1,261 research outputs found

    A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems

    Get PDF
    We develop a new analysis for residual-type aposteriori error estimation for a class of highly indefinite elliptic boundary value problems by considering the Helmholtz equation at high wavenumber as our model problem. We employ a classical conforming Galerkin discretization by using hp-finite elements. In [Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp.1871-1914], Melenk and Sauter introduced an hp-finite element discretization which leads to a stable and pollution-free discretization of the Helmholtz equation under a mild resolution condition which requires only degrees of freedom, where denotes the spatial dimension. In the present paper, we will introduce an aposteriori error estimator for this problem and prove its reliability and efficiency. The constants in these estimates become independent of the, possibly, high wavenumber provided the aforementioned resolution condition for stability is satisfied. We emphasize that, by using the classical theory, the constants in the aposteriori estimates would be amplified by a factor

    A posteriori error estimation for highly indefinite Helmholtz problems

    Full text link
    We develop a new analysis for residual-type a posteriori error estimation for a class of highly indefinite elliptic boundary value problems by considering the Helmholtz equation at high wavenumber k > 0 as our model problem. We employ a classical conforming Galerkin discretization by using hp-finite elements. In [Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp. 1871-1914], Melenk and Sauter introduced an hp-finite element discretization which leads to a stable and pollution-free discretization of the Helmholtz equation under a mild resolution condition which requires only O(kd) degrees of freedom, where d = 1; 2; 3 denotes the spatial dimension. In the present paper, we will introduce an a posteriori error estimator for this problem and prove its reliability and efficiency. The constants in these estimates become independent of the, possibly, high wavenumber k > 0 provided the aforementioned resolution condition for stability is satisfied. We emphasize that, by using the classical theory, the constants in the a posteriori estimates would be amplified by a factor k

    Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-005-0011-zThis article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion–absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions.Peer ReviewedPostprint (author's final draft

    Near-optimal perfectly matched layers for indefinite Helmholtz problems

    Full text link
    A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounded domains is presented. This construction is based on a near-best uniform rational interpolant of the inverse square root function on the union of a negative and positive real interval, designed with the help of a classical result by Zolotarev. Using Krein's interpretation of a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference discretization of a perfectly matched layer (PML) which converges exponentially fast in the number of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent wave modes. Several numerical experiments and illustrations are included.Comment: Accepted for publication in SIAM Review. To appear 201

    Planewave density interpolation methods for 3D Helmholtz boundary integral equations

    Full text link
    This paper introduces planewave density interpolation methods for the regularization of weakly singular, strongly singular, hypersingular and nearly singular integral kernels present in 3D Helmholtz surface layer potentials and associated integral operators. Relying on Green's third identity and pointwise interpolation of density functions in the form of planewaves, these methods allow layer potentials and integral operators to be expressed in terms of integrand functions that remain smooth (at least bounded) regardless the location of the target point relative to the surface sources. Common challenging integrals that arise in both Nystr\"om and boundary element discretization of boundary integral equation, can then be numerically evaluated by standard quadrature rules that are irrespective of the kernel singularity. Closed-form and purely numerical planewave density interpolation procedures are presented in this paper, which are used in conjunction with Chebyshev-based Nystr\"om and Galerkin boundary element methods. A variety of numerical examples---including problems of acoustic scattering involving multiple touching and even intersecting obstacles, demonstrate the capabilities of the proposed technique

    Cross-Points in Domain Decomposition Methods with a Finite Element Discretization

    Full text link
    Non-overlapping domain decomposition methods necessarily have to exchange Dirichlet and Neumann traces at interfaces in order to be able to converge to the underlying mono-domain solution. Well known such non-overlapping methods are the Dirichlet-Neumann method, the FETI and Neumann-Neumann methods, and optimized Schwarz methods. For all these methods, cross-points in the domain decomposition configuration where more than two subdomains meet do not pose any problem at the continuous level, but care must be taken when the methods are discretized. We show in this paper two possible approaches for the consistent discretization of Neumann conditions at cross-points in a Finite Element setting
    corecore