37 research outputs found

    A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems

    Get PDF
    We develop a new analysis for residual-type aposteriori error estimation for a class of highly indefinite elliptic boundary value problems by considering the Helmholtz equation at high wavenumber as our model problem. We employ a classical conforming Galerkin discretization by using hp-finite elements. In [Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp.1871-1914], Melenk and Sauter introduced an hp-finite element discretization which leads to a stable and pollution-free discretization of the Helmholtz equation under a mild resolution condition which requires only degrees of freedom, where denotes the spatial dimension. In the present paper, we will introduce an aposteriori error estimator for this problem and prove its reliability and efficiency. The constants in these estimates become independent of the, possibly, high wavenumber provided the aforementioned resolution condition for stability is satisfied. We emphasize that, by using the classical theory, the constants in the aposteriori estimates would be amplified by a factor

    A posteriori error estimation for highly indefinite Helmholtz problems

    Full text link
    We develop a new analysis for residual-type a posteriori error estimation for a class of highly indefinite elliptic boundary value problems by considering the Helmholtz equation at high wavenumber k > 0 as our model problem. We employ a classical conforming Galerkin discretization by using hp-finite elements. In [Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp. 1871-1914], Melenk and Sauter introduced an hp-finite element discretization which leads to a stable and pollution-free discretization of the Helmholtz equation under a mild resolution condition which requires only O(kd) degrees of freedom, where d = 1; 2; 3 denotes the spatial dimension. In the present paper, we will introduce an a posteriori error estimator for this problem and prove its reliability and efficiency. The constants in these estimates become independent of the, possibly, high wavenumber k > 0 provided the aforementioned resolution condition for stability is satisfied. We emphasize that, by using the classical theory, the constants in the a posteriori estimates would be amplified by a factor k

    A convergent Born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media

    Get PDF
    We present a fast method for numerically solving the inhomogeneous Helmholtz equation. Our iterative method is based on the Born series, which we modified to achieve convergence for scattering media of arbitrary size and scattering strength. Compared to pseudospectral time-domain simulations, our modified Born approach is two orders of magnitude faster and nine orders of magnitude more accurate in benchmark tests in 1-dimensional and 2-dimensional systems

    A first order system least squares method for the Helmholtz equation

    Full text link
    We present a first order system least squares (FOSLS) method for the Helmholtz equation at high wave number k, which always deduces Hermitian positive definite algebraic system. By utilizing a non-trivial solution decomposition to the dual FOSLS problem which is quite different from that of standard finite element method, we give error analysis to the hp-version of the FOSLS method where the dependence on the mesh size h, the approximation order p, and the wave number k is given explicitly. In particular, under some assumption of the boundary of the domain, the L2 norm error estimate of the scalar solution from the FOSLS method is shown to be quasi optimal under the condition that kh/p is sufficiently small and the polynomial degree p is at least O(\log k). Numerical experiments are given to verify the theoretical results

    Reconstruction of quasi-local numerical effective models from low-resolution measurements

    Get PDF
    We consider the inverse problem of reconstructing an effective model for a prototypical diffusion process in strongly heterogeneous media based on low-resolution measurements. We rely on recent quasi-local numerical effective models that, in contrast to conventional homogenized models, are provably reliable beyond periodicity assumptions and scale separation. The goal of this work is to show that the identification of the matrix representation of these effective models is possible. Algorithmic aspects of the inversion procedure and its performance are illustrated in a series of numerical experiments
    corecore