650 research outputs found

    Neural Network Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    A modular T-mode design approach for analog neural network hardware implementations

    Get PDF
    A modular transconductance-mode (T-mode) design approach is presented for analog hardware implementations of neural networks. This design approach is used to build a modular bidirectional associative memory network. The authors show that the size of the whole system can be increased by interconnecting more modular chips. It is also shown that by changing the interconnection strategy different neural network systems can be implemented, such as a Hopfield network, a winner-take-all network, a simplified ART1 network, or a constrained optimization network. Experimentally measured results from CMOS 2-μm double-metal, double-polysilicon prototypes (MOSIS) are presented

    Neural Networks: Implementations and Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    The Sticky Information Macro Model: Beyond Perfect Foresight

    Get PDF
    Sticky information monetary models have been used in the macroeconomic literature to explain some of the observed features regarding inflation dynamics. In this paper, we explore the consequences of relaxing the rational expectations assumption usually taken in this type of model; in particular, by considering expectations formed through adaptive learning, it is possible to arrive to results other than the trivial convergence to a fixed point long-term equilibrium. The results involve the possibility of endogenous cyclical motion (periodic and a-periodic), which emerges essentially in scenarios of hyperinflation. In low inflation settings, the introduction of learning implies a less severe impact of monetary shocks that, nevertheless, tend to last for additional time periods relative to the pure perfect foresight setup

    From scaling to governance of the land system: bridging ecological and economic perspectives

    Get PDF
    One of the main unresolved problems in policy making is the step from scale issues to effective governance. What is appropriate for a lower level, such as a region or location, might be considered undesirable at a global scale. Linking scaling to governance is an important issue for the improvement of current environmental management and policies. Whereas social–ecological science tends to focus on adaptive behavior and aspects of spatial ecological data, new institutional economics focuses more on levels in institutional scales and temporal dimensions. Consequently, both disciplines perceive different scaling challenges while aiming at a similar improvement of effective governance. We propose that future research needs to focus on four themes: (1) How to combine spatial properties such as extent and grain with the economic units of market and agent; (2) How to combine the different governance instruments proposed by both perspectives; (3) How to communicate the different scaling perspectives (hierarchy vs. no hierarchy) and meanings to policy makers and other stakeholders; and (4) How to deal with the non-equilibrium conditions in the real world and the disciplinary perspectives. Here, we hypothesize that a combined system perspective of both disciplines will improve our understanding of the missing link between scaling and governanc

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Adaptive scaling of cluster boundaries for large-scale social media data clustering

    Get PDF
    The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters
    corecore