1,787 research outputs found

    A Flight Mechanics-Centric Review of Bird-Scale Flapping Flight

    Get PDF
    This paper reviews the flight mechanics and control of birds and bird-size aircraft. It is intended to fill a niche in the current survey literature which focuses primarily on the aerodynamics, flight dynamics and control of insect scale flight. We review the flight mechanics from first principles and summarize some recent results on the stability and control of birds and bird-scale aircraft. Birds spend a considerable portion of their flight in the gliding (i.e., non-flapping) phase. Therefore, we also review the stability and control of gliding flight, and particularly those aspects which are derived from the unique control features of birds

    Boundary feedback stabilization of a flexible wing model under unsteady aerodynamic loads

    Full text link
    This paper addresses the boundary stabilization of a flexible wing model, both in bending and twisting displacements, under unsteady aerodynamic loads, and in presence of a store. The wing dynamics is captured by a distributed parameter system as a coupled Euler-Bernoulli and Timoshenko beam model. The problem is tackled in the framework of semigroup theory, and a Lyapunov-based stability analysis is carried out to assess that the system energy, as well as the bending and twisting displacements, decay exponentially to zero. The effectiveness of the proposed boundary control scheme is evaluated based on simulations.Comment: Published in Automatica as a brief pape

    A Study on the Control, Dynamics, and Hardware of Micro Aerial Biomimetic Flapping Wing Vehicles

    Get PDF
    Biological flight encapsulates 400 million years of evolutionary ingenuity and thus is the most efficient way to fly. If an engineering pursuit is not adhering to biomimetic inspiration, then it is probably not the most efficient design. An aircraft that is inspired by bird or other biological modes of flight is called an ornithopter and is the original design of the first airplanes. Flapping wings hold much engineering promise with the potential to produce lift and thrust simultaneously. In this research, modeling and simulation of a flapping wing vehicle is generated. The purpose of this research is to develop a control algorithm for a model describing flapping wing robotics. The modeling approach consists of initially considering the simplest possible model and subsequently building models of increasing complexity. This research finds that a proportional derivative feedback and feedforward controller applied to a nonlinear model is the most practical controller for a flapping system. Due to the complex aerodynamics of ornithopter flight, modeling and control are very difficult. Overall, this project aims to analyze and simulate different forms of biological flapping flight and robotic ornithopters, investigate different control methods, and also acquire understanding of the hardware of a flapping wing aerial vehicle

    Neurobiologically Inspired Control of Engineered Flapping Flight

    Get PDF
    This article presents a new control approach for engineered flapping flight with many interacting degrees of freedom. This paper explores the applications of neurobiologically inspired control systems in the form of Central Pattern Generators (CPG) to generate wing trajectories for potential flapping flight MAVs. We present a rigorous mathematical and control theoretic framework to design complex three dimensional motions of flapping wings. Most flapping flight demonstrators are mechanically limited in generating the wing trajectories. Because CPGs lend themselves to more biological examples of flight, a novel robotic model has been developed to emulate the flight of bats. This model has shoulder and leg joints totaling 10 degrees of freedom for control of wing properties. Results of wind tunnel experiments and numerical simulation of CPG-based flight control validate the effectiveness of the proposed neurobiologically inspired control approach

    Boundary Control of a Nonhomogeneous Flexible Wing with Bounded Input Disturbances

    Get PDF
    This note deals with the boundary control problem of a nonhomogeneous flexible wing evolving under unsteady aerodynamic loads. The wing is actuated at its tip by flaps and is modeled by a distributed parameter system consisting of two coupled partial differential equations. Based on the proposed boundary control law, the well-posedness of the underlying Cauchy problem is first investigated by resorting to the semigroup theory. Then, a Lyapunov-based approach is employed to assess the stability of the closed-loop system in the presence of bounded input disturbances.Comment: Published in IEEE Transactions on Automatic Control as a Technical Not

    Closed-Loop Perching and Spatial Guidance Laws for Bio-Inspired Articulated Wing MAV

    Get PDF
    This paper presents the underlying theoretical developments and successful experimental demonstrations of perching of an aerial robot. The open-loop lateral-directional dynamics of the robot are inherently unstable because it lacks a vertical tail for agility, similar to birds. A unique feature of this robot is that it uses wing articulation for controlling the flight path angle as well as the heading. New guidance algorithms with guaranteed stability are obtained by rewriting the flight dynamic equations in the spatial domain rather than as functions of time, after which dynamic inversion is employed. It is shown that nonlinear dynamic inversion naturally leads to proportional-integral-derivative (PID) controllers, thereby providing an exact method for tuning the gains. The effectiveness of the proposed bio-inspired robot design and its novel closed-loop perching controller has been successfully demonstrated with perched landings on a human hand

    Robust Control of Flapping-Wing in Micro Aerial Vehicle to have a Smooth Flapping Motion

    Get PDF
    This paper in first sections, will give a brief overview of both the purpose and the challenges facing the actuator and structure of Micromechanical Flying Insects (MFIs) and, in the last sections, an appropriate controller will developed for flapping motion. A hierarchical architecture that divides the control unit into three main levels is introduced. This approach break a complex control problem into a multi-level set of smaller control schemes, each of which is responsible for a clearly defined task. Also, the controller at each level can be designed independently of those in other levels. A fourbar mechanism for the wing displacement amplification, and a new system for fourbar mechanism actuation (wing actuation) is developed. We will develop a flexible beam with piezoelectric actuators and sensor (called Smart Beam) that will used to excite the fourbar mechanism for flapping mode of flight. The Frequency Response Function (FRF) of the smart beam was obtained from a Finite Element (FE) model and experimental system identification. The corresponding transfer function was derived from the mu synthesis and several robust controllers were then designed to control the beam to reach a smooth flapping motion. Besides excitation of the fourbar mechanism, the Smart beam will be used to control of noise and disturbance in the structure of the wing system
    • …
    corecore