10,859 research outputs found

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain

    BioDiVinE: A Framework for Parallel Analysis of Biological Models

    Full text link
    In this paper a novel tool BioDiVinEfor parallel analysis of biological models is presented. The tool allows analysis of biological models specified in terms of a set of chemical reactions. Chemical reactions are transformed into a system of multi-affine differential equations. BioDiVinE employs techniques for finite discrete abstraction of the continuous state space. At that level, parallel analysis algorithms based on model checking are provided. In the paper, the key tool features are described and their application is demonstrated by means of a case study

    A generic framework for video understanding applied to group behavior recognition

    Get PDF
    This paper presents an approach to detect and track groups of people in video-surveillance applications, and to automatically recognize their behavior. This method keeps track of individuals moving together by maintaining a spacial and temporal group coherence. First, people are individually detected and tracked. Second, their trajectories are analyzed over a temporal window and clustered using the Mean-Shift algorithm. A coherence value describes how well a set of people can be described as a group. Furthermore, we propose a formal event description language. The group events recognition approach is successfully validated on 4 camera views from 3 datasets: an airport, a subway, a shopping center corridor and an entrance hall.Comment: (20/03/2012
    • …
    corecore