245 research outputs found

    How fast do radial basis function interpolants of analytic functions converge?

    Get PDF
    The question in the title is answered using tools of potential theory. Convergence and divergence rates of interpolants of analytic functions on the unit interval are analyzed. The starting point is a complex variable contour integral formula for the remainder in RBF interpolation. We study a generalized Runge phenomenon and explore how the location of centers and affects convergence. Special attention is given to Gaussian and inverse quadratic radial functions, but some of the results can be extended to other smooth basis functions. Among other things, we prove that, under mild conditions, inverse quadratic RBF interpolants of functions that are analytic inside the strip ∣Im(z)∣<(1/2ϵ)|Im(z)| < (1/2\epsilon), where ϵ\epsilon is the shape parameter, converge exponentially

    On the constrained mock-Chebyshev least-squares

    Full text link
    The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phenomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes whose elements mimic as well as possible the Chebyshev-Lobatto points. In this work we use the simultaneous approximation theory to combine the previous technique with a polynomial regression in order to increase the accuracy of the approximation of a given analytic function. We give indications on how to select the degree of the simultaneous regression in order to obtain polynomial approximant good in the uniform norm and provide a sufficient condition to improve, in that norm, the accuracy of the mock-Chebyshev interpolation with a simultaneous regression. Numerical results are provided.Comment: 17 pages, 9 figure

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented
    • …
    corecore