408 research outputs found

    Control of a Snake Robot for Ascending and Descending Steps

    Get PDF
    This paper proposes control method for a snake robot to ascend and descend steps. In a multiplane step environment, it is necessary for locomotion to transfer from one plane to another. When a snake robot moves, it touches several planes as its body is long and thin. In this paper, we propose a control method to track the trajectory of a snake robot in a step environment. We decomposed the 3-D motion of the robot into two simple models by introducing an assumption that simplifies the model and controller, and derive a model of the robot as a hybrid system with switching. The control method consists of a tracking controller, a method for shifting the robot\u27s part connecting the planes, and active lifting to control the shape of the robot. Ascent and descent experiments confirm the effectiveness of the proposed controller and the method for shifting the connecting part of the robot\u27s body

    A Data-Driven Model with Hysteresis Compensation for I2RIS Robot

    Full text link
    Retinal microsurgery is a high-precision surgery performed on an exceedingly delicate tissue. It now requires extensively trained and highly skilled surgeons. Given the restricted range of instrument motion in the confined intraocular space, and also potentially restricting instrument contact with the sclera, snake-like robots may prove to be a promising technology to provide surgeons with greater flexibility, dexterity, space access, and positioning accuracy during retinal procedures requiring high precision and advantageous tooltip approach angles, such as retinal vein cannulation and epiretinal membrane peeling. Kinematics modeling of these robots is an essential step toward accurate position control, however, as opposed to conventional manipulators, modeling of these robots does not follow a straightforward method due to their complex mechanical structure and actuation mechanisms. Especially, in wire-driven snake-like robots, the hysteresis problem due to the wire tension condition can have a significant impact on the positioning accuracy of these robots. In this paper, we proposed an experimental kinematics model with a hysteresis compensation algorithm using the probabilistic Gaussian mixture models (GMM) Gaussian mixture regression (GMR) approach. Experimental results on the two-degree-of-freedom (DOF) integrated robotic intraocular snake (I2RIS) show that the proposed model provides 0.4 deg accuracy, which is an overall 60% and 70% of improvement for yaw and pitch degrees of freedom, respectively, compared to a previous model of this robot

    Motion control of a snake robot moving between two non-parallel planes

    Get PDF
    A control method that makes the head of a snake robot follow an arbitrary trajectory on two non-parallel planes, including coexisting sloped and flat planes, is presented. We clarify an appropriate condition of contact between the robot and planes and design a controller for the part of the robot connecting the two planes that satisfies the contact condition. Assuming that the contact condition is satisfied, we derive a simplified model of the robot and design a controller for trajectory tracking of the robot’s head. The controller uses kinematic redundancy to avoid violating the limit of the joint angle and a collision between the robot and the edge of a plane. The effectiveness of the proposed method is demonstrated in experiments using an actual robot

    Manipulability analysis of a snake robot without lateral constraint for head position control

    Get PDF
    Two dynamic manipulability criteria of a snake robot with sideways slipping are proposed with the application to head trajectory tracking control in mind. The singular posture, which is crucial in head tracking control, is characterized by the manipulability and examined for families of typical robot shapes. Differences in the singular postures from those of the robot with lateral constraints, which have not been clear in previous studies, are clarified in the analysis. In addition to the examination of local properties using the concept of manipulability, we discuss the effect of isotropic friction as a global property. It is well known that, at least empirically, a snake robot needs anisotropy in friction to move by serpentine locomotion if there are no objects for it to push around. From the point of view of integrability, we show one of the necessary conditions for uncontrollability is satisfied if the friction is isotropic

    Development and Control of Articulated Mobile Robot for Climbing Steep Stairs

    Get PDF
    In this paper, we develop an articulated mobile robot that can climb stairs, and also move in narrow spaces and on 3-D terrain. This paper presents two control methods for this robot. The first is a 3-D steering method that is used to adapt the robot to the surrounding terrain. In this method, the robot relaxes its joints, allowing it to adapt to the terrain using its own weight, and then, resumes its motion employing the follow-the-leader method. The second control method is the semi-autonomous stair climbing method. In this method, the robot connects with the treads of the stairs using a body called a connecting part, and then shifts the connecting part from its head to its tail. The robot then uses the sensor information to shift the connecting part with appropriate timing. The robot can climb stairs using this method even if the stairs are steep, and the sizes of the riser and the tread of the stairs are unknown. Experiments are performed to demonstrate the effectiveness of the proposed methods and the developed robot

    Head-Trajectory-Tracking Control of a Snake Robot and Its Robustness Under Actuator Failure

    Get PDF
    This brief considers the problem of trajectory tracking of a planar snake robot without a lateral constraint. The reference trajectory of the head position and the orientation of link 1 are given, and torque control is determined to reduce tracking errors. The performance of the controller was tested in a number of simulations. The robustness during actuator failure was also studied. We assumed that one of the actuators was broken and the corresponding joint became passive. Furthermore, as a more realistic situation, we considered an instance when some of the states were not readily accessible from the sensor readings and needed to be estimated by an observer. The extended Kalman filter was employed for this purpose, and the performance of the closed-loop system with the observer was also tested in simulations

    Smooth control of an articulated mobile robot with switching constraints

    Get PDF
    The paper describes a smooth controller of an articulated mobile robot with switching constraints. The use of switching constraints associated with grounded/lifted wheels is an effective method of controlling various motions; e.g. the avoidance of a moving obstacle. A model of an articulated mobile robot that has active and passive wheels and active joints with switching constraints is derived. A controller that accomplishes the trajectory tracking of the robot’s head and subtasks using smooth joint input is proposed on the basis of the model. Simulations and experiments are presented to show the effectiveness of the proposed controller

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced
    • …
    corecore