22,054 research outputs found

    V/STOL concepts in the United States: Past, present, and future

    Get PDF
    Nonhelicopter types of V/STOL aircraft developed in the United States are reviewed, and some lessons learned from a selected number of concepts are highlighted. The AV-8B, which was developed by modifications to the British Harrier is the only current concept examined. Configurations proposed for the future subsonic, multimissing aircraft and the future supersonic fighter/attack aircraft are described. Emphasis is on these supersonic concepts

    Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    Get PDF
    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack

    AFTI/F-16 digital flight control system experience

    Get PDF
    The Advanced Flighter Technology Integration (AFTI) F-16 program is investigating the integration of emerging technologies into an advanced fighter aircraft. The three major technologies involved are the triplex digital flight control system; decoupled aircraft flight control; and integration of avionics, pilot displays, and flight control. In addition to investigating improvements in fighter performance, the AFTI/F-16 program provides a look at generic problems facing highly integrated, flight-crucial digital controls. An overview of the AFTI/F-16 systems is followed by a summary of flight test experience and recommendations

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974

    A Passivity-based Nonlinear Admittance Control with Application to Powered Upper-limb Control under Unknown Environmental Interactions

    Get PDF
    This paper presents an admittance controller based on the passivity theory for a powered upper-limb exoskeleton robot which is governed by the nonlinear equation of motion. Passivity allows us to include a human operator and environmental interaction in the control loop. The robot interacts with the human operator via F/T sensor and interacts with the environment mainly via end-effectors. Although the environmental interaction cannot be detected by any sensors (hence unknown), passivity allows us to have natural interaction. An analysis shows that the behavior of the actual system mimics that of a nominal model as the control gain goes to infinity, which implies that the proposed approach is an admittance controller. However, because the control gain cannot grow infinitely in practice, the performance limitation according to the achievable control gain is also analyzed. The result of this analysis indicates that the performance in the sense of infinite norm increases linearly with the control gain. In the experiments, the proposed properties were verified using 1 degree-of-freedom testbench, and an actual powered upper-limb exoskeleton was used to lift and maneuver the unknown payload.Comment: Accepted in IEEE/ASME Transactions on Mechatronics (T-MECH

    Enhancement of Intake Generated Swirl to Improve Lean Combustion

    Get PDF
    As stricter emission and fuel efficiency regulations continue to be set forth by government regulating bodies, the need to optimize the gasoline engine and control every aspect of combustion has never been greater. Gasoline engines which utilize exhaust gas recirculation (EGR) and lean-burn combustion systems are attractive pathways which have shown potential in reaching these targets. However, due to the suppressed reactivity, the ability to ignite and completely burn the mixture is reduced and can lead to unstable operation. It is well established that increased in-cylinder air motion can improve the mixing and turbulence generation which in turn, increases the probability of ignition and the flame velocity. This work investigates the potential benefit of enhanced swirl motion, which is the rotation of charge about the cylinder axis, under lean engine operating conditions. The ultimate objective is to extend the lean-limit of combustion and increase the thermal efficiency. Steady flow tests were conducted on a cylinder head from a single-cylinder research engine using an in-house developed flow bench system. Swirl speeds were measured using a vane-type swirl meter. Computational fluid dynamics (CFD) simulations were conducted to investigate different intake geometries to enhance the swirl motion. The intake runner geometry which produced an increase in the swirl speed was tested on the flow bench. The steady-flow results showed an increase in the swirl ratio over the baseline measurements. Finally, engine tests were conducted to investigate the effect of the enhanced swirl. The engine test results demonstrated that the lean limits were extended and the thermal efficiency was increased with the enhanced swirl
    • …
    corecore