8 research outputs found

    The Crow's Nest, Issue 4

    Get PDF
    A Quarterly Review of Research & Activities from the Acquisition Research Program at Naval Postgraduate Schoo

    Dynamical Models of biological networks

    Get PDF
    In der Molekularbiologie sind mathematische Modelle von regulatorischen und metabolischen Netzwerken essentiell, um von einer Betrachtung isolierter Komponenten und Interaktionen zu einer systemischen Betrachtungsweise zu kommen. Genregulatorische Systeme eignen sich besonders gut zur Modellierung, da sie experimentell leicht zugänglich und manipulierbar sind. In dieser Arbeit werden verschiedene genregulatorische Netzwerke unter Zuhilfenahme von mathematischen Modellen analysiert. Weiteres wird ein Modell einer in silico Zelle vorgestellt und diskutiert. Zunächst werden zwei zyklische genregulatorische Netzwerke - der klassische Repressilator und ein Repressilator mit zusätzlicher Autoaktivierung – im Detail mit analytischen Methoden untersucht. Um den Einfluß zufällig schwankender Molekülzahlen auf die Dynamik der beiden Systeme zu untersuchen, werden stochastische Modelle erstellt und die beiden oszillierenden Systeme verglichen. Weiteres werden mögliche Auswirkungen von Genduplikationen auf ein einfaches genregulatorisches Netzwerk untersucht. Dazu wird zunächst ein kleines Netzwerk von GATA Transkriptionsfaktoren, das eine zentrale Rolle in der Regulation des Stickstoffmetabolismus in Hefe spielt, modelliert und das Modell mit experimentellen Daten verglichen, um Parameterregionen einschränken zu können. Außerdem werden potentielle Topologien genregulatorischer Netzwerke von GATA Transkriptionsfaktoren in verwandten Fungi mittels sequenzbasierender Methoden gesucht und verglichen. Im letzten Teil der Arbeit wird MiniCellSim vorgestellt, ein Modell einer selbständigen in silico Zelle. Es erlaubt ein dynamisches System, das eine Protozelle mit einem genregulatorischen Netzwerk, einem einfachen Metabolismus und einer Zellmembran beschreibt, aus einer Sequenz abzuleiten. Nachdem alle Parameter, die zur Berechnung des dynamischen Systems benötigt werden, ohne zusätzliche Eingabe nur aus der Sequenzinformation abgeleitet werden, kann das Modell für Studien zur Evolution von genregulatorischen Netzwerken verwendet werden.In this thesis different types of gene regulatory networks are analysed using mathematical models. Further a computational framework of a novel, self-contained in silico cell model is described and discussed. At first the behaviour of two cyclic gene regulatory systems - the classical repressilator and a repressilator with additional auto-activation - are inspected in detail using analytical bifurcation analysis. To examine the behaviour under random fluctuations, stochastic versions of the systems are created. Using the analytical results sustained oscillations in the stochastic versions are obtained, and the two oscillating systems compared. In the second part of the thesis possible implications of gene duplication on a simple gene regulatory system are inspected. A model of a small network formed by GATA-type transcription factors, central in nitrogen catabolite repression in yeast, is created and validated against experimental data to obtain approximate parameter values. Further, topologies of potential gene regulatory networks and modules consisting of GATA-type transcription factors in other fungi are derived using sequence-based approaches and compared. The last part describes MiniCellSim, a model of a self-contained in silico cell. In this framework a dynamical system describing a protocell with a gene regulatory network, a simple metabolism, and a cell membrane is derived from a string representing a genome. All the relevant parameters required to compute the time evolution of the dynamical system are calculated from within the model, allowing the system to be used in studies of evolution of gene regulatory and metabolic networks

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore