6,378 research outputs found

    Koopman Operator and its Approximations for Systems with Symmetries

    Get PDF
    Nonlinear dynamical systems with symmetries exhibit a rich variety of behaviors, including complex attractor-basin portraits and enhanced and suppressed bifurcations. Symmetry arguments provide a way to study these collective behaviors and to simplify their analysis. The Koopman operator is an infinite dimensional linear operator that fully captures a system's nonlinear dynamics through the linear evolution of functions of the state space. Importantly, in contrast with local linearization, it preserves a system's global nonlinear features. We demonstrate how the presence of symmetries affects the Koopman operator structure and its spectral properties. In fact, we show that symmetry considerations can also simplify finding the Koopman operator approximations using the extended and kernel dynamic mode decomposition methods (EDMD and kernel DMD). Specifically, representation theory allows us to demonstrate that an isotypic component basis induces block diagonal structure in operator approximations, revealing hidden organization. Practically, if the data is symmetric, the EDMD and kernel DMD methods can be modified to give more efficient computation of the Koopman operator approximation and its eigenvalues, eigenfunctions, and eigenmodes. Rounding out the development, we discuss the effect of measurement noise

    Relative Periodic Solutions of the Complex Ginzburg-Landau Equation

    Full text link
    A method of finding relative periodic orbits for differential equations with continuous symmetries is described and its utility demonstrated by computing relative periodic solutions for the one-dimensional complex Ginzburg-Landau equation (CGLE) with periodic boundary conditions. A relative periodic solution is a solution that is periodic in time, up to a transformation by an element of the equation's symmetry group. With the method used, relative periodic solutions are represented by a space-time Fourier series modified to include the symmetry group element and are sought as solutions to a system of nonlinear algebraic equations for the Fourier coefficients, group element, and time period. The 77 relative periodic solutions found for the CGLE exhibit a wide variety of temporal dynamics, with the sum of their positive Lyapunov exponents varying from 5.19 to 60.35 and their unstable dimensions from 3 to 8. Preliminary work indicates that weighted averages over the collection of relative periodic solutions accurately approximate the value of several functionals on typical trajectories.Comment: 32 pages, 12 figure

    Collective Current Rectification

    Full text link
    We consider a network of coupled underdamped ac-driven dynamical units exposed to a heat bath. The topology of connections defines the absence/presence of certain spatial symmetries, which in turn cause nonzero/zero value of a mean dc-output. We discuss dynamical mechanisms of the rectification and identify dc-current reversals with synchronization/desynchronization transitions in the network dynamics.Comment: 3 fig

    Many-body Quantum Chaos and Entanglement in a Quantum Ratchet

    Get PDF
    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.Comment: 6 pages, 3 figures. 1 tabl

    Synchronization of chaotic networks with time-delayed couplings: An analytic study

    Full text link
    Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold. For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic results are compared with networks of iterated tent maps and Lang-Kobayashi equations which imitate the behaviour of networks of semiconductor lasers

    Isotropy of Angular Frequencies and Weak Chimeras With Broken Symmetry

    Get PDF
    The notion of a weak chimeras provides a tractable definition for chimera states in networks of finitely many phase oscillators. Here we generalize the definition of a weak chimera to a more general class of equivariant dynamical systems by characterizing solutions in terms of the isotropy of their angular frequency vector - for coupled phase oscillators the angular frequency vector is given by the average of the vector field along a trajectory. Symmetries of solutions automatically imply angular frequency synchronization. We show that the presence of such symmetries is not necessary by giving a result for the existence of weak chimeras without instantaneous or setwise symmetries for coupled phase oscillators. Moreover, we construct a coupling function that gives rise to chaotic weak chimeras without symmetry in weakly coupled populations of phase oscillators with generalized coupling
    corecore