42,686 research outputs found

    New acceleration technique for the backpropagation algorithm

    Full text link
    Artificial neural networks have been studied for many years in the hope of achieving human like performance in the area of pattern recognition, speech synthesis and higher level of cognitive process. In the connectionist model there are several interconnected processing elements called the neurons that have limited processing capability. Even though the rate of information transmitted between these elements is limited, the complex interconnection and the cooperative interaction between these elements results in a vastly increased computing power; The neural network models are specified by an organized network topology of interconnected neurons. These networks have to be trained in order them to be used for a specific purpose. Backpropagation is one of the popular methods of training the neural networks. There has been a lot of improvement over the speed of convergence of standard backpropagation algorithm in the recent past. Herein we have presented a new technique for accelerating the existing backpropagation without modifying it. We have used the fourth order interpolation method for the dominant eigen values, by using these we change the slope of the activation function. And by doing so we increase the speed of convergence of the backpropagation algorithm; Our experiments have shown significant improvement in the convergence time for problems widely used in benchmarKing Three to ten fold decrease in convergence time is achieved. Convergence time decreases as the complexity of the problem increases. The technique adjusts the energy state of the system so as to escape from local minima

    Truncated Variational EM for Semi-Supervised Neural Simpletrons

    Full text link
    Inference and learning for probabilistic generative networks is often very challenging and typically prevents scalability to as large networks as used for deep discriminative approaches. To obtain efficiently trainable, large-scale and well performing generative networks for semi-supervised learning, we here combine two recent developments: a neural network reformulation of hierarchical Poisson mixtures (Neural Simpletrons), and a novel truncated variational EM approach (TV-EM). TV-EM provides theoretical guarantees for learning in generative networks, and its application to Neural Simpletrons results in particularly compact, yet approximately optimal, modifications of learning equations. If applied to standard benchmarks, we empirically find, that learning converges in fewer EM iterations, that the complexity per EM iteration is reduced, and that final likelihood values are higher on average. For the task of classification on data sets with few labels, learning improvements result in consistently lower error rates if compared to applications without truncation. Experiments on the MNIST data set herein allow for comparison to standard and state-of-the-art models in the semi-supervised setting. Further experiments on the NIST SD19 data set show the scalability of the approach when a manifold of additional unlabeled data is available

    SymbolDesign: A User-centered Method to Design Pen-based Interfaces and Extend the Functionality of Pointer Input Devices

    Full text link
    A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.National Science Foundation (IIS-0093367, IIS-0308213, IIS-0329009, EIA-0202067

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Plug-and-Play Methods Provably Converge with Properly Trained Denoisers

    Full text link
    Plug-and-play (PnP) is a non-convex framework that integrates modern denoising priors, such as BM3D or deep learning-based denoisers, into ADMM or other proximal algorithms. An advantage of PnP is that one can use pre-trained denoisers when there is not sufficient data for end-to-end training. Although PnP has been recently studied extensively with great empirical success, theoretical analysis addressing even the most basic question of convergence has been insufficient. In this paper, we theoretically establish convergence of PnP-FBS and PnP-ADMM, without using diminishing stepsizes, under a certain Lipschitz condition on the denoisers. We then propose real spectral normalization, a technique for training deep learning-based denoisers to satisfy the proposed Lipschitz condition. Finally, we present experimental results validating the theory.Comment: Published in the International Conference on Machine Learning, 201
    corecore