199 research outputs found

    Minimum Bit-Error Rate Design for Space-Time Equalisation-Based Multiuser Detection

    No full text
    A novel minimum bit-error rate (MBER) space–time equalization (STE)-based multiuser detector (MUD) is proposed for multiple-receive-antenna-assisted space-division multiple-access systems. It is shown that the MBER-STE-aided MUD significantly outperforms the standard minimum mean-square error design in terms of the achievable bit-error rate (BER). Adaptive implementations of the MBER STE are considered, and both the block-data-based and sample-by-sample adaptive MBER algorithms are proposed. The latter, referred to as the least BER (LBER) algorithm, is compared with the most popular adaptive algorithm, known as the least mean square (LMS) algorithm. It is shown that in case of binary phase-shift keying, the computational complexity of the LBER-STE is about half of that required by the classic LMS-STE. Simulation results demonstrate that the LBER algorithm performs consistently better than the classic LMS algorithm, both in terms of its convergence speed and steady-state BER performance. Index Terms—Adaptive algorithm, minimum bit-error rate (MBER), multiuser detection (MUD), space–time processing

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Space-Time Equalisation Assisted Minimum Bit-Error Ratio Multiuser Detection for SDMA Systems

    No full text
    This contribution investigates a space-time equalisation assisted multiuser detection scheme designed for multiple receiver antenna aided space division multiple access (SDMA) systems. A novel minimum bit error ratio (MBER) design is invoked for the multiuser detector (MUD), which is shown to be capable of improving the attainable performance and enhancing system capacity in comparison to that of the standard minimum mean square error (MMSE) design. The adaptive MUD coefficient adjustment procedure of the MBER space-time MUD is implemented using a stochastic gradient based least bit error rate (LBER) algorithm, which consistently outperforms the classic least mean square (LMS) algorithm, while maintaining a lower computational complexity than the latter

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems
    corecore