10,238 research outputs found

    An Omnidirectional Aerial Manipulation Platform for Contact-Based Inspection

    Full text link
    This paper presents an omnidirectional aerial manipulation platform for robust and responsive interaction with unstructured environments, toward the goal of contact-based inspection. The fully actuated tilt-rotor aerial system is equipped with a rigidly mounted end-effector, and is able to exert a 6 degree of freedom force and torque, decoupling the system's translational and rotational dynamics, and enabling precise interaction with the environment while maintaining stability. An impedance controller with selective apparent inertia is formulated to permit compliance in certain degrees of freedom while achieving precise trajectory tracking and disturbance rejection in others. Experiments demonstrate disturbance rejection, push-and-slide interaction, and on-board state estimation with depth servoing to interact with local surfaces. The system is also validated as a tool for contact-based non-destructive testing of concrete infrastructure.Comment: Accepted submission to Robotics: Science and Systems conference 2019. 9 pages, 12 figure

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    Quadrotor control for persistent surveillance of dynamic environments

    Full text link
    Thesis (M.S.)--Boston UniversityThe last decade has witnessed many advances in the field of small scale unmanned aerial vehicles (UAVs). In particular, the quadrotor has attracted significant attention. Due to its ability to perform vertical takeoff and landing, and to operate in cluttered spaces, the quadrotor is utilized in numerous practical applications, such as reconnaissance and information gathering in unsafe or otherwise unreachable environments. This work considers the application of aerial surveillance over a city-like environment. The thesis presents a framework for automatic deployment of quadrotors to monitor and react to dynamically changing events. The framework has a hierarchical structure. At the top level, the UAVs perform complex behaviors that satisfy high- level mission specifications. At the bottom level, low-level controllers drive actuators on vehicles to perform the desired maneuvers. In parallel with the development of controllers, this work covers the implementation of the system into an experimental testbed. The testbed emulates a city using physical objects to represent static features and projectors to display dynamic events occurring on the ground as seen by an aerial vehicle. The experimental platform features a motion capture system that provides position data for UAVs and physical features of the environment, allowing for precise, closed-loop control of the vehicles. Experimental runs in the testbed are used to validate the effectiveness of the developed control strategies
    corecore