3,906 research outputs found

    Controlling and Assessing Correlations of Cost Matrices in Heterogeneous Scheduling

    Get PDF
    International audienceThis paper considers the problem of allocating independent tasks to unrelated machines such as to minimize the maximum completion time. Testing heuristics for this problem requires the generation of cost matrices that specify the execution time of each task on each machine. Numerous studies showed that the task and machine heterogeneities belong to the properties impacting heuristics performance the most. This study focuses on orthogonal properties, the average correlations between each pair of rows and each pair of columns, which is a proximity measure with uniform instances 1. Cost matrices generated with a novel generation method show the effect of these correlations on the performance of several heuristics from the literature. In particular, EFT performance depends on whether the tasks are more correlated than the machines and HLPT performs the best when both correlations are close to one

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    Broker Positions in Task-Specific Knowledge Networks

    Get PDF
    In this paper we empirically investigate various benefits and costs associated with broker characteristics of individuals who operate in the account management system of financial service providers. We narrow our focus to broker positions in two specific task-specific knowledge networks that facilitate account management. We study the effect of broker positions on the contribution of individuals to organizational performance. We measure such a contribution by measuring the perceptions of others concerning a particular individual. We also explore how certain personal costs are associated with these task-specific broker positions. More specifically, we explore how these positions affect role ambiguity and role conflict, as self-perceived by that particular individual. To test the hypothesized effects we collect data for a network consisting of 55 individuals. We conclude with stating that service specification broker positions benefit organizations, but service delivery broker positions are detrimental to an organization and that they also invoke personal costs.social networks;account management;role stress;task-specific broker positions

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    Information fusion architectures for security and resource management in cyber physical systems

    Get PDF
    Data acquisition through sensors is very crucial in determining the operability of the observed physical entity. Cyber Physical Systems (CPSs) are an example of distributed systems where sensors embedded into the physical system are used in sensing and data acquisition. CPSs are a collaboration between the physical and the computational cyber components. The control decisions sent back to the actuators on the physical components from the computational cyber components closes the feedback loop of the CPS. Since, this feedback is solely based on the data collected through the embedded sensors, information acquisition from the data plays an extremely vital role in determining the operational stability of the CPS. Data collection process may be hindered by disturbances such as system faults, noise and security attacks. Hence, simple data acquisition techniques will not suffice as accurate system representation cannot be obtained. Therefore, more powerful methods of inferring information from collected data such as Information Fusion have to be used. Information fusion is analogous to the cognitive process used by humans to integrate data continuously from their senses to make inferences about their environment. Data from the sensors is combined using techniques drawn from several disciplines such as Adaptive Filtering, Machine Learning and Pattern Recognition. Decisions made from such combination of data form the crux of information fusion and differentiates it from a flat structured data aggregation. In this dissertation, multi-layered information fusion models are used to develop automated decision making architectures to service security and resource management requirements in Cyber Physical Systems --Abstract, page iv

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    Microstructure reconstruction using diffusion-based generative models

    Full text link
    Microstructure reconstruction has been an essential part of computational material engineering to reveal the relationship between the microstructures and the material properties. However, it is still challenging to find a general solution for microstructure characterization and reconstruction (MCR) tasks although there have been many attempts such as the descriptor-based reconstruction methods. To address this generality problem, the denoising diffusion probabilistic models are first employed for the microstructure reconstruction task which can be applied to various types of material systems. Several microstructures (e.g., carbonate, ceramics, copolymer, etc.) are considered to be reproduced for validating the proposed models while addressing the quality of the generated images with the quantitative evaluation metrics (FID score, precision and recall). The results show that the proposed diffusion model based approach is applicable for reproducing various types of microstructures with different spatial distributions of morphological features. The present approach also provides a stable training procedure with simple implementation for generating visually similar microstructures (and also statistically equivalent) without requiring expert knowledge and some time-consuming parametric studies. The proposed approach has the potential of being a universal microstructure reconstruction method for handling complex microstructures for materials science
    • …
    corecore