
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 408048, 9 pages
http://dx.doi.org/10.1155/2013/408048

Review Article
Review on the Research for Separated Continuous Linear
Programming: With Applications on Service Operations

Xiaoqing Wang

Lingnan (University) College, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China

Correspondence should be addressed to Xiaoqing Wang; xqwang1@gmail.com

Received 22 April 2013; Accepted 17 June 2013

Academic Editor: Tsan-Ming Choi

Copyright © 2013 Xiaoqing Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We give a review on the research for a class of optimization model—separated continuous linear programming (SCLP). SCLP takes
several similar forms and can be used to find the dynamic control of a multiclass fluid network. We review the duality theory and
solution methods for it. We also present application examples of SCLP on service operations.

1. Introduction

Linear programming (LP) is probably the most successful
mathematical model in terms of its extremely wide range of
industrial applications and its superb speed and capacity in
solving very large size problems. For this reason, LP has been
pushed and extended to an ever-broadening frontier [1, 2].
One of such frontier extensions is the so-called separated
continuous linear programming(SCLP).

SCLP was first introduced by Anderson [3] who used it to
model the job-shop scheduling problem.The following is the
formulation according to him [3]:

min ∫
𝑇

0

𝑐(𝑡)𝑢 (𝑡) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 ≤ 𝑎 (𝑡) ,

𝐻𝑢 (𝑡) ≤ 𝑏 (𝑡) ,
𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(1)

where 𝑢(𝑡) is the decision variable and is assumed to be a
boundedmeasurable function, 𝑏(𝑡), 𝑐(𝑡) are boundedmeasur-
able functions, and 𝑎(𝑡) is an absolutely continuous function.

𝐺,𝐹,𝐻 are constantmatrices. “” denotes the transpose oper-
ation. The word “separated” here refers to the fact that there
are two kinds of constraints in SCLP: the constraints involv-
ing integration and the instantaneous constraints [3].

There are several other similar formulations of SCLP.
Luo and Bertsimas [4] considered the following more

general SCLP which they called separated continuous linear
programs with side constraints (SCSCLP):

min ∫
𝑇

0

(𝑐(𝑡)𝑢 (𝑡) + 𝑔(𝑡)𝑥 (𝑡)) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 + 𝐸𝑥 (𝑡) ≤ 𝑎 (𝑡) ,

𝐻𝑢 (𝑡) ≤ 𝑏 (𝑡) ,
𝐹𝑥 (𝑡) ≤ ℎ (𝑡) ,
𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(2)

where 𝑢(𝑡), 𝑥(𝑡) are decision variables and are assumed to
be bounded measurable functions, 𝑏(𝑡), 𝑐(𝑡), 𝑔(𝑡), and ℎ(𝑡)
are bounded measurable functions, and 𝑎(𝑡) is an absolutely
continuous function. It is easy to see that when 𝐸, 𝐹 are zero
matrix, and 𝑔(𝑡) = 0 for 𝑡 ∈ [0, 𝑇], (2) is reduced to (1).
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Shapiro [5] considered the following SCLP problem:

min ∫
𝑇

0

𝑐(𝑡)𝑢 (𝑡) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺 (𝑠, 𝑡) 𝑢 (𝑠) 𝑑𝑠 ≤ 𝑎 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝐻 (𝑡) 𝑢 (𝑡) ≤ 𝑏 (𝑡) , a.e. 𝑡 ∈ [0, 𝑇] ,
𝑢 (𝑡) ≥ 0, a.e. 𝑡 ∈ [0, 𝑇] ,

(3)

where 𝑢(𝑡) is the decision variable and is assumed to be a
bounded measurable function, 𝑏(𝑡) and 𝐻(𝑡) are bounded
measurable functions, 𝑐(𝑡) is a Lebesgue integrable function,
𝑎(𝑡) is a continuous function, and 𝐺(𝑠, 𝑡) is a continuous
function such that, for every 𝑠 ∈ [0, 𝑇], it is of bounded
variation as a function of 𝑡 ∈ [0, 𝑇]. It is obvious that if𝐺(𝑠, 𝑡)
and𝐻(𝑡) are constant matrices, (3) is reduced to (1).

In the work of Weiss [6], he introduced the following
SCLP:

max ∫
𝑇

0

((𝛾 + (𝑇 − 𝑡) 𝑐)𝑢 (𝑡) + 𝑑𝑥 (𝑡)) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 + 𝐹𝑥 (𝑡) ≤ 𝛼 + 𝑎𝑡,

𝐻𝑢 (𝑡) ≤ 𝑏,
𝑢 (𝑡) , 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(4)

where 𝑢(𝑡), 𝑥(𝑡) are decision variables and are assumed to
be bounded measurable functions with the measure of the
breakpoint set being 0.

Wang [7] considered the following problem which she
called generalized separated continuous linear programming
(GSCLP):

max ∫
𝑇

0

(𝑐(𝑇 − 𝑡)𝑢 (𝑡) + 𝑑(𝑇 − 𝑡)𝑥 (𝑡)) 𝑑𝑡

s.t. 𝑎 (𝑡) − ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 − 𝐹𝑥 (𝑡) ≥ 0,

𝑏 (𝑡) − 𝐻𝑢 (𝑡) ≥ 0,
𝑢 (𝑡) , 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(5)

where 𝑢(𝑡), 𝑥(𝑡) are decision variables and are assumed to be
bounded measurable functions. 𝑎(𝑡), 𝑐(𝑇 − 𝑡) are piecewise
linear, and 𝑏(𝑡), 𝑑(𝑇 − 𝑡) are piecewise constant function, on
[0, 𝑇]. It is easy to see that when 𝑎(𝑡), 𝑐(𝑡) are linear and 𝑏(𝑡),
𝑑(𝑡) are constant functions, (5) is reduced to (4).

In the recent paper by Nasrabadi et al. [8], they studied
the SCLP with a fuzzy valued objective function which they
called fuzzy separated continuous linear program (FSCLP):

min ∫
𝑇

0

(𝛾 + 𝑡𝑐)𝑢 (𝑡) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑢 (𝑠) 𝑑𝑠 ≤ 𝛼 + 𝑎𝑡,

𝐻𝑢 (𝑡) ≤ 𝑏,
𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] .

(6)

Here, 𝑢(𝑡) is the decision variable and is assumed to be a
bounded measurable function. 𝛾, 𝑐 are constant vectors with
trapezoidal fuzzy numbers as components.

The theoretical results for SCLP are mainly on the duality
theory and solution methods. The application results for
SCLP are on finding the dynamic control of a multiclass
fluid network which canmodel alot of real systems, including
service systems. In this paper, we review both the theoretical
results and the application results for SCLP, with the focus of
application on service operations.

The rest of the paper is organized as follows. In Section 2,
we review the literature on duality theory for SCLP. Section 3
is devoted to the solution methods for SCLP. Application
of SCLP on service operations is discussed in Section 4. We
summarized the current results on SCLP and point out some
future directions in this area in Section 5.

2. Duality Theory

As with finite LP, duality theory for SCLP plays an important
role in the development of solution methods for it. In the
following, we will discuss the results on duality theory for
SCLP according to the formulation of SCLP.

Using essentially the same method as LP’s, Anderson
and Nash [9] derived a dual problem of SCLP (1) as in the
following:

max −∫
𝑇

0

𝑎(𝑡)𝑝 (𝑡) 𝑑𝑡 − ∫
𝑇

0

𝑏(𝑡)𝑞 (𝑡) 𝑑𝑡

s.t. 𝑐 (𝑡) + ∫
𝑇

𝑡

𝐺𝑝 (𝑠) 𝑑𝑠 + 𝐻𝑞 (𝑡) ≥ 0,

𝑝 (𝑡) ≥ 0, 𝑞 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(𝐷1)

where 𝑝(𝑡), 𝑞(𝑡) are the decision variables and are assumed
to be bounded measurable functions. But later on, some
researcher found that for (1) and (𝐷1), there exist such instan-
ces that either the primal or the dual problem has no feasible
or no optimal solution, while the other one has an optimal
solution [10].
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To avoid this difficulty, Pullan [11] introduced another
dual problem of (1) as in the following:

max −∫
𝑇

0

𝑑𝜋 (𝑡) 𝑎 (𝑡) − ∫
𝑇

0

𝑏(𝑡)𝑞 (𝑡) 𝑑𝑡

s.t. 𝑐 (𝑡) − 𝐺𝜋 (𝑡) + 𝐻𝑞 (𝑡) ≥ 0,
𝜋 (𝑡)monotonically increasing and right

continuous on [0, 𝑇] with 𝜋 (𝑇) = 0,
𝑞 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(𝐷1∗)
where𝜋(𝑡), 𝑞(𝑡) are the decision variables and 𝑞(𝑡) is assumed
to be a Lebesgue integrable function on [0, 𝑇].

Pullan [12] developed an account of duality theory for (1)
and (𝐷1∗). He introduced the definition of complementary
slackness for (1) and (𝐷1∗) and proved that if 𝑢(𝑡) is
feasible for (1) and (𝜋(𝑡), 𝑞(𝑡)) is feasible for (𝐷1∗), when
(𝜋(𝑡), 𝑞(𝑡)) complementary slack with 𝑢(𝑡), 𝑢(𝑡) is optimal
for (1) and (𝜋(𝑡), 𝑞(𝑡)) is optimal for (𝐷1∗). He also derived
several sufficient conditions for the optimality of (1), the
conditions for no duality gap between (1) and (𝐷1∗), and
the conditions under which (𝐷1∗) has an optimal solution.
Finally, he proved that strong duality holds between (1)
and (𝐷1∗) and that there exist piecewise analytic optimal
solutions for both (1) and (𝐷1∗) under the assumptions that
𝑎(𝑡), 𝑏(𝑡) and 𝑐(𝑡) are piecewise analytic and 𝑎(𝑡) is also
continuous.

Luo and Bertsimas [4] formulated the dual problem of (2)
as follows:

max −∫
𝑇

0

𝑎(𝑡)𝑑𝜋 (𝑡) − ∫
𝑇

0

ℎ(𝑡)𝑑𝑝 (𝑡)

− ∫
𝑇

0

𝑏(𝑡)𝑞 (𝑡) 𝑑𝑡

s.t. 𝑐 (𝑡) − 𝐺𝜋 (𝑡) + 𝐻𝑞 (𝑡) ≥ 0,

𝐸𝜋 (𝑡) + 𝐹𝑝 (𝑡) = ∫
𝑇

𝑡

𝑔 (𝑡) 𝑑𝑡,

𝜋 (𝑡) bounded measurable with

finite variation, 𝜋 (𝑇) = 0,
𝑝 (𝑡) monotonically increasing and right

continuous on [0, 𝑇] with 𝑝 (𝑇) = 0,
𝑞 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(𝐷2)

where 𝜋(𝑡), 𝑝(𝑡), 𝑞(𝑡) are decision variables and 𝑞(𝑡) is
assumed to be a bounded measurable function on [0, 𝑇].

When 𝐸, 𝐹 are zero matrices and 𝑔(𝑡) = 0 for 𝑡 ∈ [0, 𝑇],
(𝐷2) is reduced to (𝐷1∗).

They showed that there is no duality gap between (2)
and (𝐷2) under the following assumptions: 𝑎(𝑡) and ℎ(𝑡) are
continuous; 𝑎(𝑡), 𝑐(𝑡) and ℎ(𝑡) are piecewise linear; 𝑏(𝑡) and
𝑔(𝑡) are piecewise constant; (2) is feasible and its objective
value is bounded from below.

Shapiro [5] derived the Lagrangian dual of (3) as follows:

max −∫
𝑇

0

𝑎(𝑡)𝑑𝜋 (𝑡) − ∫
𝑇

0

𝑏(𝑡)𝑞 (𝑡) 𝑑𝑡

s.t. 𝑐 (𝑡) − 𝐺(𝑡, 𝑡)𝜋 (𝑡)

− ∫
𝑇

𝑡

(𝑑𝐺 (𝑡, 𝑠))𝜋 (𝑠) + 𝐻(𝑡)𝑞 (𝑡) ≥ 0,

𝑞 (𝑡) ≥ 0, a.e. 𝑡 ∈ [0, 𝑇] ,
𝜋 (𝑡) monotonically nondecreasing, right
continuous with bounded variation

on [0, 𝑇] with 𝜋 (𝑇) = 0,
(𝐷3)

where 𝜋(𝑡), 𝑞(𝑡) are decision variables and 𝑞(𝑡) is assumed to
be a Lebesgue integrable function. When𝐺(𝑠, 𝑡) and𝐻(𝑡) are
constant matrices, (𝐷3) is reduced to (𝐷1∗).

Shapiro proved that if the feasible region of (3) is
nonempty, the matrix𝐻(𝑡) is constant, and the set

{𝑢 (𝑡) : 𝐻𝑢 (𝑡) ≤ 𝑏 (𝑡) , 𝑢 (𝑡) ≥ 0, a.e. 𝑡 ∈ [0, 𝑇]} (7)

is bounded, then the optimal objective value of (3) and (𝐷3)
are the same, and there exists an optimal solution for (3).

Weiss [6] gave the following dual of (4):

min ∫
𝑇

0

((𝛼 + (𝑇 − 𝑡) 𝑎)𝑝 (𝑡) + 𝑏𝑞 (𝑡)) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑝 (𝑠) 𝑑𝑠 + 𝐻𝑞 (𝑡) ≥ 𝛾 + 𝑐𝑡,

𝐹𝑝 (𝑡) ≥ 𝑑,
𝑝 (𝑡) , 𝑞 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(𝐷4)
where 𝑝(𝑡), 𝑞(𝑡) are decision variables and are assumed to
be bounded measurable functions. Note that in this dual
problem, the time is running back, that is, here 𝑡 is 𝑇 − 𝑡 in
the primal problem.

Weiss introduced the following Boundary-LP, Boundary-
LP∗, Rates-LP(𝐾, 𝐽), and Rates-LP∗(𝐾, 𝐽).
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Boundary-LP

max 𝑑𝑥0

s.t. 𝐹𝑥0 ≤ 𝛼,
𝑥0 ≥ 0,

(8)

Boundary-LP∗

min 𝑏𝑞𝑁

s.t. 𝐻𝑞𝑁 ≥ 𝛾,
𝑞𝑁 ≥ 0,

(9)

Rates-LP(𝐾, 𝐽)

max [𝑐 0] 𝑢 + [0 𝑑] �̇�
s.t. [𝐺 0] 𝑢 + [𝐼 𝐹] �̇� = 𝑎,

[𝐻 𝐼] 𝑢 = 𝑏,
�̇�
𝑘
≥ 0 for 𝑘 ∉ 𝐾,

𝑢
𝑗
= 0 for 𝑗 ∈ 𝐽,

𝑢
𝑗
≥ 0 for 𝑗 ∉ 𝐽,

(10)

Rates-LP∗(𝐾, 𝐽)

min [𝑎 0] 𝑝 + [0 𝑏] ̇𝑞
s.t. [𝐺 0] 𝑝 + [−𝐼 𝐻] ̇𝑞 = 𝑐,

[𝐹 − 𝐼] 𝑝 = 𝑑,
̇𝑞
𝑗
≥ 0 for 𝑗 ∉ 𝐽,

𝑝
𝑘
= 0 for 𝑘 ∈ 𝐾,

𝑝
𝑘
≥ 0 for 𝑘 ∉ 𝐾,

(11)

where 𝐾, 𝐽 are the subsets of the subscripts for
𝑥(𝑡)(𝑝(𝑡)), 𝑢(𝑡)(𝑞(𝑡)) in (4), respectively. Weiss proved
that strong duality holds between (4) and (𝐷4) under
Assumption 1.

Assumption 1.

(i) TheBoundary-LP/LP∗ have a solution𝑥0, 𝑞𝑁. Denote
𝐾
0
= {𝑘 : 𝑥0

𝑘
> 0}, 𝐽

𝑁
= {𝑗 : 𝑞𝑁

𝑗
> 0}.

(ii) The Rates-LP(0, 𝐽
𝑁
) and the Rates-LP∗(𝐾

0
, 0) are

both feasible.

Wang [7] considered the following dual of (5):

min ∫
𝑇

0

(𝑎(𝑇 − 𝑡)𝑝 (𝑡) + 𝑏(𝑇 − 𝑡)𝑞 (𝑡)) 𝑑𝑡

s.t. ∫
𝑡

0

𝐺𝑝 (𝑠) 𝑑𝑠 + 𝐻𝑞 (𝑡) − 𝑐 (𝑡) ≥ 0,

𝐹𝑝 (𝑡) − 𝑑 (𝑡) ≥ 0,
𝑝 (𝑡) , 𝑞 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] ,

(𝐷5)

where 𝑝(𝑡), 𝑞(𝑡) are decision variables and are assumed to
be bounded measurable functions. When 𝑎(𝑡), 𝑐(𝑡) are linear
𝑏(𝑡), 𝑑(𝑡) are constant functions, (𝐷5) is reduced to (𝐷4).

Wang [7] proved that strong duality holds between (5)
and (𝐷5) under Assumption 2.

Assumption 2. The following two ordinary linear program-
ming problems have optimal solutions:

min ((𝑇 − 𝑇1) 𝑎2𝑇
1
𝑎
1

)


𝑝 + ((𝑇 − 𝑇1) 𝑏2 − 𝑇1𝑏1𝑇
1
𝑏
1

)


𝑞

s.t. (𝐺


𝐺 𝐺)𝑝 + (
𝐻

𝐻) 𝑞

− ( 𝛾 + (𝑇 − 𝑇
1
) 𝑐
1𝛾 + (𝑇 − 𝑇

1
) 𝑐
1
+ 𝑇
1
𝑐
2

) ≥ 0,

(𝐹


𝐹)𝑝 − (
(𝑇 − 𝑇

1
) 𝑑
1𝑇

1
𝑑
2

) ≥ 0,

𝑝, 𝑞 ≥ 0,

max ((𝑇 − 𝑇1) 𝑐1𝑇
1
𝑐
2

)


𝑢 + ( (𝑇 − 𝑇
1
) 𝑑
1𝑇

1
𝑑
2
− (𝑇 − 𝑇

1
) 𝑑
1

)


𝑥

s.t. (𝛼 + 𝑇1𝑎1 + (𝑇 − 𝑇1) 𝑎2𝛼 + 𝑇
1
𝑎
1

)

− (𝐺 𝐺
𝐺)𝑢 − (

𝐹
𝐹)𝑥 ≥ 0,

((𝑇 − 𝑇1) 𝑏2𝑇
1
𝑏
1

) − (𝐻 𝐻)𝑢 ≥ 0,

𝑢, 𝑥 ≥ 0.

(12)

Nasrabadi et al. [8] consider the following dual problem
of (6):

max −∫
𝑇

0

(𝛼 + 𝑡𝑎) 𝑑�̃�(𝑡) − ∫
𝑇

0

𝑏𝑞 (𝑡) 𝑑𝑡

s.t. 𝛾 + 𝑡𝑐 − 𝐺�̃� (𝑡) + 𝐻𝑞 (𝑡) ≥𝑅 0,
�̃� (𝑡) is trapezoidal fuzzy number-valued,
monotonically increasing, and right continuous
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on [0, 𝑇] with �̃� (𝑇) = 0,
𝑞 (𝑡) is Lebesgue-integrable and

trapezoidal fuzzy numbervalued,
(𝐷6)

where �̃�(𝑡), 𝑞(𝑡) are decision variables and 𝑅 denotes any
arbitrary, but fixed, linear-ranking function.

They proved that strong duality holds between (6) and
(𝐷6) with respect to 𝑅 under the assumption that (6) has an
optimal solution.

3. Solution Methods

One of the motivations for studying SCLP is that under some
assumptions, the solution for SCLP has some nice forms. In
the following, we introduce the results in the form of the
optimal solution for SCLP under various assumptions in the
first subsection; we present the algorithms for solving SCLP
problem in the second to fourth subsections.

3.1. The Form of the Optimal Solution for SCLP. Anderson
et al. [13] pointed out that if the feasible region for (1)
is nonempty and bounded, then (1) is solvable and there
exists an extreme point optimal solution for (1). Furthermore,
if 𝑎(𝑡), 𝑐(𝑡) are piecewise linear, with 𝑎(𝑡) also absolutely
continuous, and 𝑏(𝑡) is piecewise constant, then (1) has an
optimal solution in which 𝑢(𝑡) is piecewise constant on [0, 𝑇].

Anderson and Philpott [14] continued to study this issue
and proved that when 𝑎(𝑡) and 𝑏(𝑡) are piecewise analytic (but
with 𝑎(𝑡) continuous) and 𝑐(𝑡) is piecewise constant on [0, 𝑇],
if the set {𝑢(𝑡) : 𝐻𝑢(𝑡) ≤ 𝑏(𝑡), 𝑢(𝑡) ≥ 0} is bounded for each
𝑡 ∈ [0, 𝑇] and the feasible region for (1) is nonempty, then
there exists an optimal solution for (1) with 𝑢(𝑡) piecewise
analytic on [0, 𝑇].

Pullan [15] proved that if 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) are piecewise
analytic on [0, 𝑇], with 𝑎(𝑡) also continuous, when the feasible
region for (1) is nonempty and bounded, there exists an
optimal extreme point solution for (1) with 𝑢(𝑡) piecewise
analytic on [0, 𝑇]. Furthermore, if 𝑎(𝑡) is piecewise linear and
𝑏(𝑡) is piecewise constant on [0, 𝑇], there exists an optimal
extreme point solution for (1) with 𝑢(𝑡) piecewise constant on
[0, 𝑇].

Note that the results of [11, 12] do not guarantee an opti-
mal solution of the appropriate form that is also an extreme
point; the results in [15] do guarantee such a solution.

Luo andBertsimas [4] showed that there exists an optimal
solution for (𝐷2) that is piecewise linear under the following
assumption: 𝑎(𝑡) and ℎ(𝑡) are continuous; 𝑎(𝑡), 𝑐(𝑡) and ℎ(𝑡)
are piecewise linear; 𝑏(𝑡) and 𝑔(𝑡) are piecewise constant; (2)
is feasible and its objective value is bounded from below.
Furthermore, there exists a bounded measurable optimal
solution for (2) if and only if the algorithm they suggested
terminates with such a solution. Also, when the feasible
region for (2) is bounded and 𝐸 is an identity matrix, there
exists an optimal solution in which 𝑢(𝑡) is piecewise constant.

Weiss [6] proved that under Assumption 1, (4) and (𝐷4)
possess complementary slack optimal primal and dual solu-
tions, with continuous piecewise linear 𝑥(𝑡), 𝑞(𝑡) and piece-
wise constant 𝑢(𝑡), 𝑝(𝑡).

Wang [7] proved that under Assumption 2, there exist
optimal solutions for (5) in which 𝑢(𝑡) is piecewise constant
and 𝑥(𝑡) is piecewise linear, or there exist a series of feasible
solutions for (5) in which 𝑢(𝑡) is piecewise constant and 𝑥(𝑡)
is piecewise linear and whose objective values converge to the
optimal objective value of (5).

Nasrabadi et al. [8] proved that under the assumption
that the feasible region for (6) is bounded and nonempty,
there exist optimal solutions for (6) in which 𝑢(𝑡) is piecewise
constant and 𝑥(𝑡) is piecewise linear, or there exist a series of
feasible solutions for (6) in which 𝑢(𝑡) is piecewise constant
and 𝑥(𝑡) is piecewise linear and whose objective values
converge to the optimal objective value of (6).

3.2. Simplex-Like Methods for Solving SCLP Problem. Based
on the duality theory and results on the forms of the optimal
solutions for SCLP, several methods are proposed to solve
SCLP exactly or approximately. Most of these algorithms
fall in one of two categories: simplex-like and discretization
based. In this subsection, we will discuss the simplex-like
methods.The discretization methods will be discussed in the
next subsection.

Anderson and Philpott [16] developed the so-called
continuous-time network simplex algorithm to solve a kind
of continuous network program which can be formulated
as (1) with piecewise linear 𝑎(𝑡) and 𝑐(𝑡), with 𝑎(𝑡) being
absolutely continuous, and piecewise constant 𝑏(𝑡). This is
the first algorithm which was implemented in a computer to
solve (1). Unfortunately, there is no convergence guarantee for
this algorithm, and it often produces a sequence of solutions
which converge to a suboptimal solution [17].

Pullan [18] proposed a simplex-like algorithm to solve
(1) with piecewise linear and continuous 𝑎(𝑡), piecewise
constant 𝑏(𝑡), and piecewise analytic 𝑐(𝑡). Again, there is no
convergence guarantee for this algorithm.

In the recent work of Weiss [6], he proposed a simplex-
like algorithm to solve (4) under Assumptions 1 and 3 as
follows.

Assumption 3. The column [ 𝑎𝑏 ] is in general position to the
matrix [ 𝐺 𝐹 𝐼 0

𝐻 0 0 𝐼
], and the column [ 𝑐𝑑 ] is in general position

to the matrix [ 𝐺 𝐻 −𝐼 0
𝐹

0 0 −𝐼

].
The Weiss algorithm is a parametric and recursive algo-

rithm: start from an optimal solution valid at 𝑇 = 0 and con-
struct the optimal solution valid at 𝑇 ∈ [𝜃𝑟−1𝑇, 𝜃𝑟𝑇], where
𝑟 = 1, . . . , 𝑅 and 0 = 𝜃0 < 𝜃1 < ⋅ ⋅ ⋅ < 𝜃𝑅 = 1, and finally,
reach the optimal solution at 𝑇. Going from optimal solution
valid at 𝑇 ∈ [𝜃𝑟−1𝑇, 𝜃𝑟𝑇] to that valid at 𝑇 ∈ [𝜃𝑟𝑇, 𝜃𝑟+1𝑇]
constitutes the pivot operation of SCLP, which involves solv-
ing several Rates-LP and Rates-LP∗ and/or solving several
subproblems of original SCLP (4) which are themselves
SCLP’s with smaller size than that of (4).

Weiss managed to prove that the number of SCLP pivots
needed to solve (4) is finite but increase exponentially with
the problem size.
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3.3. Discretization-Based Methods for Solving SCLP Problem.
There are two kinds of discretization-based methods, one is
solving a sequence of discretization problems for SCLP and
terminated with some predefined criteria; the other is solving
a specific instance of discretization problems for SCLP and
terminated with the solution with some pre-defined preci-
sion.

Pullan [19] proposed an algorithm to solve (1) with piece-
wise linear 𝑎(𝑡), 𝑐(𝑡), with 𝑎(𝑡) also absolutely continuous, and
piecewise constant 𝑏(𝑡). He formulated a new discretization
for (1) which is a finite LP problem (there is another dis-
cretization problem for (1) called the standard discretization
for (1) which is also a finite LP problem. The later was used
before in the context of CLP in, e.g., [20, 21]). Based on
the relationship between (1), (𝐷1∗), and the discretization
problems he introduced, a feasible solution for (1) is obtained
with 𝑢(𝑡) piecewise constant in [0, 𝑇].Then, in each iteration,
the existing feasible solution for (1) is used together with the
solution for the discretization he introduced to produce a
new feasible solution with the strictly improving objective
value. The number of the breakpoints in the new feasible
solution is tripled. This process continues until an optimal
solution is found or the resulting feasible solution is within
a predescribed limit. The algorithm either terminates in a
finite number of iterations with an optimal solution, or the
objective values of the resulting feasible iterative solutions
converge to the optimal objective value of (1).

Following Pullan’s work, Philpott and Craddock [17] pro-
posed a similar algorithm for (1). The main difference bet-
ween their algorithmandPullan’s is in the criterion for adding
breakpoints in producing the new feasible solution. After
each iteration, the number of breakpoints in the new feasible
solution Philpott and Craddock [17] produced is at most
doubled.

Luo and Bertsimas [4] provided an algorithm to solve (2)
under the assumptions that 𝑎(𝑡) and ℎ(𝑡) are continuous; 𝑎(𝑡),
𝑐(𝑡) and ℎ(𝑡) are piecewise linear; 𝑏(𝑡) and 𝑔(𝑡) are piecewise
constant; (2) is feasible and its objective value is bounded
from below.Themain idea of their algorithm is similar to that
of Pullan [19] and Philpott and Craddock [17] for (1).The key
difference is that in Pullan [19] and Philpott and Craddock
[17], at each iteration, the breakpoints in [0, 𝑇] are fixed so
that the discretization problem for (1) is an LP problem; In
this algorithm, the breakpoints of [0, 𝑇] are also a decision
variable (although the number of the breakpoints is fixed), so
the discretization problem for (2) is a (in general) nonconvex
quadratic programming problem. In each iteration, this non-
convex quadratic programming problem is solved to get a
KKT solution. The series of KKT points obtained have non-
increasing objective value. These KKT solutions are used to
construct a sequence of feasible solutions for (2) with piece-
wise constant 𝑢(𝑡), and the objective values of these feasible
solutions converge to the optimal objective value of (2). If
the feasible region for (2) is bounded and 𝐸 is the identity
matrix, the algorithm produces an optimal solution for (2)
with piecewise constant 𝑢(𝑡).

Nasrabadi et al. [8] proposed an algorithm to solve (6)
under the assumption that the feasible region for (6) is
bounded and nonempty. Their algorithm is the counterpart

of Pullan’s algorithm [19] for solving (6). After each iteration,
their algorithm constructs a new feasible solution for (6) with
the number of breakpoints doubled.

All the discretization-based algorithmswe have discussed
so far solve a sequence of discretization problems for SCLP
until the optimal solution is obtained or some pre-defined
criteria are met. However, the following two algorithms only
solve a specific instance of the discretization problem for
SCLP and get a feasible solution with pre-defined quality.

The first of these algorithms is proposed by Fleischer and
Sethuraman [22]. Their algorithm is used to solve a special
case of multicommodity flow problem with holding costs
(MHC) which can be written as (2) with 𝑥(𝑇) = 0, and 𝑎(𝑡),
𝑏(𝑡), 𝑐(𝑡), 𝑔(𝑡), ℎ(𝑡) are nonnegative constant vectors, and 𝐸
is the identity matrix, with the assumption that the objective
value of this (2) is bounded below by 0. It is not known if there
is any optimal solution for this problem because the solution
set of this problem may not be bounded. By analyzing the
properties of the objective function, they introduced a dis-
cretization problem (which is an LP problem) with two given
constants 𝜀 > 0 and𝜎 > 0. Solving this discretization problem
is essentially finding a minimum cost flow in the time-
expanded network of the original network. This algorithm
will produce a feasible solution with the objective value (1 +
𝜀)opt + 𝛿, where opt is the optimal objective value of the
original problem. The time complexity of this algorithm is
polynomial in the input network, 1/𝜀 and log (1/𝛿) > 0.

The second of these algorithms is proposed by Wang [7].
The pre-defined error bound between the objective value of
the required solution and the optimal objective solution for
(5) is denoted as 𝛿. By analyzing the relationship between the
discretizations for (5) and 𝛿, one specific discretization prob-
lem for (5) is solved and the solution obtained is used to
construct a feasible solution for (5) with piecewise constant
𝑢(𝑡) and piecewise linear 𝑥(𝑡). The difference between the
objective value of this feasible solution and the optimal
objective solution for (5) is bounded by 𝛿.

3.4. Other Methods for Solving the SCLP Problem. There are
still some solution methods for solving SCLP which do not
fall in the previous two categories.

Chen and Yao [23] developed a myopic approach to solve
the SCLP by solving a sequence of LP’s over time. They
gave sufficient conditions under which the myopic approach
results in an optimal solution. They also showed that for the
so-called Klimov’s model—amulticlass network with a single
server—this approach leads to the same priority policy as in
Klimov’s original stochastic setting, which is known as the
Gittins index rule.

Avram et al. [24] solve (1) with linear 𝑎(𝑡), 𝑐(𝑡) and con-
stant 𝑏(𝑡) by heuristic method. By using Pontryagin’s max-
imum principle, they show that the optimal solution is the
threshold type control. They proposed an algorithm that first
decomposes the original problem into several very small size
problems and uses maximum principle to derive the exact
optimal solutions for these problems; the solutions obtained
are then combined to construct an approximate solution for
the original problems.
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4. Application on Service Operations

SCLP has in recent years attracted considerable research
attention in the field of stochastic networks. The multiclass
stochastic network is a system that consists of different classes
(types) of jobs which need to be processed and a set of servers
which process the jobs. Jobs arrive to the system randomly or
according to some probability distribution. Each server can
process one or more classes of jobs, and the processing time
for each server to process one job is different for different
classes of jobs.The jobs in the same class have the same char-
acteristics such as arrival rate and service requirements After
one job is processed in one server, it may leave the network
instantaneously or may become another class of jobs and go
to another server for processing. The multiclass stochastic
network is a very useful model for many real systems. For
example, it can model the supply chain in which different
products are delivered [25]. It can model the hub-and-spoke
network in airline systems with crowdedness or congestion
in the system [26]. It also can model the operations of call
centers with interactive voice response [27]. It can also model
health units with many patients in them [28].

For each multiclass stochastic network, there is a corre-
sponding deterministic fluid network, which takes only the
first-order data (means and rates) from the stochastic model
and assumes that the jobs circulating in the network are
continuous flows instead of discrete units. With appropriate
scaling, the fluid network is a limit of the stochastic network,
in the sense of strong law of large numbers (refer to, e.g., [29]).
Furthermore, the fluid model has played a central role in
studying the stability of stochastic networks [30]. Because of
these developments, the real-time control (dynamic schedul-
ing) of a stochastic network, which is itself a quite intractable
problem, can be turned into the control of a corresponding
fluid network, and the latter problem takes exactly the form
of SCLP.

Although the most applications of SCLP mentioned in
the literature are in the manufacturing system, they do have
some applications in service systems which we will present
in the next two subsections. Note that these applications are
for the corresponding fluid networks instead of the original
networks.

4.1. Optimal Dynamic Routing (Evacuation) in Communica-
tion Networks. Hajek and Ogier [31] considered a single des-
tination communication network Φ = (𝑉,𝐴, c, 𝑑), where
(𝑉, 𝐴) is a finite directed graph with a set 𝑉 of nodes and a
set 𝐴 of links. 𝐴 ⊂ 𝑉 × 𝑉, 𝑑 is the destination node, and
𝑐 = (𝑐

𝑙
: 𝑙 ∈ 𝐴) is a capacity assignment vector, 𝑐

𝑙
≥ 0 for

every link 𝑙.
For each node 𝑖 in 𝑉, let 𝑥

𝑖
(𝑡) denote the amount of traf-

fic at node 𝑖 at time 𝑡. A demand for the network is a
pair (𝑥(0), 𝑟) where 𝑥

𝑖
(0) denotes the (non-negative) initial

amount of traffic at node 𝑖 and 𝑟
𝑖
denotes the (non-negative)

rate of traffic arriving at node 𝑖 from outside the network. By
convention, 𝑥

𝑑
(𝑡) = 𝑟

𝑑
= 0 for all 𝑡 ≥ 0. Since the input

rates 𝑟
𝑖
are not time varying, if the total delay is finite for

some control, then it is possible to empty each of the nodes

in finite time. Let 𝑇 denote such a time point that 𝑥(𝑇) = 0.
Let 𝑢
𝑙
(𝑡) denote the instantaneous flow on link 𝑙 at time 𝑡;

the problem is finding a measurable function 𝑢(𝑡), such that
the total waiting time in the network incurred by all traffic is
minimized.

For every 𝑖 ∈ 𝑉, let 𝐸(𝑖) denote the collection of nodes 𝑗
such that (𝑖, 𝑗) ∈ 𝐴; let 𝐼(𝑖) denote the collection of nodes 𝑘
such that (𝑘, 𝑖) ∈ 𝐴.

The problem can be formulated as follows:

min ∫
𝑇

0

∑
𝑖∈𝑁−𝑑

𝑥
𝑖 (𝑡) 𝑑𝑡

s.t. �̇�
𝑖 (𝑡) = 𝑟𝑖 − ∑

𝑗∈𝐸(𝑖)

𝑢
𝑖𝑗 (𝑡)

+ ∑
𝑘∈𝐼(𝑖)

𝑢
𝑘𝑖 (𝑡) , 𝑖 ∈ 𝑉,

𝑢
𝑙 (𝑡) ≤ 𝑐𝑙, 𝑙 ∈ 𝐴,
𝑢
𝑙 (𝑡) ≥ 0, 𝑥

𝑖 (𝑡) ≥ 0.

(13)

By integration on both sides of the first constraint from [0, 𝑇],
it is easy to see that this is a special case of SCLP (4).

4.2. AdmissionControl andDynamic Routing for the Telephone
Loss Network. Luo [32] considered a telephone loss network
defined on a complete digraph 𝐺 = (𝑉,𝐴), with 𝑉 =
{1, 2, . . . , 𝑛} and𝐴 = {(𝑖, 𝑗), 𝑖 ̸= 𝑗}, that is, this network consists
of 𝑛 different locations 𝑖 = 1, . . . , 𝑛 and 𝑛 × (𝑛 − 1) different
links (𝑖, 𝑗), for 𝑖 ̸= 𝑗. At time 0, there are some initial calls
in the network. From each 𝑖, calls to 𝑗 arise at a rate of 𝜆

𝑖𝑗
,

and the duration of each is 1/𝜇. Calls will either be accepted
or rejected. If a call from 𝑖 to 𝑗 is accepted, it generates
reward 𝑤

𝑖𝑗
and can either be routed directly to 𝑗 through

the link (𝑖, 𝑗) or be routed through (𝑖, 𝑘) to a third location
𝑘 and then from 𝑘 to 𝑗 through (𝑘, 𝑗). There are no other
alternative routes, and once a call is accepted, it cannot be
interrupted. Every link (𝑖, 𝑗) has a capacity of 𝑐

𝑖𝑗
switching

circuits. Every call consumes one switching circuit on every
link it uses. If a call from 𝑖 to 𝑗 is rejected, a penalty of V

𝑖𝑗
is

incurred.
For any 𝑖 ̸= 𝑗 and 𝑘 ̸= 𝑗, let 𝑥

𝑖𝑘𝑗
(𝑡) be the number of calls at

time 𝑡 in the network that are routed from 𝑖 to 𝑗 through 𝑘,
and let 𝑥

𝑖𝑖𝑗
(𝑡) be the number of calls at time 𝑡 that are routed

directly from 𝑖 to 𝑗. For any 𝑖 ̸= 𝑗 and 𝑘 ̸= 𝑗, let 𝑢
𝑖𝑘𝑗
(𝑡) be the

control variable that represents the rate at which calls made
at time 𝑡 from 𝑖 to 𝑗 through 𝑘, and let 𝑢

𝑖𝑖𝑗
(𝑡) be the rate at

which calls made at time 𝑡 are routed directly from 𝑖 to 𝑗. The
problem is to decide whether to accept a call, and if we accept
it, how are we going to route it, so that the net revenue (the
sum of the weighted rewards of accepted calls less the penalty
for lost calls) is maximized over a period of time [0, 𝑇].
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The problem can be formulated as follows:

max ∫
𝑇

0

(∑
𝑖,𝑗

𝑤
𝑖𝑗
∑
𝑘

𝑥
𝑖𝑘𝑗 (𝑡)

−∑
𝑖,𝑗

V
𝑖𝑗
(𝜆
𝑖𝑗
−∑
𝑘

𝑢
𝑖𝑘𝑗 (𝑡)))𝑑𝑡

s.t. 𝑥
𝑖𝑘𝑗 (𝑡) = 𝑥𝑖𝑘𝑗 (0)

+ ∫
𝑡

0

(𝑢
𝑖𝑘𝑗 (𝑡) − 𝜇𝑥𝑖𝑘𝑗 (𝑡)) 𝑑𝑡, 𝑖 ̸= 𝑗, 𝑘 ̸= 𝑗

∑
𝑘 ̸= 𝑗

𝑢
𝑖𝑘𝑗 (𝑡) ≤ 𝜆𝑖𝑗, 𝑖 ̸= 𝑗

∑
𝑘 ̸= 𝑗

𝑥
𝑘𝑖𝑗 (𝑡) + ∑

𝑗 ̸= 𝑘,𝑖 ̸= 𝑘

𝑥
𝑖𝑗𝑘 (𝑡) ≤ 𝑐𝑖𝑗, 𝑖 ̸= 𝑗

𝑥 (𝑡) , 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] .

(14)

With a slight abuse of notation, define 𝑥
𝑖𝑘𝑗
(𝑡) = 𝑥

𝑖𝑘𝑗
(𝑡)𝑒𝜇𝑡

and 𝑢
𝑖𝑘𝑗
(𝑡) = 𝑢

𝑖𝑘𝑗
(𝑡)𝑒𝜇𝑡. This problem can be reformulated as

follows:

max ∫
𝑇

0

(𝑒−𝜇𝑡V𝑢 (𝑡) + 𝑒−𝜇𝑡𝑤𝑥 (𝑡)) 𝑑𝑡
s.t. 𝑥

𝑖𝑘𝑗 (𝑡) = 𝑥𝑖𝑘𝑗 (0)

+ ∫
𝑡

0

𝑢
𝑖𝑘𝑗 (𝑡) 𝑑𝑡, 𝑖 ̸= 𝑗, 𝑘 ̸= 𝑗

∑
𝑘 ̸= 𝑗

𝑢
𝑖𝑘𝑗 (𝑡) ≤ 𝑒𝜇𝑡𝜆𝑖𝑗, 𝑖 ̸= 𝑗

∑
𝑘 ̸= 𝑗

𝑥
𝑘𝑖𝑗 (𝑡) + ∑

𝑗 ̸= 𝑘,𝑖 ̸= 𝑘

𝑥
𝑖𝑗𝑘 (𝑡) ≤ 𝑒𝜇𝑡𝑐𝑖𝑗, 𝑖 ̸= 𝑗

𝑥 (𝑡) , 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] .

(15)

It is easy to see that this is an SCLP (2).

5. Conclusion

In this paper, we give a review on the research for SCLP.
Several formulations of SCLP are presented, along with the
related duality theory and solution method. Most results on
duality theory provide the conditions under which SCLP
has strong duality or has optimal solution. Most solution
methods for SCLP fall in two categories: simplex-like and
discretization based. The simplex-like method can get the
exact optimal solution but is very time consuming; the dis-
cretization based methods are quite fast but can only get the
approximate solutions in most cases.

There are still some problems needed to address in the
future. For example, how to perform the sensitivity analysis
for SCLP? How to define the robust SCLP? As the parameters
in SCLP may not be able to get accurately in practice, the
results of these research directions will definitely help to
enlarge the range of the applications of SCLP.
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