221 research outputs found

    Optimization of engine air path with hybrid boosting systems

    Get PDF

    Real-time energy management of the electric turbocharger based on explicit model predictive control

    Get PDF
    The electric turbocharger is a promising solution for engine downsizing. It provides great potential for vehicle fuel efficiency improvement. The electric turbocharger makes engines run as hybrid systems so critical challenges are raised in energy management and control. This paper proposes a real-time energy management strategy based on updating and tracking of the optimal exhaust pressure setpoint. Starting from the engine characterisation, the impacts of the electric turbocharger on engine response and exhaust emissions are analysed. A multivariable explicit model predictive controller is designed to regulate the key variables in the engine air system, while the optimal setpoints of those variables are generated by a high level controller. The two-level controller works in a highly efficient way to fulfill the optimal energy management. This strategy has been validated in physical simulations and experimental testing. Excellent tracking performance and sustainable energy management demonstrate the effectiveness of the proposed method

    Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

    Get PDF
    Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented. A transient 3D CFD/FEM (Computation Fluid Dynamics/Finite Element Modelling) simulation is conducted and predicts that external heat losses will be reduced by 70% compared to a standard turbocharger, i.e. non-insulated turbocharger. A 1D modelling methodology is then presented for capturing the behaviour of the inner-insulated turbocharger. This is important as conventional models based on isentropic efficiency maps cannot accurately predict turbine outlet temperature. The alternative model is essential to demonstrate benefits in system-level simulations. Experimental results are presented from a transient air-path testing facility to validate the 1D model and demonstrate the characteristics of the inner-insulated turbocharger. Finally, the validated 1D model is used within a powertrain optimization simulation to demonstrate an improvement in fuel consumption for iso-NOx emissions over a low load city cycle of up to 3%. The work was conducted under the THOMSON project which has received funding from the European Union's Horizon 2020 Program for research, technological development and demonstration under Agreement no. 724037. The project aims to increase the market penetration of 48V hybrid vehicles.</p

    Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

    Get PDF
    Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented. A transient 3D CFD/FEM (Computation Fluid Dynamics/Finite Element Modelling) simulation is conducted and predicts that external heat losses will be reduced by 70% compared to a standard turbocharger, i.e. non-insulated turbocharger. A 1D modelling methodology is then presented for capturing the behaviour of the inner-insulated turbocharger. This is important as conventional models based on isentropic efficiency maps cannot accurately predict turbine outlet temperature. The alternative model is essential to demonstrate benefits in system-level simulations. Experimental results are presented from a transient air-path testing facility to validate the 1D model and demonstrate the characteristics of the inner-insulated turbocharger. Finally, the validated 1D model is used within a powertrain optimization simulation to demonstrate an improvement in fuel consumption for iso-NOx emissions over a low load city cycle of up to 3%. The work was conducted under the THOMSON project which has received funding from the European Union's Horizon 2020 Program for research, technological development and demonstration under Agreement no. 724037. The project aims to increase the market penetration of 48V hybrid vehicles.</p

    An integrated framework on characterization, control, and testing of an electrical turbocharger assist

    Get PDF
    Engine downsizing is a promising trend for improving fuel efficiency of conventional powertrain vehicles. The reduced engine capacity can be compensated by better air delivery through electrically assisted boosting systems, while the most critical technology is the electric turbocharger. In this paper, an integrated framework for characterization, control, and testing of the electric turbocharger is proposed. Starting from a physical characterization of the engine, the impact of the electric turbocharger on fuel economy and exhaust emissions are both analyzed, as well as its controllability. A multi-variable robust controller is designed to regulate the dynamics of the electrified turbocharged engine in a systematic approach. To minimize the fuel consumption in real time, a supervisory level controller is designed to update the setpoints of key controlled variables in an optimal way. Furthermore, a cutting-edge experimental platform of a heavy-duty electrified turbocharged diesel engine is built. The demonstrated excellent tracking performance, high robustness, and improvements on fuel efficiency in experimental results prove the effectiveness of both the developed system and the proposed control strategy

    Control-oriented dynamics analysis for electrified turbocharged diesel engines

    Get PDF
    Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics. The dynamics analysis and controller are successfully validated through experiments and simulations

    Decoupling control of electrified turbocharged diesel engines

    Get PDF
    Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as a promising solution for its advantages in engine downsizing and exhaust gas energy recovery. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The control of the energy flows in an electrified turbocharged diesel engine (ETDE) is still in its infancy. Developing a promising multi-input multi-output (MIMO) control strategy is essential in exploring the maximum benefits of electrified turbocharger. In this paper, the dynamics in an ETDE, especially the couplings among multiple loops in the air path are analyzed. Based on the analysis, a model-based MIMO decoupling control framework is designed to regulate the air path dynamics. The proposed control strategy can achieve fast and accurate tracking on selected control variables and is successfully validated on a physical model in simulations

    Electric Boosting and Energy Recovery Systems for Engine Downsizing

    Get PDF
    Due to the increasing demand for better fuel economy and increasingly stringent emissions regulations, engine manufacturers have paid attention towards engine downsizing as the most suitable technology to meet these requirements. This study sheds light on the technology currently available or under development that enables engine downsizing in passenger cars. Pros and cons, and any recently published literature of these systems, will be considered. The study clearly shows that no certain boosting method is superior. Selection of the best boosting method depends largely on the application and complexity of the system

    Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting-A Review

    Get PDF
    As emissions regulations become increasingly demanding, higher power density engine (downsized/downspeeded and increasingly right-sized) requirements are driving the development of turbocharging systems. Variable geometry turbocharging (VGT) at its most basic level is the first step up from standard fixed geometry turbocharger systems. Currently, VGTs offer significant alternative options or complementarity vis-à-vis more advanced turbocharging options. This review details the range of prominent variable geometry technologies that are commercially available or openly under development, for both turbines and compressors and discusses the relative merits of each. Along with prominent diesel-engine boosting systems, attention is given to the control schemes employed and the actuation systems required to operate variable geometry devices, and the specific challenges associated with turbines designed for gasoline engines
    corecore