125 research outputs found

    Enlarged Controllability of Riemann-Liouville Fractional Differential Equations

    Full text link
    We investigate exact enlarged controllability for time fractional diffusion systems of Riemann-Liouville type. The Hilbert uniqueness method is used to prove exact enlarged controllability for both cases of zone and pointwise actuators. A penalization method is given and the minimum energy control is characterized.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Nonlinear Dynamics', ISSN 1555-1415, eISSN 1555-1423, CODEN JCNDDM, available at [http://computationalnonlinear.asmedigitalcollection.asme.org]. Submitted 10-Aug-2017; Revised 28-Sept-2017 and 24-Oct-2017; Accepted 05-Nov-201

    The fractional Schr\"odinger equation on compact manifolds: Global controllability results

    Full text link
    The goal of this work is to prove global controllability and stabilization properties for the fractional Schr\"odinger equation on dd-dimensional compact Riemannian manifolds without boundary (M,g)(M,g). To prove our main results we use techniques of pseudo-differential calculus on manifolds. More precisely, by using microlocal analysis, we are able to prove propagation of singularities results which together with Strichartz type estimates and unique continuation property help us to achieve the main results of this work.Comment: 26 page

    Optimal Actuator Location of the Minimum Norm Controls for Stochastic Heat Equations

    Full text link
    In this paper, we study the approximate controllability for the stochastic heat equation over measurable sets, and the optimal actuator location of the minimum norm controls. We formulate a relaxed optimization problem for both actuator location and its corresponding minimum norm control into a two-person zero sum game problem and develop a sufficient and necessary condition for the optimal solution via Nash equilibrium. At last, we prove that the relaxed optimal solution is an optimal actuator location for the classical problem

    Identification of the class of initial data for the insensitizing control of the heat equation

    Get PDF
    This paper is devoted to analyze the class of initial data that can be insensitized for the heat equation. This issue has been extensively addressed in the literature both in the case of complete and approximate insensitization (see[19] and[1], respectively). But in the context of pure insensitization there are very few results identifying the class of initial data that can be insensitized. This is a delicate issue which is related to the fact that insensitization turns out to be equivalent to suitable observability estimates for a coupled system of heat equations, one being forward and the other one backward in time. The existing Carleman inequalities techniques can be applied but they only give interior information of the solutions, which hardly allows identifying the initial data because of the strong irreversibility of the equations involved in the system, one of them being an obstruction at the initial time t = 0 and the other one at the final one t = T. In this article we consider different geometric configurations in which the subdomains to be insensitized and the one in which the external control acts play a key role. We show that, under rather restrictive geometric restrictions, initial data in a class that can be characterized in terms of a summability condition of their Fourier coefficients with suitable weights, can be insensitized. But, the main result of the paper, which might seem surprising, shows that this fails to be true in general, so that even the first eigenfunction of the system can not be insensitized. This result is similar to those obtained in the context of the null controllability of the heat equation in unbounded domains in[14] where it is shown that smooth and compactly supported initial data may not be controlled. Our proofs combine the existing observability results for heat equations obtained by means of Carleman inequalities, energy and gaussian estimates and Fourier expansions

    External optimal control of fractional parabolic PDEs

    Full text link
    In this paper we introduce a new notion of optimal control, or source identification in inverse, problems with fractional parabolic PDEs as constraints. This new notion allows a source/control placement outside the domain where the PDE is fulfilled. We tackle the Dirichlet, the Neumann and the Robin cases. For the fractional elliptic PDEs this has been recently investigated by the authors in \cite{HAntil_RKhatri_MWarma_2018a}. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the source/control either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control in the exterior. We introduce the notions of weak and very-weak solutions to the parabolic Dirichlet problem. We present an approach on how to approximate the parabolic Dirichlet solutions by the parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.Comment: arXiv admin note: text overlap with arXiv:1811.0451
    corecore