5,584 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    Get PDF
    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described

    Design concept for the Flight Telerobotic Servicer (FITS)

    Get PDF
    NASA has just completed an in-house Phase B Study (one of three studies) for the preliminary definition of a teleoperated robotic device that will be used on the National Space Transportation System (NSTS) and the Space Station to assist the astronauts in the performance of assembly, maintenance, servicing, and inspection tasks. This device, the Flight Telerobotic Servicer (FTS), will become a permanent element on the Space Station. Although it is primarily a teleoperated device, the FTS is being designed to grow and evolve to higher states of autonomy. Eventually, it will be capable of working from the Orbital Maneuvering Vehicle (OMV) to service free-flying spacecraft at great distances from the Space Station. A version of the FTS could also be resident on the large space platforms that are part of the Space Station Program

    Telepresence and Space Station Freedom workstation operations

    Get PDF
    The Space Station Freedom workstation system is a distributed network of computer based workstations that provides the man-machine interfaces for controlling space station systems. This includes control of external manipulator, robotic and free flyer devices by crewmembers in the space station's pressurized shirt-sleeve environment. These remotely controlled devices help minimize the requirement for costly crew extravehicular activity (EVA) time for such tasks as station assembly and payload support. Direct window views may be used for controlling some of the systems, but many activities will be remote or require levels of detail not possible by direct observation. Since controlling remote devices becomes more difficult when direct views are inadequate or unavailable, many performance enhancing techniques have been considered for representing information about remote activities to the operator. Described here are the telepresence techniques under consideration to support operations and training. This includes video enhancements (e.g., graphic and text overlays and stereo viewing), machine vision systems, remote activity animation, and force reflection representation

    Robotic mobile servicing platform for space station

    Get PDF
    The semi-autonomous inspection and servicing of the Space Station's major thermal, electrical, mechanical subsystems are critical needs for the safe and reliable operation of the station. A conceptual design is presented of a self-intelligent, small and highly mobile robotic platform. Equipped with suitable inspection sensors (cameras, ammonia detectors, etc.), this system's primary mission is to perform routine, autonomous inspection of the Station's primary subsystems. Typical tasks include detection of leaks from thermal fluid or refueling lines, as well as detection of micro-meteroid damage to the primary structure. Equipped with stereo cameras and a dexterous manipulator, simple teleoperator repairs and small On-orbit Replacement Unit (ORU) changeout can also be accomplished. More difficult robotic repairs would be left to the larger, more sophisticated Mobile Remote Manipulator System (MRMS). An ancillary function is to ferry crew members and equipment around the station. The primary design objectives were to provide a flexible, but uncomplicated robotic platform, one which caused minimal impact to the design of the Station's primary structure but could accept more advanced telerobotic technology as it evolves

    Adaptive shared control system

    Get PDF

    Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies
    corecore