177 research outputs found

    Synthesis of LQR Controller Based on BAT Algorithm for Furuta Pendulum Stabilization

    Get PDF
    In this study, a controller design method based on the LQR method and BAT algorithm is presented for the Furuta pendulum stabilization system. Determine the LQR controller, it is often based on the designer's experience or using trial and error to find the Q, R matrices. The BAT search algorithm is based on the characteristics of the bat population in the wild. However, there are advantages to finding multivariate objective functions. The BAT algorithm has an improvement for the LQR controller to optimize the linear square function with fast response time, low energy consumption, overshoot, and a small number of oscillations. Swarm optimization algorithms have advantages in finding global extrema of multivariate functions. Therefore, with a large number of elements of the Q and R matrices, they can also be quickly found and these matrices still satisfy the Riccati equation. The controller with optimal parameters is verified through simulation results with different scenarios. The performance of the proposed controller is compared with a conventional LQR controller and implemented on a real system

    Particle swarm optimization and spiral dynamic algorithm-based interval type-2 fuzzy logic control of triple-link inverted pendulum system: A comparative assessment

    Get PDF
    This paper presents investigations into the development of an interval type-2 fuzzy logic control (IT2FLC) mechanism integrated with particle swarm optimization and spiral dynamic algorithm. The particle swarm optimization and spiral dynamic algorithm are used for enhanced performance of the IT2FLC by finding optimised values for input and output controller gains and parameter values of IT2FLC membership function as comparison purpose in order to identify better solution for the system. A new model of triple-link inverted pendulum on two-wheels system, developed within SimWise 4D software environment and integrated with Matlab/Simulink for control purpose. Several tests comprising system stabilization, disturbance rejection and convergence accuracy of the algorithms are carried out to demonstrate the robustness of the control approach. It is shown that the particle swarm optimization-based control mechanism performs better than the spiral dynamic algorithm-based control in terms of system stability, disturbance rejection and reduce noise. Moreover, the particle swarm optimization-based IT2FLC shows better performance in comparison to previous research. It is envisaged that this system and control algorithm can be very useful for the development of a mobile robot with extended functionality

    Modified Particle Swarm Optimization Based PID for Movement Control of Two-Wheeled Balancing Robot

    Get PDF
    Two-wheeled balancing robot is a mobile robot that has helped various human’s jobs such as the transportations. To control stability is still be the challenges for researchers. Three equations are obtained by analyzing the dynamics of the robot with the Newton approach. To control three degrees of freedom (DOF) of the robot, PIDs is tuned automatically and optimized by multivariable Modified Particle Swarm Optimization (MPSO). Some parameters of the PSO process are modified to be a nonlinear function. The inertia weight and learning factor variable on PSO are modified to decreasing exponentially and increasing exponentially, respectively. The Integral Absolute Error (IAE) and Integral Square Error (ISE) evaluate the error values. The performances of MPSO and PSO classic are tested by several Benchmark functions. The results of the Benchmark Function show that Modified PSO proposed to produce less error and overshoot. Therefore, the MPSO purposed are implemented to the plant of balancing robot to control the angle, the position, and the heading of the robot. The result of the simulation built shows that the MPSO – PID can make the robot moves to the desired positions and maintain the stability of the angle of the robot. The input of distance and angle of the robot are coupling so MPSO needs six variable to optimize the PID parameters of balancing and distance control

    Robust Control Theory Based Performance Investigation of an Inverted Pendulum System using Simulink

    Get PDF
    In this paper, the performance of inverted pendulum have been Investigated using robust control theory. The robust controllers used in this paper are H∞ Loop Shaping Design Using Glover McFarlane Method and mixed H∞ Loop Shaping Controllers. The mathematical model of Inverted Pendulum, a DC motor, Cart and Cart driving mechanism have been done successfully. Comparison of an inverted pendulum with H∞ Loop Shaping Design Using Glover McFarlane Method and H∞ Loop Shaping Controllers for a control target deviation of an angle from vertical of the inverted pendulum using two input signals (step and impulse). The simulation result shows that the inverted pendulum with mixed H∞ Loop Shaping Controller to have a small rise time, settling time and percentage overshoot in the step response and having a good response in the impulse response too. Finally the inverted pendulum with mixed H∞ Loop Shaping Controller shows the best performance in the overall simulation result

    Controller Design for Rotary Inverted Pendulum System Using Evolutionary Algorithms

    Get PDF
    This paper presents evolutionary approaches for designing rotational inverted pendulum (RIP) controller including genetic algorithms (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) methods. The goal is to balance the pendulum in the inverted position. Simulation and experimental results demonstrate the robustness and effectiveness of the proposed controllers with regard to parameter variations, noise effects, and load disturbances. The proposed methods can be considered as promising ways for control of various similar nonlinear systems

    Modeling and controller design of a single-linked inverted pendulum using optimized fuzzy logic controller approach

    Get PDF
    Inverted pendulum (IP) is an underactuated systems, since the input of the system is the force applied to the cart and the outputs are the cart position and pendulum angle (SIMO) system, which makes this system is highly nonlinear and unstable. Inverted pendulum considered as the one the most famous classical systems in the field of control and mechatronics. This project focuses on the design of a fuzzy controller to stabilize an inverted pendulum in a vertical position. A continuous correction mechanism is required to move the cart in a certain way in order to balance the pendulum to prevent it from falling down. This project started by a derivation of the mathematical model of the single linked inverted pendulum system by using Euler-Lagrange method. After that, a fuzzy logic controller (FLC) based Sugeno inference system was designed and genetic algorithm was used to tune the parameters of the controller using MATLAB software. Both controllers were tested using real time inverted pendulum. Experimental results showed that optimized FLC was much better than Sugeno FLC in terms of settling time, overshoot and steady state error

    Comparison of LQR and PID Controller Tuning Using PSO for Coupled Tank System

    Get PDF
    Coupled Tank System is one of the widely used applications in industries. Like other process control, it require suitable controller to obtain the good system performances. Hence, this paper presents the study of Coupled Tank System using LQR and PID controller. Both controller parameters are tuned using Single-Objective Particle Swarm Optimization (PSO). The performance of the system is compared based on the transient response in term of of Rise Time (Tr), SettlingTime (Ts), Steady State Error (ess) and Overshoot (OS).Simulation is conducted within MATLAB environment to verify the performances of the system. The result shows that both controller can be tuned using PSO, while LQR controller give slightly better results compared to PID controller

    Control of a modified double inverted pendulum using machine learning based model predictive control

    Get PDF
    Abstract: A machine learning-based controller (MLC) has been developed for a modified double inverted pendulum on a cart (MDIPC). First, the governing differential equations of the system are derived using the Lagrangian method. Then, a dataset is generated to train and test the machine learning-based models of the plant. Different types of machine learning models such as artificial neural networks (ANN), deep neural networks (DNN), long-short-term memory neural networks (LSTM), gated recurrent unit (GRU), and recurrent neural networks (RNN) are employed to capture the system’s dynamics. DNN and LSTM are selected due to their superior performance compared to other models. Finally, different variations of the Model Predictive Controller (MPC) are designed, and their performance is evaluated in terms of running time and tracking error. The proposed control methods are shown to have an advantage over the conventional nonlinear and linear model predictive control methods in simulation.Communication prĂ©sentĂ©e lors du congrĂšs international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), Ă  l’UniversitĂ© de Sherbrooke (QuĂ©bec), du 28 au 31 mai 2023
    • 

    corecore