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Abstract–A modular transconductance-mode (T-mode) de-
sign approach is presented for analog hardware implementa-

tions of neural networks. This design approach is used to build

a modular bidirectional associative memory (BAM) network.

We will show that the size of the whole system can be increased

by interconnecting more modular chips together. Also, we will

show that by changing the interconnection strategy different
neural network systems can be implemented, such as a Hopfield
network, a winner-take-all network, a simplified ART1 net-
work, or a constrained optimization network. Experimentally

measured results from CMOS 2-pm double-metal, double-

polysilicon prototypes (MOSIS) are presented.

I. INTRODUCTION

M ANY neural network algorithms have been pro-

posed and studied in the computer science related

literature [ 1]-[ 14]. Most of these algorithms have been

implemented in a software environment. However, it is

obvious that for many applications where real-time pro-

cessing is necessary and/or the size of the complete com-

puting system needs to be reduced, some type of special-

purpose hardware implementation needs to be devised. In

particular, analog circuits’ capability for intrinsic high-

speed operation with moderate area and power consump-

tion [15] makes these techniques worthy to be explored in

connection to neural networks.

In general, hardware circuit implementations of neural

network systems can be made with low-precision com-

ponents. This property is enhanced in neural systems that

include adaptive learning or self-organization [16], be-

cause as the system learns to perform a certain function it

implicitly compensates for imperfections and nonideali-

ties present in the physical components of which the whole

system is made. However, there is a category of circuits,

often referred to as being also neural networks, for which

the precision of the components is of high importance.

These circuits are known as nonlinear programming cir-

cuits or constrained optimization circuits [ 17]- [20]. The

outputs of these circuits have, in general, an analog na-

ture, while for the other more conventional neural sys-
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terns the outputs always have a digital nature, being there-

fore more immune to imprecise components.

Previous neural network analog VLSI implementations

have been specific for particular neural network algo-

rithms. However, if there were a modular hardware im-

plementation able to be reconfigured to realize different

neural network systems, it could be integrated with a con-

ventional digital control system and generate very low-

cost, very high-efficient, and versatile real-time neural

processors. The work we present in this paper belongs in

this category [20] -[23], and we explore this in connection

to the use of transconductance-mode (T-mode) analog cir-

cuit techniques which have been demonstrated to be very

well suited for high-speed analog processing in other ap-

plication contexts [24].

We will present a very simple yet powerful fully ana-

log, continuous-time, T-mode circuit design technique

that can be used to implement most of the neural network

systems proposed so far in the literature. This implemen-

tation technique is modular in the sense that the size of

the system can be increased by interconnecting more chips

together. No special interface or interchip communication

hardware is needed for this. The convergence time of the

system is not degraded when increasing its size. In the

test prototypes we will present in this paper we use three

different types of modular chips—one for the synapses,

one for the neurons, and one for the external inputs. We

did this mainly for test purposes, but these chips cart be

reduced to just one single modular chip. Also, the speed

of the system can be drastically increased by sacrificing

the modular property and integrating the complete system

in one single nonmodular chip.

The experimental results we will present in this paper

for constrained optimization circuits correspond to hard-

ware realizations built with modular components that were

originally designed to implement a bidirectional associa-

tive memory (BAM) network. This means that we will use

low-precision components to assemble an optimization

circuit. Therefore, as we will see, the results generated

will be of moderate precision. However, it will serve to

illustrate the underlying argument of this paper, which is
the great versatility of the proposed implementation tech-

nique.

In the next section we will present the analog T-mode

circuit design technique to be used in our further imple-
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Fig. 1. Implementation of neuron interconnections using transconductance devices.

mentations. Then we will go directly to the experimental

results and show the high potential of this technique by

giving examples of a 5 x 5 BAM, a 9 x 9 BAM, a five-

neuron Hopfield network, a five-neuron winner-take-all

network, a 5 X 5 simplified ART 1 network, and a mod-

erate precision three-variable three-constraint quadratic

constrained optimization network. The prototypes were

fabricated in a standard 2-pm double-metal, double-poly-

silicon CMOS process (through and thanks to MOSIS).

Elsewhere [21], [25] we will demonstrate that this

T-mode analog circuit design technique of neural network

systems “fits like a glove” for making learning or self-

organizing Hebbian type systems with little extra cost.

We will also show how to add an on-chip analog memory

for each synapse.

II. THE T-MODE NEURAL CIRCUIT DESIGN TECHNIQUE

Most of the neural network algorithms available in the

literature have a short-term memory (STM) whose contin-

uous-time versionl operation can be described by the fol-

lowing set of nonlinear first-order differential equations:

N

CX, = ‘~Xi + ~~1 W]~f(XJ) + l,, i=l, ”.. ,N

(1)

where x, is the activity of neuron i, Wj( is the weight of

the synaptic interconnection from neuron j to neuron i, Zi

is the external input to neuron i, a and C are positive

constants, and ~(o) is a nonlinear, monotonically increas-

ing function with maximum and minimum saturation val-

ues.

In some cases the system of equations in (1) is gener-

alized by enriching its dynamics as in the Cohen–Gross-

berg description [27], or by sophisticating the synaptic

interconnectivity like in high-order neural networks [28],

or by adding constraint variables like in constrained op-

timization networks [17] -[20].
The system of equations in (1) can be directly imple-

mented with analog hardware by using transconductance

amplifiers as the synaptic interconnections. A transcon-

ductance amplifier provides an output current iO propor-

tional to its input voltage vi:

iO = grrf ‘i (2)

where g~ is the transconductance gain of the amplifier.

‘Grossberg provides a method [26] to map a discrete-time description of
a neural system into a continuous-time one, and vice-versa. Therefore, the
neural network algorithms reported with discrete-time dynamics can also

be represented by (1).

In (1) the output of a neuron yj = ~(.xl ) can be repre-

sented physically by a voltage signal, the synaptic con-

nection by a transconductance amplifier of input voltage

yj and output current ~ji Y~, and the external inputs 1, by
current variables. The lossy term – ax, can be imple-

mented by using a resistor of value R = 1/tx, and the

operation Cii can be realized by a capacitor. All this

would produce a T-mode circuit representation as is shown

in Fig. 1, where the function ~ (. ) is implemented using a

nonlinear voltage-to-voltage amplifier.

Assuming the network is stable and it converges to a

stable steady state, consider for each neuron the associa-

tion of the linear resistor R and the nonlinear voltage am-

plifier~(. ) (see Fig. 2(a)). If .liO is the steady-state current

entering this association and yiO is the steady-state output

voltage, then

Yio = f(RJm) @ ~,o = ;f-’(Y,o) (3)

which can be visualized as a nonlinear resistor with a

driving point characteristic g(”) such that

J;. = g(ylo) = +.f-’(Yio) (4)

as is shown in Fig. 2(b).

By generalizing the concept of Fig. 2 to the nonsteady -

state case as well, the circuit implementation of Fig. 1 is

modified into the one shown in Fig. 3. Obviously the dy-

namics of the system of Fig. 3 is no longer described ex-

actly by the set of equations in (1). The new system is

now described by
N

Cyi = ‘g(y, ) + j~l W,iyj + l,, i=l, ”””, N.

(5)

However, once the steady state is reached, both de-

scriptions are equivalent. In Appendix A we will give a

stability proof for the system of equations in (5) as a par-

ticular case of a stability proof for quadratic optimization

systems. In Appendix B we show that for an equivalent

initial state both descriptions will produce the same equiv-

alent final state.

In the next section we will use the T-mode circuit de-

sign technique of Fig. 3 to build a set of modular chips

intended to implement an arbitrary-size continuous BAM

network [5]. Afterwards we will show how to use these

modular chips to assemble other neural network systems

such as a Hopfield network [ 1]-[4], a winner-take-all net-

work [1 1], [29], and a constrained optimization network

[18] -[20].



LINARES-BARRANCO et al,: MODULAR T-MODE DESIGN FOR ANALOG NEURAL NETWORK
703

Fig. 2. T-mode simplified neuron implementation.
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Fig. 3. T-mode simplified implementation forneural networks.

III. EXPERIMENTAL RESULTS

A set of modular chips was designed and fabricated in

a 2-pm double-metal, double-polysilicon, 10-V ( V~~ =

i-5 V, V~~ = –5 V) CMOS process (MOSIS), and used

to assemble several neural network systems [30].

The current sources for the implementation of the ex-

ternal inputs Ii of Fig. 3 were realized using the transcon-

ductance amplifiers of Fig. 4, which had a size of 20 x

20 ~m2 each. The value of V~i~, is the same for all current

sources Ii. Depending on the sign of Ii it was either V,i =

V~~ and V2i = V~~, or Vll = V~~ and Vi2 = V~~.

The neuron is composed of a nonlinear resistor in par-

allel with a linear resistor and a capacitor. The circuit im-

plementation of the nonlinear resistor is depicted in Fig.

5. If E - s yi = E + transistors Ml and i142 are OFF and
.ll = O. The only resistor in parallel with the integrating

capacitor C of Fig. 3 is the parallel connection of all out-

put impedances of the synaptic multipliers with outputs to

this node. The value of this linear resistor is not critical

for proper operation, which allows us to rely on parasitic

elements for its physical implementation. If yi < E- then

Ml is ON and M2 OFF, and Ji is negative and large. If y,

> E + then Ml is OFF and M2 ON, and J, is positive and

large. Therefore, the circuit of Fig. 5 with the parallel

connection of the output impedances of the synaptic mul-

tipliers with outputs to node yi has driving point charac-

teristics similar to the ones of Fig. 2(b).

For the synaptic transconductors -a very simple circuit

based on Gilbert’s multiplying cell [31] was used, as is

shown in Fig. 6. The size of the cell was 50 X 40 pmz.

The top PMOS current mirror was intentionally unbal-

anced for offset compensation, sacrificing linearity. All

synaptic multipliers share the same Vbi~~= – 3.77-v volt-

age, as well as all GNDfOP = – 1.00-V and GNDbOttO~ =

– 2 .00-V connections. Fig. 7 shows the input output

characteristics of the parallel connection of five synaptic

multipliers loaded with a 20-kfl resistor and for W =

–2.8, –2.6, –2.2, –2.0, –1.8, –1.6, –1.4, and –1.2

- %D-

V2, +

1

%

Fig. 4. Circuit implementation of transconductance amphtier,

(a) (b)

Fig. 5. (a) Nonlinear resistor circuit implementation. (b) Transfer curve.

hD
1 I

-L
%s

Fig. 6. Actual schematic of transconductance multipliers.

‘V. A high degree of nonlinearity can be observed, espe-

cially around W = – 2.0 V. However, as we will see, this

will not affect the correct operation of the complete neural
network systems.
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Fig. 7. Measurement of the dc transfer curves of five multipliers in parallel

for Vbrd, = –3.77 V.
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Fig, 8. T-mode circuit implementation of BAM algorithm.

A. BAikl Networks

A BAM network is a two-layer neural network in which

all neurons in one layer are connected to all neurons in

the other layer, and there are no connections between neu-

rons in the same layer [5]. The weight of the synapse that

goes from neuron i in layer 1 ( yi ) to neuron j in layer 2

(Y; ) is the same that the one that goes from neuron j in
layer 2 ( yj ) to neuron z’in layer 1 ( yi ), and is denoted ~ji.

Using the circuit design technique represented in Fig.

3, a circuit realization of a 5 X 5 BAM network would be

as shown in Fig. 8. Three different chips, one for the syn-

aptic matrix, one for the neurons, and one for the external

inputs, were fabricated in a 2-~m, double-metal, double-

polysilicon CMOS process (MOSIS). Up to three patterns

(with correct retrieval) could be stored in this 5 X 5 BAM.

We programmed the patterns shown in Fig. 9. The nor-
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Fig. 9. Three patterns to be stored in the 5 X 5 BAM.
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Ii’
t

TOPTrace=300.OMV/div BottomTraee=4.OQVldiv Tbnebase*2Wdiv

Fig. 10. Convergence to pattern A when the input is pattern A in 5 x 5
BAM. Top traces are neuron outputs; bottom trace is initial conditions trig-
gering signaL

realized synaptic matrix for these patterns is

r –3 1 1 1 17

I
1–3 1 1 1

–31111 (6)

11 1–31

1 1 –3 1 –3

and to program these weights the following voltages were

used (see Figs, 6 and 7):

w = –2.2 v, forwti= +1

w= –1.2V, for WO = –3. (7)

The nonlinear resistors are biased with E+ = –0.5 V,

E- = —1.5 V, and the input current sources with Vtri~S=

– 2.50 V. Fig. 10 shows the convergence to pattern A

when the input pattern is A. For this some switches were

added to the neurons in order to set the initial conditions

and visualize the transient response. The BAM network

also converged correctly to patterns B and C when the

input patterns were B and C, respectively. In a continu-

ous-time BAM the way to verify what minimum of the

energy surface has been reached is by disconnecting the

external inputs after the steady state has been reached. We

did this for the case of Fig. 10 (as well as when the inputs

where patterns B ~nd C) and the system kept the same

final state. When the external inputs are not patterns A,

B, or C the BAM might reach in some cases a stable state

slightly different from the stored patterns.2 However, once

this steady state is reached and the external inputs are dis-

2This discrepancy depends on the ratio between the values of the external

current sources and the curreut levels of the synaptic multipliers.

Inputs Chip

Neurons Chip

Fig. 11. Illustration of modular capability of T-mode circuit BAM imple-

mentation.

connected, the BAM will settle to one of the stored pat-

terns, depending on the hamming distances between the

stored patterns and the input.

Exploiting the modular capability of the T-mode ap-

proach, we assembled several of the chips in Fig. 8, as is

shown in Fig. 11, and built a 9 x 9 BANI.3 The patterns

shown in Fig. 12 were loaded with the normalized syn-

aptic matrix
.
–3 –1 –1 –1 3 –1 1 –1 –1

1 3 –1 –1–1–1133

–1 1–311 1–111

1 –1 -1 3 –1 3 –3 –1 –1

11 1 –3 1–3 3 1 1

1–1–131 3 –3 –1 –1

1 –1 –1 3 –1 3 –3 –1 –3

1 3–1–1–1–1131

–1–3111 1 –1 –3 –3

(8)

using the following weight voltages (see Figs, 6 and 7):

W = –2.8 V, for Wti = +3

w = –2.2 v, forwti= +1

W= –1.8V, forwti= –1

w= –1.2V, for Wti = –3. (9)

This larger network is more sensitive to systematic offset

in the synaptic multipliers. The value of Vhi,S in Fig. 6 for

all the synaptic chips needed to be readjusted in order to

minimize this offset and obtain a correct retrieval of the

stored patterns of Fig. 12.4 Fig. 13 shows how the neu-

3The voltage of one of the ten neurons in each layer in Fig. 11 was

connected to y,0 = Y;O = GND~,,P = -1.0 V and the external inputs for

these neurons were set to 1,0 = I lo = O, so that they would not have any
effect on the rest of the network.

4Note that here we are compensating a global offset which is similar for
each synapse. Due to the nature of neural systems we do not anticipate any
misbehavior due to random offsets in the synapses, as long as the mean
random offset remains zero.



706 [EEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. 5, MAY 1992

B!aa!Ei
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Fig. 12, Patterns to be stored in the 9 X 9 BAM.

1----’ I

Top Trace=500.OmV/div Bottom Trace=5.CKIV/div Thnebase.5@3n.#div

Fig. 13. Convergence to pattern A with input pattern A in 9 x 9 BAM.
Top traces are layer 1 neuron outputs; bottom trace is initial conditions

triggering signal.

rons of one layer converge to pattern A when the input is

pattern A. Note that the convergence time of this network

is of the same order as the one shown in Fig.- 10, being a

new system four times larger. This is because the settling

time of this T-mode approach is independent of the size

of the system. However, the time response does depend

on the g~’s of the synapses, which depend on Vbi,,.

B. Hop~eld and Winner-Take-All Networks

In order to demonstrate the versatility of the proposed

T-mode technique we also assembled some other neural

network algorithms. For example, a Hopfield network is

a fully interconnected neural network without self-con-

nections [1]-[4]. Interconnecting the modular chips of

Fig. 8, as shown in Fig. 14, a five-neuron Hopfield net-

work can be obtained. Hopfield networks have a very poor

pattern capacity ( = 0.15 x N for more than one pattern,

where N is the number of neurons [1]). Therefore, for five

neurons we can only successfully store just one pattern.
Note that now each interconnection between neurons is

made of two transconductance multipliers in parallel. In

order to store the pattern ‘‘ 10101, ” the following nor-

malized matrix needs to be programmed:

[

o

–1

1

–1

1

–1

o

–1

1

–1

1 –1

–1 1

0 –1

–1 o

1 –1

1

–1

1

–1

o 1

(lo)

Inputs Chip

,8,1,
Neurons Chip

Fig. 14. Hopfield network built with T-mode BAM’s modular chip com-
ponents.

using the weight voltages (see Figs. 6 and 7)

W = –2.8 V, forwv= +1

w = –2.0 v, for Wti = O

w= –1.2V, forwti = –1. (11)

Fig. 15 shows the stable patterns observed for each input

pattern configuration. The stable pattern is always either

“10101” or “01010” depending on the hamming dis-

tance of the input patterns to the stored pattern.

A winner-take-all network can be considered as a spe-

cial case of a Hopfield network. It is a fully intercon-

nected network in which all self-connections are excita-

tory and all interconnections between different neurons are

inhibitory. However, now excitato~ connections have to

remain excitatory always, and so do inhibitory connec-

tions. This means that the synaptic multipliers can no

longer be four-quadrant ones; here they have to be two-

quadrants multipliers. This is accomplished by making

GND,OP in Fig. 6 have the same value as E- = – 1.5 V

in Fig. 5. The values for the synaptic matrix could be

0.5 –1 –1 –1 –1

–1 0.5 –1 –1 –1

–1 –1 0.5 –1 –1

–1 –1 –1 0.5 –1

–1 –1 –1 –1 –0.5

(12)

using the following weight voltages (see Figs. 6 and 7):

w = –2.’4 v, forwti = +1/2

w= –1.2V, forwti = –1. (13)

Fig. 16 shows the transient response for neurons 1 and 4

when the input to the circuit is the pattern “10010.” As

can be seen, only one of the two neurons with high inputs

is declared the winner.

C. Simpli$ed ART1 Network

A very simplified view of Carpenter and Grossberg’s

ART1 network is as a BAM network [8] in which the ex-

ternal inputs to one of the Iayep have been substituted by
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Fig.

I

Input

(o) WC&
(1)
(2) 00010
(3) 00011
(4) 00100
(5) 00101
(6) 00110
(7) 00111
(8) O1ooo
(9) 01001
(lo) 01010
(11) 01011
(12) 01100
(13) 01101
(14) 01110
(15) 01111
(16) 100CKl
(17) 1000I
(18) 10010
(19) 10011
(20) 10100
(21) 10101
(22) 10110
(23) 10111
(24) 11(X)O
(25) llml
(26) 11010
(27) 11011
(28) Ill(Xl
(29) 11101
(30) 11110
(31) 11111

kible Pauem

10101
10101
01010
10101
10101
10101
10101
10101
01010
10101
01010
01010
10101
10101
01010
10101
10101
10101
10101
10101
10101
10101
10101
10101
10101
10101
01010
10101
10101
10101
10101
10101

(21)
(21)
(lo)
(21)
(21)
(21)
(21)
(21)
(10)
(21)
(lo)
(lo)
(21)
(21)
(lo)
(21)
(21)
(21)
(21)
(21)
(21)
(21)
(21)
(21)
(21)
(21)
(lo)
(21)
(21)
(21)
(21)
(21)

5. Measured stable states for Hopfield circuit.

‘---”-”T77

11111

Fig. 17. Topology forsimplified ARTl network using the BAM modular
chips.

B: m
X] X2X3X4X5

c: KIB

X,X2X3X4X5

D: ~

X,X2X3X4X5

E: ~

Fig. 18. Five patterns stored in the simplified ART 1 network.

I + I

l--r---+---”--+
L’ I J.—

TopTrace=31XLOmV/div BottomTrace=300mV/div Timebase=100#4iv

Fig. 16. Winner-take-all T-mode circuit with input (10010): the two traces

correspond to neurons 1 and 4. The integrating capacitance of each neuron
is 10 nF. Biases are: ‘bias = ‘3.77 v> GNDb.tt.m = –2.00 V, GND,oP =

E= -1.50 V,and E+ = –0.5V.

a winner-take-all interconnection matrix. This is illus-

trated in Fig. 17. The five patterns shown in Fig. 18 were

programmed with the normalized’ synaptic matrix

[

1

1

1

1

1

–1

–1

–1

–1

–1

1

–1

1

–1

1

–1

1

–1

1

–1

1

1

–1

–1

–11(14)

using the following weight voltages (see Figs. 6 and 7):

W = –2.8 V, forwv = +1

w= –1.2V, forwti = –1. (15)

The winner-take-all section was biased as indicated in (12)

and (13). The output pattern configuration is represented

in Fig. 19, where we can see that the network converges

to the stored pattern (or patterns) with the minimum ham-

ming distance to the input pattern.

Note that the ART1 network achieves a maximum stor-

age capacity of five patterns, while for the 5 x 5 BAM

network the capacity was three, and for the Hopfield net-

work the capacity was one, all of them having 25 pro-

grammable synapses.

D. Quadratic Constrained Optimization Network

The general problem of constrained optimization can be

formulated as minimizing a given cost function of vari-

ables Vl, v2, o . “ , Vq,

4’(Z4,q, “ “ “ , Vq). (16)

subject top constraints,

. . .

.&(vl> Vz> “ “ “ , Vq) = o (17)

where q and p are two independent positive integers.

Mathematically, the problem can be solved using the

Lagrange multiplier method [32] by defining the La-
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SwbJePattern

Layer 1

W

Wlolo
Ooo1o
Om&l

11111
11111

Layer 2

O1ooo
01OOO
01100
Oallo
Olmo
00100
Ooo1o

;%!!
Ocolo
Ooo1o
Imoo
10010
10100
Irmo

i%%
mlcm
01010
10100
Woo
CX3100
10100
10100
Ocml
ml
Ooo1o

k%
10100
10ooo
1000O

B
B

BC
D
B
c
D
A

BDE
D
D
A

AD
AC
AD
A
B
c

BD
AC

:
AC
AC
E

E
A
E

AC
A
A

Fig. 19. Stable patterns obtained for the simplified ART 1 network,

grange function

P

L(v17 V2, “ - “ , Vq, ~1, h2j . “ . , hp) = @ + j~, hj$

(18)

where Xj are called the Lagrange multipliers. The solution

is obtained by solving

J(7) ~ 0, Aj ~ 0, Aj./j(@) = O (19)

where the unknowns are v,k and hj. The circuit of Fig. 20

[17], [18] solves this system of equations, assuming it

converges to a stable steady state. In Appendix A we show

that this circuit is completely stable under certain condi-

tions.

The quadratic constrained optimization problem is a

particular case of the general problem described by (16)
and (17), such that

HVI

@(a) =[A1””” Aq] ““” + ;[V* “ “ “ Vq]

G,,.”.

1[ 1GIq V1

. . . . . . . . . . . . (20)

Gql - “ “ Gqq Vq

IEEE

x:

+

g(kl)
—

!&3
f,(v)

t

.

g( L2)
—

‘?i----l

f2(v)

t

. ...

(a)

+Kkj)=f j(v)

I
(b)

Fig. 20. (a) General constrained optimization circuit. (b) Nonlinear resis-

and

[

h
. . .

&

tor curve.

‘[::1[:”1
[1

E,

— . . . ~ f). (21)

EP

A T-mode circuit that implements (19) when *(@) and

~(@) are defined by (20) is shown in Fig, 21.
The linear programming circuit [4] is a particular case

of the quadratic programming circuit for which Gti = O.

The solution of a general optimization circuit has an

analog nature. It does not saturate to a maximum or min-
imum value as happens in the BAM, Hopfield, winner-

take-all, and ART1 networks. This fact implies that higher

precision components need to be used. However, for il-

lustration purposes we will use the same modular BAM

chips that we have used so far. This means that precision

in the solution will be sacrificed to a certain degree.

Let us implement the following three-variable, three-

constraint quadratic optimization problem. Minimize

@ = 2V1V3 – 2V2V3 + v! (22)

subject to the constraints

V1 2 0, V2 5 ;, V3 > 0. (23)
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Fig. 21. T-mode implementation of constrained quadratic optimization problem

The exact solution to this problem is and Xl, h2, h3 have a solution within this linear range. In

‘VI = o, V*= ;, V3=;. (24)
the steady state the circuit satisfies

The corresponding normalized matrices and vectors of
ZZ~+;G5~+;G~7~+B~X~= o

(20) and (21) are

[1
002

G= O 0 –2 ,B=

2 –2 2

H [1

o 0

2=0, s= 0.5.

o 0

In the actual circuit we will have

@ = ;G~~v; + G13Z4V3

f = Bllvl >0

h=BZZVZ–E2Z0

~ = B33V3 >0

with

G33 = 2g0, Gil = 2g0,

l?ll = gO, BZ2 = –gO,

Et 1 go—.— *E2=— —
Bxz 2 2

B;T> ~T. (28)

r100] However, if in the steady state any of vi or Xi is beyond

[1o–lo,
the linear range of the multipliers the solution is not valid

and the problem needs to be resealed. This can be done
o 01

G23 = ‘2g0

B33 = gO

(25) and in order to keep the problem unchanged (see (28)) we

also need to define a new ~‘ such that

E! = ~Ei . (30)

For our case, a factor ~ = 1/4 produced values of v; and

A; that were within the linear range A 500 mV of the mul-

tipliers.

The circuit configuration assembled with the modular

BAM chips is depicted in Fig. 22. The interchip buffers

(26) were used to eliminate the bidirectional nature of the syn-

aptic multipliers. The nonlinear resistors were biased us-

ing E+ = O V and E- = –5 V, so that they would im-

plement the characteristics of an ideal diode. The

measured steady-state response of this circuit was

vi = 90 mV, Z& = 180 mV, v: = 125 mV

(27) ~j = –3OO mV,
X; = –250 mV, hi = 20 mV (31)

where gOis a scaling transconductance. For ~bi~~ = –3.77
V, and if W = –1.2, –2.8 V, according to Fig. 7, it

which corresponds to the normalized problem solution

would be gO = 30 pmhos. Since each multiplier in Fig.
VI = 0.36, V2 = 0.72, V~ = 0.50

21 has a linear range of approximately +500 mV (see

Fig. 7) we have to make sure that the variables VI, V2, V3 Al = 1.20, X2 = 1.00, h3 = 0.08 (32)
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●

●

Fig. 22. Interconnection topology for optimization circuit.

while the exact solution should have been

v, = 0.00, v~ = 0.50, V3 = 0.50

A, = 1.00, X2 = 1.00, As = 0.00. (33)

The discrepancy is due to the low-precision components

used. When using high-precision analog circuit design

techniques, like switched-capacitor circuits, very precise

CMOS optimization networks can be achieved [20].

IV. CONCLUSIONS

We have proposed, developed, and demonstrated a

compact, modular, versatile, cheap, and powerful circuit

design technique for the implementation of continuous-

time analog neural networks. This technique is based on

the use of transconductance synaptic multipliers and

neural nonlinear resistors. We have used this approach to

design a set of modular chips intended for the implemen-

tation of arbitra~-size BAM networks.

These BAM’s were successfully tested. Afterwards, we

used the same modular chips to assemble other neural net-

work algorithms, such as a five-neuron Hopfield network,

a five-neuron winner-take-all network, a 5 x 5 ART 1 net-

work, and a moderate precision three-variable, three-con-

straint optimization network.

This circuit design technique has been extended by in-

cluding an on-chip Hebbian learning rule for each synapse

[21], [30] as well as an on-chip analog dynamic memory

for the weight storage of each synapse. The correspond-

ing results will be published elsewhere [25].
In the experimental results given in this paper, abso-

lutely no care was taken to minimize the response times.

However, since this is an analog approach, such response

times are given by the time constants of the g~’s and ca-

pacitors involved, and can be minimized to those values
characteristic of other analog circuits.

In summary, this paper demonstrates the high potential

and versatility of the proposed T-mode circuit design

technique for the analog hardware implementation of

neural networks on standard low-cost CMOS processes.

APPENDIX A

Theorem: The circuit of Fig. 20 is completely stable in

the sense that it will never oscillate or display other exotic

modes of operations [19], assuming the following condi-

tions are satisfied:

At least one (and maybe more) solution to the prob-

lem exists. Consequently, the cost function is

bounded from below within the region over which

the constraints are satisfied.

The functions @(” ) and ~( c) are continuous, and all

their first and second derivatives exist and are con-

tinuous.

F’J-oo~ The equations for the network are

ajj
Cvi’–g– h-

j=l ‘a?)j’

~=l. ... q
>

1

~j = g(.fj(z)), j=l, ”””, p. (34)

Since g(.), @(” ), and J (” ) are continuous, (34) can be

written as

i(t) = Z(@(t)) (35)

where ~(”) is a continuous function from (R~ to (R9. Con-

sider the scalar function E(Z): (R9 + (R,

taking time derivatives yields

(37)

Therefore, dE/dt s O. This implies that E(t) is strictly

decreasing unless tii = O for all i = 1, “ . “ , q, which

corresponds to the steady state. This means that E(Z) is

a Lyapunov jivz.cti<n of the system, which together with

the continuity of h (”) ensures that the system is com-

pletely stable, i.e., any trajectory d ( o) eventually con-

verges to some equilibrium point @* in (R9 depending on

the initial state 70 [19].

Corollary: The fully interconnected T-mode neural

network (see Fig. 3) is a particular case of the T-mode

constrained quadratic optimization network, and is there-

fore (via the previous theorem) also completely stable.

The circuit of Fig. 3 can be viewed as the following
constrained quadratic optimization network:

HY1

Y(i$)=[zl”””zq] ““” + ;[y, “ “ “ yq]

l_.yqJ
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Fig. 23. T-mode neural network as a particular case of constrained optimization circuit.

subject to the constraints

.fl: Y1 ~ –E”

A: Y1 = +E+

A: Y2 ~ –E-

f4: Y2 ~ +-E+

. . .

L,-l: Yq ~ –E-

f2q: Y, = +~+.

These constraints equations in matrix form are

[

.fl

$2
. . .

f%

—

1 0“””0 o

1 0“””0 o

0 1“””0 o

0 1“””0 o

. . . . . . . .

0 0“””0 1

0 0“””0 1

[ 1
–E-

+E+

. . .

+E+

YI

Y2

. . .

Yq:1

(39)

therefore the circuit of Fig. 23 is equivalent to the one in

Fig. 3.

APPENDIX B

Theorem: Given the same equivalent initial conditions

for the neural network described by (1) and the neural

network described by (5), they will arrive at the same

equivalent final state if the weight matrix of the fully in-

terconnected network is invertible.

Prooj This will happen if there exists a set of func-

tions

hu(x,, “ “ “ ,xN), i,j=l, . . ..N (41)

such that the following perturbative approximation can be

made:

N

Yi = f(%) + j~, ~jhij(y)

(42)

and hij ( 2 ) does not diverge once the steady state is

reached. If (42) are satisfied and if there is a set of tra-

jectories xi(t) that solves the description of (1) for a given

initial condition, then there is also a set of trajectories

yi (t) that solves the description of (5) for the same equiv-

alent initial condition, and both sets of trajectories arrive
(40) to the same equivalent steady state. If we can show that

the functions hti (” ) do exist then the theorem is proved.

Taking the time derivative in (42) and neglecting the

terms in iji, results in
The circuit of Fig. 21 for this particular case is shown

\
N

in Fig. 23. Note that the circuits comprised by broken

lines behave like the nonlinear resistors of Fig. 5, and
Yi = .f’(xi)~i + j~, YjhU(Z). (43)
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Also, by (42)

,f-’(yj) = x, + P(~i)j$, ~jhj(2)

P(%) =f’-’(fw)))). (44)

Substituting the time derivative of (1) in (43), this result

together w;th (44) in (5) yields

N

C[~’(X;) – 1].ii + ~[~(XJ – 1] ZI .ij/ZJ (Y)

NN

NN

which, in matrix form, can be expressed as

C[f ’ – I]D+T + O![p – l]~H*T

+ HW[.f’]D~~+ WH$T= O

(45)

(46)

where His the matrix of elements hij ( Z ), W is the one of

elements Wti, and [~’ – l]D, [p – l]D, and [~’]D are

diagonal matrices of diagonal elements ~ ‘(xi ) – 1, P (xi)

- 1, and f ‘(xi), respectively. Since (46) has to hold for

any ~‘, it must be

C[f ‘ – l]D +.a[p – l]DH + HW[f ‘]D + WH = O.

(47)

The solution of this matrix equation provides the func-

tions /tti, and therefore, the result of (42). If this solution

exists and does not diverge, the theorem is proved.

In the steady state f‘ (xi) = O and p (xi) – 1 = O.

Therefore, in the steady state we have

H = –CW-l[l]D. (48)

This solution exists and is bounded if the weight matrix

is invertible. Since the final state is bounded as well as

the ‘initial state and both (1) and (5) are well behaved, the

transient response will also be bounded. Furthermore, if

there is a solution for (1) with trajectories Xi(t), there is

also a solution for (5) with trajectories yi (t) which can be

computed through (47) and (42), and both sets of trajec-

tories have the same equivalent initial and final states de-

fined by

Yi = f (xi),
~=1,...,~, (49)
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