3,067 research outputs found

    Model learning for trajectory tracking of robot manipulators

    Get PDF
    Abstract Model based controllers have drastically improved robot performance, increasing task accuracy while reducing control effort. Nevertheless, all this was realized with a very strong assumption: the exact knowledge of the physical properties of both the robot and the environment that surrounds it. This assertion is often misleading: in fact modern robots are modeled in a very approximate way and, more important, the environment is almost never static and completely known. Also for systems very simple, such as robot manipulators, these assumptions are still too strong and must be relaxed. Many methods were developed which, exploiting previous experiences, are able to refine the nominal model: from classic identification techniques to more modern machine learning based approaches. Indeed, the topic of this thesis is the investigation of these data driven techniques in the context of robot control for trajectory tracking. In the first two chapters, preliminary knowledge is provided on both model based controllers, used in robotics to assure precise trajectory tracking, and model learning techniques. In the following three chapters, are presented the novelties introduced by the author in this context with respect to the state of the art: three works with the same premise (an inaccurate system modeling), an identical goal (accurate trajectory tracking control) but with small differences according to the specific platform of application (fully actuated, underactuated, redundant robots). In all the considered architectures, an online learning scheme has been introduced to correct the nominal feedback linearization control law. Indeed, the method has been primarily introduced in the literature to cope with fully actuated systems, showing its efficacy in the accurate tracking of joint space trajectories also with an inaccurate dynamic model. The main novelty of the technique was the use of only kinematics information, instead of torque measurements (in general very noisy), to online retrieve and compensate the dynamic mismatches. After that the method has been extended to underactuated robots. This new architecture was composed by an online learning correction of the controller, acting on the actuated part of the system (the nominal partial feedback linearization), and an offline planning phase, required to realize a dynamically feasible trajectory also for the zero dynamics of the system. The scheme was iterative: after each trial, according to the collected information, both the phases were improved and then repeated until the task achievement. Also in this case the method showed its capability, both in numerical simulations and on real experiments on a robotics platform. Eventually the method has been applied to redundant systems: differently from before, in this context the task consisted in the accurate tracking of a Cartesian end effector trajectory. In principle very similar to the fully actuated case, the presence of redundancy slowed down drastically the learning machinery convergence, worsening the performance. In order to cope with this, a redundancy resolution was proposed that, exploiting an approximation of the learning algorithm (Gaussian process regression), allowed to locally maximize the information and so select the most convenient self motion for the system; moreover, all of this was realized with just the resolution of a quadratic programming problem. Also in this case the method showed its performance, realizing an accurate online tracking while reducing both the control effort and the joints velocity, obtaining so a natural behaviour. The thesis concludes with summary considerations on the proposed approach and with possible future directions of research

    The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

    Full text link
    Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    Sensor failure detection and recovery by neural networks

    Get PDF
    A new method of sensor failure detection, isolation, and accommodation is described using a neural network approach. In a propulsion system such as the Space Shuttle Main Engine, the dynamics are usually much higher than the order of the system. This built-in redundancy of the sensors can be utilized to detect and correct sensor failure problems. The goal of the proposed scheme is to train a neural network to identify the sensor whose measurement is not consistent with other sensor outputs. Another neural network is trained to recover the value of critical variables when their measurements fail. Techniques for training the network with a limited amount of data are developed. The proposed scheme is tested using the simulated data of the Space Shuttle Main Engine (SSME) inflight sensor group

    Estimate of convection-diffusion coefficients from modulated perturbative experiments as an inverse problem

    Full text link
    The estimate of coefficients of the Convection-Diffusion Equation (CDE) from experimental measurements belongs in the category of inverse problems, which are known to come with issues of ill-conditioning or singularity. Here we concentrate on a particular class that can be reduced to a linear algebraic problem, with explicit solution. Ill-conditioning of the problem corresponds to the vanishing of one eigenvalue of the matrix to be inverted. The comparison with algorithms based upon matching experimental data against numerical integration of the CDE sheds light on the accuracy of the parameter estimation procedures, and suggests a path for a more precise assessment of the profiles and of the related uncertainty. Several instances of the implementation of the algorithm to real data are presented.Comment: Extended version of an invited talk presented at the 2012 EPS Conference. To appear in Plasma Physics and Controlled Fusio

    Integrated control and health management. Orbit transfer rocket engine technology program

    Get PDF
    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods
    • …
    corecore