3 research outputs found

    Steering System of Electric Vehicle using Extreme Learning Machine

    Get PDF
    The development of electric vehicle technology is currently increasing and growing very fast. Some efforts have been conducted, one of which is using BLDC (brushless direct current) motors to improve efficiency. This study utilized extreme learning machine (ELM) embedded on the microcontroller as well as the differential method for controlling the rotational speed of the BLDC motor. The experimental results on the acceleration testing by traveling a distance of 200 meters achieved the average current of 1.09 amperes. The average power efficiency test is 104 watts. Furthermore, the results of the efficiency experiment with a track length of 3.3 km (kilometers) in 10 minutes obtained the energy efficiency of 177.34 km/kWh (kilowatt for one hour

    PLATAFORMA HARDWARE IN THE LOOP PARA EMULAR LA RESPUESTA DINÁMICA DE UN CUADRICÓPTERO (HARDWARE IN THE LOOP PLATFORM FOR EMULATE THE DYNAMIC RESPONSE OF A QUADCOPTER)

    Get PDF
    Resumen En la actualidad las aeronaves no tripuladas han ido ganando popularidad ya que se emplean en múltiples aplicaciones y en algunas de estas se requiere de un control automático. Sin embargo, probar un controlador en un vehículo de este tipo puede ser riesgoso para su integridad. En el presente artículo se describe el desarrollo de una plataforma Hardware in the Loop (HIL) que emula la respuesta dinámica de un cuadricóptero. La plataforma HIL se desarrolló en una tarjeta NI myRIO-1900 y el entorno de programación gráfica LabVIEW. Los resultados obtenidos en la plataforma se compararon con una simulación en Matlab obteniendo resultados satisfactorios. Palabras clave: Cuadricóptero, Hardware in the Loop, LabVIEW. Abstract Nowadays unmanned aerial vehicles have been gaining popularity as they are used in multiple applications and some of these require automatic control. However, testing a controller on such a vehicle can be risky for its integrity. This article describes the development of a Hardware in the Loop (HIL) platform that emulates the dynamic response of a quadcopter. The HIL platform was developed on an NI myRIO-1900 board and the graphical programming environment LabVIEW. The results obtained in the platform were compared with a simulation in Matlab obtaining satisfactory results. Keywords: Hardware in the Loop, LabVIEW, Quadcopter

    Desain dan Implementasi Inverter Tiga Fasa dalam Pengendalian Motor Brushless Dc Sensorless dengan Metode Deteksi Back-Emf Pada Pesawat Tanpa Awak

    Get PDF
    Motor Brushless DC telah digunakan diberbagai aplikasi salah satunya pada pesawat tanpa awak. Motor BLDC mempunyai magnet permanen pada bagian rotor dan elektromagnet pada bagian stator. Komutasi motor BLDC menggunakan inverter tiga fasa untuk membuat putaran pada kutub magnet. Informasi posisi rotor digunakan untuk memutar motor BLDC agar kutub magnet yang muncul pada belitan dapat berada pada posisi yang tepat sesuai dengan posisi kutub magnet permanen. Terdapat metode back-emf untuk mendeteksi posisi rotor. Skema back-emf berfungsi membaca keadaan floating pada motor yang terdeteksi selama Pulse Width Modulation (PWM) dalam keadaan off. Pembacaan back-emf menggunakan komparator dengan menghubungkan titik virtual neutral yang dikomparasi dengan ground. Adapun pendekatan zero crossing merupakan salah satu metode paling sederhana deteksi back-emf yang mana pendeteksian saat kurva back-emf pada fasa sama dengan nol. Zero crossing ini berfungsi untuk menentukan frekuensi suatu gelombang dengan cara mendeteksi banyaknya zero point pada suatu rentang waktu. Dari hasil implementasi didapatkan bahwa sistem kendali kecepatan motor BLDC sensorless dengan metode back-emf menunjukkan bahwa semakin tinggi frekuensi PWM, maka semakin besar tegangan back¬-emf yang terbangkit. Selain itu, semakin tinggi nilai frekuensi PWM, maka semakin besar kecepatan motor BLDC. Dari segi efisiensi sistem kendali kecepatan motor BLDC memiliki efisiensi saat pengujian tanpa beban maksimum 73% dan berbeban maksimum 77%. Kata kunci : Back-emf, Frekuensi PWM, Six-Step Commutation, Motor BLDC, Zero Crossing Point ========================================================= Brushless DC motors have been used in various applications, one of them on unmanned aircraft. The BLDC motor has a permanent magnet on the rotor and electromagnet parts of the stator. The commutation of a BLDC motor uses a three phase inverter to make a rotation on the magnetic pole. Information on the position of the rotor is used to rotate the BLDC motor so that the magnetic pole that appears on the windings can be in the right position according to the position of the permanent magnet pole. There is a back-emf method for detecting the position of the rotor. The back-emf scheme functions to read the floating state on a motor that is detected during Pulse Width Modulation (PWM) off. Back-emf readings use a comparator by connecting a virtual neutral point that is compared with ground. The zero crossing approach is one of the simplest methods of back-emf detection which detects when the back-emf curve on phase is zero. Zero crossing serves to determine the frequency of a wave by detecting the number of zero points in a time range. From the results of the implementation it was found that the sensorless BLDC motor speed control system with the back-emf method showed that the higher the PWM frequency, the greater the back-emf voltage generated. In addition, the higher the PWM frequency value, the greater the BLDC motor speed. In terms of efficiency, the BLDC motor speed control system has an efficiency when testing without a maximum load of 73% and a maximum load of 77%. Keywords : Back-emf, BLDC Motor, PWM Frequency, Six-step Commutation, Zero Crossing Point
    corecore