etc.) which can solve
conic programming problems efficiently. So the increased
computational burden does not really pose a problem in this
algorithm.

7. Conclusion and Future Work

In this paper, we have developed a duality theory for SSCCP,
which is an important extension on SCCP. Specifically, we
have shown that the strong duality between SSCCP and its
dual is implied by two related ordinary conic programs CP

1

and CP
2
being strongly feasible with finite optimal values.

We have also developed a polynomial-time approximation
algorithm that solves SSCCP to any desired accuracy with an
easily computable error bound, based on the strong duality
result.

All these results can be readily generalized for SSCCP
with three or more stages and with finite number of scenarios
in each stage, without essential difficulty.

From Theorem 11, we know that as 𝑚 → ∞, the
duality gap tends to 0, and the optimal objective value of
the discretized conic program V(SCP

1
(𝜋(𝜖
1
, 𝜖
2
))) approaches

the optimal objective value of the original SSCCP. In the
future, we plan to investigate whether the optimal solution
to SCP

1
(𝜋(𝜖
1
, 𝜖
2
)) will also approach the optimal solution to

SSCCP.
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