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Boundary Control of a Nonhomogeneous Flexible
Wing with Bounded Input Disturbances

Hugo Lhachemi, Student Member, IEEE, David Saussié, Member, IEEE, and Guchuan Zhu, Senior Member, IEEE

Abstract—This note deals with the boundary control problem
of a nonhomogeneous flexible wing evolving under unsteady
aerodynamic loads. The wing is actuated at its tip by flaps and
is modeled by a distributed parameter system consisting of two
coupled partial differential equations. Based on the proposed
boundary control law, the well-posedness of the underlying
Cauchy problem is first investigated by resorting to the semigroup
theory. Then, a Lyapunov-based approach is employed to assess
the stability of the closed-loop system in the presence of bounded
input disturbances.

Index Terms—Distributed parameter systems, Flexible struc-
tures, Aerospace systems, Lyapunov stability.

I. INTRODUCTION

Partial Differential Equation (PDE)-based control of flexible

structures has attracted much attention in the last decades. For

instance, control of Euler-Bernoulli beams is one of the most

investigated problems for which different design strategies

have been applied, including, e.g., backstepping control [14],

Lyapunov method [9], [17], passivity-based control [13], flat-

ness method [1], [18], spectral analysis [8], [17], and optimal

control [2], [8]. It is also reported in recent literature that PDE-

based control of flexible aircraft wing modeled by coupled

beam and string equations, describing bending and twisting

displacements, has been applied to conventional aircraft or

UAV flapping wings [3], [12], [16], [19].

The aforementioned work has considered homogeneous

wings for which the parameters, such as mass and or rigidity,

are supposed to be constant along the wingspan. Obviously,

this consideration is not truly representative for real-life

aircraft wings that should be more accurately modeled as

nonhomogeneous structures. The stabilization of the bending

dynamics of nonhomogeneous beams has been investigated

in [4]–[6], [10]. Nevertheless, the control of the coupled

bending and twisting dynamics of a nonhomogeneous wing is

more challenging, because of the inherent difficulty to estab-

lish the well-posedness of such complex systems. Moreover,

for stability assessment, the method of spectral analysis as

proposed in [4]–[6], [10] might not be applicable due to

the difficulty to find the closed form eigenfunctions of the

considered coupled PDEs. As a continuous development of

the work presented in [16], this note addresses the problem

of boundary stabilization of a nonhomogeneous wing under

unsteady aerodynamic loads with actuators located at the wing

tip. The wing is modeled as a distributed system composed of

The authors are with the Department of Electrical Engineering, École
Polytechnique de Montréal, Montréal, QC, H3T-1J4 Canada e-mail:
{hugo.lhachemi,d.saussie,guchuan.zhu}@polymtl.ca.

two coupled PDEs with asymmetric structures and nonconstant

coefficients, describing the bending and twisting dynamics

along the wingspan [3], [22], [23].

Compared to the work presented in [16], the contribution

of this note is twofold. First, it is shown that the control law

proposed in [16] for a homogeneous flexible wing applies also

to the stabilization of the considered nonhomogeneous struc-

ture, which is a more practically relevant problem. Second,

the impact of input disturbances on the stability properties

is investigated. Specifically, the problem is formulated under

an abstract form, allowing the application of the semigroup

theory [8], [20]. In particular, it is shown that the closed-

loop system with the proposed boundary control is well-

posed. Then, a Lyapunov-based stability analysis is performed,

which shows that under certain structural constraints of the

wing physical parameters, the underlying C0-semigroup is

exponentially stable. Finally, the impact of bounded input

disturbances on the closed-loop system stability is evaluated.

The remainder of the note is organized as follows. Notations

and preliminaries are presented in Section II. The wing model

and the associated abstract form are introduced in Section III.

The well-posedness of the problem is tackled in the framework

of semigroup theory in Section IV. A Lyapunov-based stability

analysis is carried out in Section V. The temporal behavior of

the closed-loop system is evaluated in Section VI, followed

by some concluding remarks in Section VII.

II. NOTATIONS AND PRELIMINARIES

The sets of real, non-negative real, positive real, and com-

plex numbers are denoted by R, R+, R∗
+, and C, respectively.

For any given Lebesgue measurable function f from (0, l) to

R, the essential supremum and the essential infimum of f are

defined respectively by

f � inf
{
M ∈ R : λ(f−1(M,+∞)) = 0

}
,

f � sup
{
m ∈ R : λ(f−1(−∞,m)) = 0

}
,

where λ stands for the Lebesgue measure. The set of Lebesgue

measurable functions f from (0, l) to R which are essentially

bounded, i.e., for which |f | < ∞, is denoted by L∞(0, l) and

is endowed with the norm ‖f‖L∞(0,l) = |f |. For the set of

continuous functions over a compact set, the uniform norm

is denoted by ‖·‖∞. The set of Lebesgue squared integrable

functions from (0, l) to R is denoted by L2(0, l) and is a

Hilbert space when endowed with its natural inner product

〈f, g〉L2(0,l) =
∫ l

0
f(y)g(y)dy. The associated norm is denoted

by ‖·‖L2(0,l). For any m ∈ N, Hm(0, l) denotes the usual

Sobolev space. Denoting by AC[0, l] the set of all absolutely
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continuous functions on [0, l], H1(0, l) ⊂ AC[0, l] in the sense

that for any f ∈ H1(0, l), there exists a unique absolutely

continuous function g ∈ AC[0, l] such that f = g almost

everywhere (in the sense of the Lebesgue measure), implying

f = g in H1(0, l). For a given normed vector space (E, ‖·‖E),
L(E) denotes the space of bounded linear transformations

from E to E and is a normed space when equipped with the

induced norm denoted by ||·||. The range of a given operator

A is denoted by R(A) while its resolvent set is denoted by

ρ(A) and its kernel is defined by ker(A) = A−1({0}). Further

details can be found in, e.g., [8, Annex A] and [15].
When dealing with the abstract form, the time derivative of

a real-valued differentiable function f : R+ → R is denoted

by ḟ . If H is a Hilbert space, the time derivative of a H-valued

differentiable function f : R+ → H is denoted by df/dt.

III. PROBLEM FORMULATION AND BOUNDARY CONTROL

LAW

A. Flexible wing model
Let l ∈ R

∗
+ be the length of the wing. The structural parame-

ters of the wing, assumed to be functions of the spatial variable

y, are the mass per unit of span ρ ∈ L∞(0, l), the moment of

inertia per unit length Iw ∈ L∞(0, l), and the bending (resp.

torsional) stiffness EI ∈ L∞(0, l) (resp. GJ ∈ L∞(0, l)).
The damping characteristics of the wing are represented by

the bending (resp. torsional) Kelvin-Voigt damping coefficient

ηω ∈ L∞(0, l) (resp. ηφ ∈ L∞(0, l)). It is assumed that the

essential infimum of these parameters over the wingspan are

strictly positive, i.e., ρ, Iw, EI,GJ, ηω, ηφ > 0.
To describe the dynamics of the flexible wing, we introduce

ω : [0, l] × R+ → R and φ : [0, l] × R+ → R which denote,

respectively, the bending and twisting displacements of the

wing along the wingspan. The dynamics of the flexible wing

are described by the following set of PDEs, which is a linear

version of [3] obtained by neglecting the elastic axis offset:

ρωtt + (EIωyy + ηωEIωtyy)yy = ρ (αωφ+ βωφt + γωωt) ,

(1a)

Iwφtt − (GJφy + ηφGJφty)y = Iw (αφφ+ βφφt + γφωt) ,

(1b)

in (0, l) × R+, where αω, βω, γω, αφ, βφ, γφ ∈ L∞(0, l)
represent the aerodynamic coefficients which are functions of

the spatial variable y. The boundary conditions are such that,

for any t ≥ 0,

ω(0, t) = ωy(0, t) = φ(0, t) =0, (2a)

(EIωyy + ηωEIωtyy)(l, t) =0, (2b)

(EIωyy + ηωEIωtyy)y(l, t) =− Ltip(t) +msωtt(l, t), (2c)

(GJφy + ηφGJφty)(l, t) =Mtip(t)− Jsφtt(l, t), (2d)

where Ltip : R+ → R and Mtip : R+ → R denote the control

inputs located at the wing tip. Physically, Ltip(t) and Mtip(t)
represent the aerodynamic lift force and pitching moment

generated at time t by the flaps located at the wing tip. The

store at the wing tip is characterized by its mass ms ∈ R
∗
+

and its moment of inertia Js ∈ R
∗
+.

Finally, the initial conditions are assumed to be: ω(·, 0) =
ω0 , ωt(·, 0) = ωt0, φ(·, 0) = φ0, φt(·, 0) = φt0.

B. Boundary control law
For control design and practical implementation purposes,

we make the following assumption.
Assumption 3.1: It is assumed that ω(l, ·), ωt(l, ·), ωtt(l, ·),

φ(l, ·), φt(l, ·), and φtt(l, ·) are measured at the wing tip and

available for feedback control.
The proposed boundary stabilization control takes the fol-

lowing form:

Ltip(t) = −k1 [ωt(l, t) + ε1ω(l, t)] +msωtt(l, t) + u1(t),
(3a)

Mtip(t) = −k2 [φt(l, t) + ε2φ(l, t)] + Jsφtt(l, t) + u2(t),
(3b)

for any t ≥ 0, where k1, k2 ∈ R+ are tunable controller

gains that can be freely selected while ε1, ε2 ∈ R
∗
+ are two

parameters that will be determined later in order to ensure

adequate properties for the closed-loop system. The signals

u1, u2 ∈ C2(R+,R) can be either auxiliary control inputs or

disturbance inputs. In the remainder of this note, we study

the stability properties of the system in closed loop with the

proposed boundary control strategy.

C. Closed-loop system in abstract form
To analyze the properties of the closed-loop system with

the proposed boundary control law, the problem is rewritten

in abstract form. First, the following real Hilbert space is

introduced:

H = {(f, g, h, z) ∈ H2(0, l)× L2(0, l)×H1(0, l)× L2(0, l) :

f(0) = f ′(0) = 0, h(0) = 0},
endowed with the inner product 〈·, ·〉H,1 defined by

〈(f1, g1, h1, z1), (f2, g2, h2, z2)〉H,1

�
∫ l

0

[EI(y)f ′′
1 (y)f

′′
2 (y) + ρ(y)g1(y)g2(y)]dy

+

∫ l

0

[GJ(y)h′
1(y)h

′
2(y) + Iw(y)z1(y)z2(y)]dy.

Note that 〈·, ·〉H,1 is indeed an inner product on H because

EI,GJ, ρ, Iw > 0. The motivation for introducing this spe-

cific inner product is closely related to the physical nature of

the wing energy (4). Indeed, denoting by ‖·‖H,1 the induced

norm, the energy of the wing due to elastic deformations,

including kinetic and potential energy, is given by

∀t ≥ 0, E(t) =
1

2
‖(ω(·, t), ωt(·, t), φ(·, t), φt(·, t))‖2H,1 .

(4)
To study the well-posedness of the closed-loop system in

the presence of input perturbations, we define the following

abstract operator:

Ad : D(Ad) −→ H
(f, g, h, z) −→ (g, g̃, z, z̃)

(5)

where

g̃ � −1

ρ
(EIf ′′ + ηωEIg′′)′′ + αωh+ βωz + γωg,

z̃ � 1

Iw
(GJh′ + ηφGJz′)′ + αφh+ βφz + γφg,
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with domain D(Ad) ⊂ H defined by

D(Ad) � {(f, g, h, z) ∈ H :

g ∈ H2(0, l), z ∈ H1(0, l),

EIf ′′ + ηωEIg′′ ∈ H2(0, l),

GJh′ + ηφGJz′ ∈ H1(0, l),

f(0) = f ′(0) = 0, g(0) = g′(0) = 0,

h(0) = 0, z(0) = 0,

(EIf ′′ + ηωEIg′′)(l) = 0}

(6)

We also introduce the boundary operator:

B : D(B) −→ R
2

(f, g, h, z) −→ (ũ1, ũ2)
(7)

where R
2 is endowed with the usual 2-norm,

ũ1 � −(EIf ′′ + ηωEIg′′)′(l) + k1(g(l) + ε1f(l)),

ũ2 � (GJh′ + ηφGJz′)(l) + k2(z(l) + ε2h(l)),

with domain D(B) � D(Ad) ⊂ H. Let U = (u1, u2) ∈
C2(R+,R

2) be the disturbing input. It leads to the following

abstract boundary control problem:⎧⎪⎪⎨
⎪⎪⎩

dX

dt
(t) = AdX(t), t > 0

BX(t) = U(t), t ≥ 0

X(0) = X0 ∈ D(Ad) s.t. BX0 = U(0)

(8)

where X(t) = (ω(·, t), ωt(·, t), φ(·, t), φt(·, t)) is the state

vector and X0 = (ω0, ωt0, φ0, φt0) is the initial condition. To

study the stability properties of the boundary control problem

(8), its well-posedness is first investigated in the next section.

IV. WELL-POSEDNESS ASSESSMENT

In order to study the well-posedness of the boundary control

problem (8), it is useful to first study the disturbance free

version of (8), i.e., for U = 0. To do so, we introduce the asso-

ciated operator A � Ad|D(A) with D(A) � D(Ad)∩ker(B).
To facilitate the upcoming developments, the following two

linear operators A1 : D(A1) → H and A2 : D(A2) → H are

introduced:

A1(f, g, h, z)

�
(
g,−1

ρ
(EIf ′′ + ηωEIg′′)′′, z,

1

Iw
(GJh′ + ηφGJz′)′

)
,

A2(f, g, h, z) � (0, αωh+ βωz + γωg, 0, αφh+ βφz + γφg) ,

with domains D(A1) = D(A) and D(A2) = H. Obviously,

A = A1 +A2 over D(A).
The following two inequalities will be used in the subse-

quent developments.

Lemma 4.1: [11], [14] For any f ∈ H1(0, l) ⊂ AC(0, l)1

such that f(0) = 0, the Poincaré’s inequality ensures that

‖f‖2L2(0,l) ≤
4l2

π2
‖f ′‖2L2(0,l) ,

while the Agmon’s inequality provides

‖f‖2∞ ≤ 2 ‖f‖L2(0,l) ‖f ′‖L2(0,l) .

1Inclusion in the sense explained in the introduction.

A. Necessity and introduction of a second inner product on H
The following Lemma shows that A1 is not dissipative with

respect to the inner product 〈·, ·〉H,1 and hence, the Lumer-

Philips theorem [8], [20] implies that A1 does not generate a

C0-semigroup of contractions on (H, 〈·, ·〉H,1).
Lemma 4.2: The operator A1 is not dissipative on H

endowed with 〈·, ·〉H,1.

Proof. Integrating by parts, we have for any X =
(f, g, h, z) ∈ D(A1),

〈A1X,X〉H,1

=− k1(g(l) + ε1f(l))g(l)−
∫ l

0

ηω(y)EI(y)g′′(y)2dy (9)

− k2(z(l) + ε2h(l))z(l)−
∫ l

0

ηφ(y)GJ(y)z′(y)2dy.

In particular, considering f = g = 0 and, for all y ∈ [0, l],

h(y) =

∫ y

0

κ1ξ + κ2

GJ(ξ)
dξ, z(y) =

∫ y

0

κ3

ηφ(ξ)GJ(ξ)
dξ,

where2

κ1 =
1

lI1 − I2

{
1

k2ε2

(
1 + k2 +

1

I3

)
+ I1

}
,

κ2 =
−1

lI1 − I2

{
l

k2ε2

(
1 + k2 +

1

I3

)
+ I2

}
, κ3 =

1

I3
,

with

I1 =

∫ l

0

dξ

GJ(ξ)
, I2 =

∫ l

0

ξ

GJ(ξ)
dξ, I3 =

∫ l

0

dξ

ηφ(ξ)GJ(ξ)
,

we have X = (f, g, h, z) ∈ D(A) and, based on (9),

straightforward calculations yields 〈A1X,X〉H,1 = 1 > 0.

Hence, A1 is not dissipative relatively to 〈·, ·〉H,1. �
To solve this problem, there exist at least two possible

alternatives. The first one is to resort to the Hille-Yosida

theorem [8], [20] to ensure that A1 generates a C0-semigroup

on (H, 〈·, ·〉H,1), which is a weaker property than the C0-

semigroup of contractions. The second one, adopted in this

work, is still to apply the Lumer-Philips theorem while con-

sidering another inner product 〈·, ·〉H,2 on H.

Let ε1, ε2 ∈ R
∗
+ be constant parameters with constraints

given later in Lemma 4.3 and 〈·, ·〉H,2 : H × H → R be

defined for any (f1, g1, h1, z1), (f2, g2, h2, z2) ∈ H by

〈(f1, g1, h1, z1), (f2, g2, h2, z2)〉H,2

� 〈(f1, g1, h1, z1), (f2, g2, h2, z2)〉H,1

+ ε1

∫ l

0

ρ(y) [f1(y)g2(y) + g1(y)f2(y)] dy

+ ε2

∫ l

0

Iw(y) [h1(y)z2(y) + z1(y)h2(y)] dy.

We also introduce a constant Km ∈ R
∗
+ defined by

Km = max

(√
ρ,

16l4
√
ρ

π4EI
,

√
Iw,

4l2
√
Iw

π2GJ

)
.

2Note that κ1 and κ2 are well defined because 1/GJ(y) ≥ 1/GJ for
almost all y ∈ [0, l], which implies that lI1 − I2 ≥ l2/(2GJ) > 0.
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Then, the following lemma holds.

Lemma 4.3: For any given 0 < ε1, ε2 < 1/Km, 〈·, ·〉H,2 is

an inner product for H. Furthermore, the norm induced from

this inner product, denoted by ‖·‖H,2, is equivalent to ‖·‖H,1.

Thus, (H, 〈·, ·〉H,2) is a real Hilbert space.

Proof. First, 〈·, ·〉H,2 is bilinear and symmetric. For any

X = (f, g, h, z) ∈ H,

〈X,X〉H,2 = ‖X‖2H,1 + 2ε1

∫ l

0

ρ(y)f(y)g(y)dy

+ 2ε2

∫ l

0

Iw(y)h(y)z(y)dy.

Then, by first applying Young’s inequality3, and then

Poincaré’s inequality, one has for any X ∈ H,

(1− εmKm) ‖X‖2H,1 ≤ 〈X,X〉H,2 ≤ (1 + εmKm) ‖X‖2H,1 ,
(10)

with εm = max(ε1, ε2). Then, for 0 < εm < 1/Km, 〈·, ·〉H,2

is positive and definite and hence, it defines an inner product

for H. Furthermore, denoting by ‖·‖H,2 the associated norm,

(10) implies that ‖·‖H,2 and ‖·‖H,1 are equivalent. It follows

that (H, 〈·, ·〉H,2) is a real Hilbert space. �
In the subsequent developments, we assume that the con-

troller parameters ε1 and ε2 are constrained by 0 < ε1, ε2 <
1/Km. Therefore, Lemma 4.3 is applied hereafter.

B. A1 generates a C0-semigroup of contractions on
(H, 〈·, ·〉H,2)

To apply the Lumer-Phillips theorem in the context of an

Hilbert space, we need to assess a dissipativity condition and

a certain range condition [8], [20]. To assess the first point,

we introduce the following two constants:

ε∗1 =
4π4ηωEI

64l4ρ+ π4ηωηωEI
, ε∗2 =

4π2ηφGJ

16l2Iw + π2ηφηφGJ
.

Lemma 4.4: Let ε1, ε2 ∈ R
∗
+ such that ε1 < min(ε∗1, 1/Km)

and ε2 < min(ε∗2, 1/Km). Then, the operator A1 : D(A1) →
H is dissipative with respect to 〈·, ·〉H,2.

Proof. As 0 < ε1, ε2 < 1/Km, Lemma 4.3 ensures that

(H, 〈·, ·〉H,2) is a real Hilbert space. Letting X = (f, g, h, z) ∈
D(A1), based on (9) and integrations by parts, it yields,

〈A1X,X〉H,2

=− k1(g(l) + ε1f(l))
2 − k2(z(l) + ε2h(l))

2

+ ε1

∫ l

0

ρ(y)g(y)2dy + ε2

∫ l

0

Iw(y)z(y)
2dy

−
∫ l

0

ηω(y)EI(y)g′′(y)2dy −
∫ l

0

ηφ(y)GJ(y)z′(y)2dy

− ε1

∫ l

0

EI(y)f ′′(y)2dy − ε1

∫ l

0

ηω(y)EI(y)f ′′(y)g′′(y)dy

− ε2

∫ l

0

GJ(y)h′(y)2dy − ε2

∫ l

0

ηφ(y)GJ(y)h′(y)z′(y)dy

3For any a, b ∈ R+ and r ∈ R∗
+, the Young’s inequality provides ab ≤

a2/(2r) + rb2/2.

First applying Young’s inequality and then Poincaré’s inequal-

ity, it provides for all X = (f, g, h, z) ∈ D(A) and for all

r1, r2 > 0,

〈A1X,X〉H,2 ≤− k1(g(l) + ε1f(l))
2 − k2(z(l) + ε2h(l))

2

−
(
1− ε1

ϕ1(r1)

)∫ l

0

ηω(y)EI(y)g′′(y)2dy

−
(
1− ε2

ϕ2(r2)

)∫ l

0

ηφ(y)GJ(y)z′(y)2dy

− ε1

(
1−

√
ηω

2r1

)∫ l

0

EI(y)f ′′(y)2dy

− ε2

(
1−

√
ηφ

2r2

)∫ l

0

GJ(y)h′(y)2dy

(11)

where ϕ1 : R∗
+ � x → 2π4ηωEI/(32l4ρ + π4

√
ηωηωEIx)

and ϕ2 : R
∗
+ � x → 2π2ηφGJ/(8l2Iw + π2

√
ηφηφGJx).

As ϕ1 is a continuous decreasing function over R
∗
+ and, by

assumption, ε1 < ε∗1 = ϕ1(
√
ηω/2), there exists r∗1 >

√
ηω/2

such that ε1 < ϕ1(r
∗
1) < ϕ1(

√
ηω/2). Similarly, there exists

r∗2 >
√
ηφ/2 such that ε2 < ϕ2(r

∗
2) < ϕ2(

√
ηφ/2) = ε∗2.

Therefore, taking r1 = r∗1 and r2 = r∗2 in (11), it ensures that

for all X ∈ H, 〈A1X,X〉H,2 ≤ 0, i.e., A1 is dissipative on

H endowed with 〈·, ·〉H,2. �
We now investigate the range condition.

Lemma 4.5: The operator A−1
1 : H → D(A1) exists and is

bounded, i.e., A−1
1 ∈ L(H). Hence, 0 ∈ ρ(A1) and A1 is a

closed operator.

Proof. We first investigate the surjectivity of A1. Let

(f̃ , g̃, h̃, z̃) ∈ H. Then, with f defined by

f(y) =−
∫ y

0

(y − ξ)ηω(ξ)f̃
′′(ξ)dξ (12)

− k1

∫ y

0

(y − ξ)(l − ξ)

EI(ξ)
dξ (f̃(l) + ε1α(f̃ , g̃))

−
∫ y

0

y − ξ1
EI(ξ1)

∫ l

ξ1

(ξ2 − ξ1)ρ(ξ2)g̃(ξ2)dξ2dξ1,

where

α(f̃ , g̃)

=−
{
1 + k1ε1

∫ l

0

(l − ξ)2

EI(ξ)
dξ

}−1

×
{∫ l

0

(l − ξ)ηω(ξ)f̃
′′(ξ)dξ + k1

∫ l

0

(l − ξ)2

EI(ξ)
dξ f̃(l)

+

∫ l

0

l − ξ1
EI(ξ1)

∫ l

ξ1

(ξ2 − ξ1)ρ(ξ2)g̃(ξ2)dξ2dξ1

}
,

g = f̃ , h defined by

h(y) (13)

=−
∫ y

0

ηφ(ξ)h̃
′(ξ)dξ − k2

∫ y

0

dξ

GJ(ξ)
(h̃(l) + ε2β(h̃, z̃))

−
∫ y

0

1

GJ(ξ1)

∫ l

ξ1

Iw(ξ2)z̃(ξ2)dξ2dξ1,
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where

β(h̃, z̃) = −
{
1 + k2ε2

∫ l

0

dξ

GJ(ξ)
dξ

}−1

×
{∫ l

0

ηφ(ξ)h̃
′(ξ)dξ + k2

∫ l

0

dξ

GJ(ξ)
h̃(l)

+

∫ l

0

1

GJ(ξ1)

∫ l

ξ1

Iw(ξ2)z̃(ξ2)dξ2dξ1

}
,

and z = h̃, we have (f, g, h, z) ∈ D(A1) = D(A) and

(f̃ , g̃, h̃, z̃) = A1(f, g, h, z). Thus, A1 is onto H. In ad-

dition, as (f, g, h, z) depends linearly on (f̃ , g̃, h̃, z̃) ∈ H,

it shows that the operator A1 is right invertible. To con-

clude that A1 is invertible, we investigate the injectivity. Let

(f, g, h, z) ∈ D(A1) such that A1(f, g, h, z) = (0, 0, 0, 0).
Thus, g = z = 0, which yields (EIf ′′)′′ = 0 and (GJh′)′ = 0
along with f(0) = f ′(0) = (EIf ′′)(l) = 0, (EIf ′′)′(l) =
k1ε1f(l), h(0) = 0, and (GJh′)(l) = −k2ε2h(l). Then, as

(EIf ′′)′, (EIf ′′), f ′, f ∈ AC[0, l], it yields for any y ∈ [0, l]
by successive integrations,

f(y) = −k1ε1

∫ y

0

(y − ξ)(l − ξ)

EI(ξ)
dξ f(l).

Evaluating at y = l,(
1 + k1ε1

∫ l

0

(l − ξ)2

EI(ξ)
dξ

)
︸ ︷︷ ︸

>0

f(l) = 0 ⇒ f(l) = 0,

which implies that f = 0. Similarly, one can show that h = 0.

Hence, the operator A1 is injective.

Therefore, A−1
1 : H → D(A1) is well defined for any

(f̃ , g̃, h̃, z̃) ∈ H by A−1
1 (f̃ , g̃, h̃, z̃) = (f, f̃ , h, h̃) where f and

h are given by (12) and (13), respectively. Based on Poincaré’s

inequality, straightforward computations show that A−1
1 is a

bounded operator. Hence, it ensures that A−1
1 ∈ L(H), i.e.,

0 ∈ ρ(A1) and A1 is a closed operator. �
We can now introduce the following property regarding A1.

Theorem 4.6: Let ε1, ε2 ∈ R
∗
+ such that ε1 <

min(ε∗1, 1/Km) and ε2 < min(ε∗2, 1/Km). Then, the operator

A1 generates a C0-semigroup of contractions on (H, 〈·, ·〉H,2).
Furthermore, D(A1) is dense in H endowed by either 〈·, ·〉H,1

or 〈·, ·〉H,2.

Proof. Under the assumptions of the theorem, (H, 〈·, ·〉H,2)
is a real Hilbert space and A1 is dissipative with respect to

〈·, ·〉H,2. Furthermore, as the resolvent set of a closed operator

is an open subset of C, 0 ∈ ρ(A1) implies the existence of

λ0 > 0 such that λ0 ∈ ρ(A1). In particular, R(λ0ID(A1) −
A1) = H. Therefore, the application of the Lumer-Philips

theorem for reflexive spaces [17, Th.2.29] [20, Chap.1, Th.4.5

and Th.4.6] concludes the proof. �

C. A generates a C0-semigroup

The following lemma is a direct consequence of the defi-

nition of the operator A2 and the application of Young’s and

Poincaré’s inequalities.

Lemma 4.7: Operator A2 is bounded, i.e., A2 ∈ L(H).

This result allows introducing the following main result.

Theorem 4.8: Let ε1, ε2 ∈ R
∗
+ such that ε1 <

min(ε∗1, 1/Km) and ε2 < min(ε∗2, 1/Km). Then, the operator

A generates a C0-semigroup on (H, 〈·, ·〉H,2).
Proof. Based on Theorem 4.6 and Lemma 4.7, the claimed

result is a direct consequence of the perturbation theory [20,

Chap.3, Th.1.1] [8, Th.3.2.1]. �
The following corollary is a consequence of the equivalence

of the norms stated in Lemma 4.3 and the uniqueness of

the C0-semigroup associated to a given infinitesimal gener-

ator [17, Th.2.14].

Corollary 4.8.1: Under the assumptions of Theorem 4.8, A
generates a C0-semigroup on (H, 〈·, ·〉H,1) which coincides

with the C0-semigroup generated by A on (H, 〈·, ·〉H,2).

D. Well-posedness of the boundary control problem

According to [8, Def. 3.3.2], we check that (8) satisfies

the definition of a boundary control system. First, D(A) =
D(Ad) ∩ ker(B) and Az = Adz for any z ∈ D(A). Second,

we need to check the existence of an operator B ∈ L(R2,H)
such that R(B) ⊂ D(Ad), AdB ∈ L(R2,H), and BB = IR2 .

We define the following candidate:

B : R
2 −→ H

(u1, u2) −→ (fu1
, 0, hu2

, 0)
(14)

where functions fu1 and hu2 are defined for any y ∈ [0, l] by

fu1
(y) �u1

b1

∫ y

0

(y − ξ)(l − ξ)

EI(ξ)
dξ,

hu2
(y) �u2

b2

∫ y

0

dξ

GJ(ξ)
,

with the constants:

b1 � 1 + k1ε1

∫ l

0

(l − ξ)2

EI(ξ)
dξ, b2 � 1 + k2ε2

∫ l

0

dξ

GJ(ξ)
.

We check that all the required conditions are satisfied. First,

B is clearly linear and satisfies for any U = (u1, u2) ∈ R
2,

‖BU‖2H,1 =
u2
1

b21

∫ l

0

(l − y)2

EI(y)
dy +

u2
2

b22

∫ l

0

dy

GJ(y)

≤ max

(
1

b21

∫ l

0

(l − y)2

EI(y)
dy,

1

b22

∫ l

0

dy

GJ(y)

)
‖U‖22 ,

where the equality holds for either U = (1, 0) or U = (0, 1).
Thus B ∈ L(R2,H) with

‖B‖ = max

⎛
⎝ 1

b1

√∫ l

0

(l − y)2

EI(y)
dy,

1

b2

√∫ l

0

dy

GJ(y)

⎞
⎠ .

(15)

Furthermore, straightforward calculations show that for all

U ∈ R
2, BU ∈ D(Ad) and BBU = U . Finally, for any

U = (u1, u2) ∈ R
2,

‖AdBU‖2H,1

=
u2
2

b22

∫ l

0

(
ρ(y)αw(y)

2 + Iw(y)αφ(y)
2
)(∫ y

0

dξ

GJ(ξ)

)2

dy

≤ 1

b22

∫ l

0

(
ρ(y)αw(y)

2 + Iw(y)αφ(y)
2
)(∫ y

0

dξ

GJ(ξ)

)2

dy ‖U‖22 ,
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where the equality holds for U = (0, 1). Thus AdB ∈
L(R2,H) with

‖AdB‖ (16)

=
1

b2

√∫ l

0

(ρ(y)αw(y)2 + Iw(y)αφ(y)2)

(∫ y

0

dξ

GJ(ξ)

)2

dy.

Based on Theorem 4.8, A generates a C0-semigroup for

sufficiently small parameters ε1, ε2 > 0. We deduce that for

any U ∈ C2(R+,R
2), the abstract boundary control problem

(8) is well-posed [8, Def. 3.3.2] . In particular, we can consider

the following homogeneous abstract differential equation⎧⎨
⎩

dV

dt
(t) = AV (t)−BU̇(t) +AdBU(t), t > 0

V (0) = V0 ∈ D(A)
(17)

By [8, Th. 3.3.3], assuming that U ∈ C2(R+;R
2), X0 ∈

D(Ad) and V0 = X0 − BU(0) ∈ D(A), (8) and (17) each

admit a unique classic solution, denoted respectively by X(t)
and V (t), which are related by V (t) = X(t) − BU(t) for

all t ≥ 0. Note that as D(A) = D(Ad) ∩ ker(B) and

X0, BU(0) ∈ D(Ad), the condition X0 − BU(0) ∈ D(A) is

equivalent to X0−BU(0) ∈ ker(B), i.e., based on BB = IR2 ,

BX0 = U(0). Therefore, the condition X0 −BU(0) ∈ D(A)
only ensures that the boundary condition in (8) is satisfied

by the initial condition X0 and the initial input U(0). Let

T : R+ → L(H) be the C0-semigroup generated by A on

H endowed by either 〈·, ·〉H,1 or 〈·, ·〉H,2. Then, the unique

classic solution of (17) is given, for any V0 ∈ D(A) and all

t ≥ 0, by [8, Th. 3.1.3]

V (t) = T (t)V0 +

∫ t

0

T (t− s)
(
−BU̇(s) +AdBU(s)

)
ds.

We deduce that the unique classic solution of (8) is given, for

any X0 ∈ D(Ad) such that BX(0) = U(0) and all t ≥ 0, by

X(t) =T (t)(X0 −BU(0)) +BU(t) (18)

+

∫ t

0

T (t− s)
(
−BU̇(s) +AdBU(s)

)
ds.

V. STABILITY ASSESSMENT

A. Exponential stability of the C0-semigroup

In this subsection, we consider the disturbance free case, i.e.

U = 0. Then, X(t) = T (t)X0 ∈ D(A) is the unique solution

of (dX/dt)(t) = AX(t) associated to the initial condition

X0 ∈ D(A). We define,

∀t ≥ 0, E(t) � 1

2
‖X(t)‖2H,2 =

1

2
〈X(t), X(t)〉H,2 . (19)

As T (t) is a C0-semigroup, E ∈ C1(R+;R) with, for any

t ≥ 0,

Ė(t) =
〈
Ẋ(t), X(t)

〉
H,2

= 〈AX(t), X(t)〉H,2 . (20)

Obviously, the stability properties of the C0-semigroup

T (t) depends on the wing physical parameters. In this work,

we impose the following assumptions regarding the wing

parameters.

Assumption 5.1: The physical parameters involved in (1a-

1b) are such that there exist r1, r2, . . . , r8 > 0 along with

0 < ε1 < min(ε∗1, 1/Km) and 0 < ε2 < min(ε∗2, 1/Km) such

that

λ1 �ε1

(
1−

√
ηω

2r1
− 8l4ρ

π4EI

(
|αω|
r4

+
|βω|
r5

+
|γω|√
ρr3

))
,

λ2 �|γω|+
√
ρρ |αω|+ ε2Iw |γφ|

2
√
ρr6

+
ε1
√
ρ |γω|r3
2

+

√
ρ |βω|/

√
Iw +

√
Iw |γφ|/√ρ

2r7
,

λ3 �1− ε1

(
16l4ρ

π4ηωEI
+

√
ηωr1
2

)
,

λ4 �ε2

(
1−

√
ηφ

2r2

)
− 4l2

π2GJ

(
(
√
ρρ |αω|+ ε2Iw|γφ|)r6

2
√
ρ

+

√
Iw(|αφ|+ ε2|βφ|)

2r8
+

ε1ρ |αω|r4
2

+ ε2Iw |αφ|
)
,

λ5 �|βφ|+
(
√
ρ |βω|/

√
Iw +

√
Iw |γφ|/√ρ)r7

2

+

√
Iw(|αφ|+ ε2|βφ|)r8

2
+

ε1ρ|βω|r5
2Iw

,

λ6 �1− ε2

(
4l2Iw

π2ηφGJ
+

√
ηφr2

2

)
,

satisfy λ1, . . . , λ6 > 0, π4ηωEIλ3/(16l
4ρ) − λ2 > 0, and

π2ηφGJλ6/(4l
2Iw)− λ5 > 0.

As with the constraints imposed in [3], [12], Assumption 5.1

imposes a trade-off between the structural stiffness of the wing

and the amplitude of the aerodynamic coefficients. Indeed,

it is easy to see that for fixed aerodynamic coefficients,

Assumption 5.1 asymptotically boils down to the positiveness

constraints of the coefficients of (11), for which it has been

shown that a feasible solution always exists, when the stiffness

increases. Therefore, Assumption 5.1 can always be satisfied

by adequately increasing the stiffness of the structure.

Under Assumption 5.1, we can now assess the exponential

stability of the closed-loop system.

Theorem 5.2: Provided that Assumption 5.1 holds, T (t) is

an exponentially stable C0-semigroup.

Proof. Let X(t) = T (t)X0 = (f(·, t), g(·, t), h(·, t), z(·, t)) ∈
D(A). Based on the upper-bound of 〈A1X(t), X(t)〉H,2 given

in (11) and applying Young’s and Poincaré’s inequalities to the

upper bound of 〈A2X(t), X(t)〉H,2, it yields for any t ≥ 0,

Ė(t) ≤− k1(g(l, t) + ε1f(l, t))
2 − k2(z(l, t) + ε2h(l, t))

2

− λ1

∫ l

0

EI(y)f ′′(y, t)2dy − λ4

∫ l

0

GJ(y)h′(y, t)2dy

−
(
π4ηωEIλ3

16l4ρ
− λ2

)∫ l

0

ρ(y)g(y, t)2dy

−
(
π2ηφGJλ6

4l2Iw
− λ5

)∫ l

0

Iw(y)z(y, t)
2dy. (21)
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with λ1, . . . , λ6 > 0 defined in Assumption 5.1. Introducing

μm � 2min

(
λ1,

π4ηωEIλ3

16l4ρ
− λ2, λ4,

π2ηφGJλ6

4l2Iw
− λ5

)
> 0,

and recalling that k1, k2 ≥ 0, we obtain, based on the

equivalence of the norms (10),

∀t ≥ 0, Ė(t) ≤ −μm

2
‖X(t)‖2H,1 ≤ −ΛE(t),

where Λ � μm/(1+ εmKm) > 0 is independent of the initial

condition X0 ∈ D(A). Thus, as E ∈ C1(R+;R), we get that

for any t ≥ 0, E(t) ≤ E(0)e−Λt. Furthermore, as by definition

E(t) = ‖X(t)‖2H,2 /2, it yields that

∀X0 ∈ D(A), ∀t ≥ 0, ‖T (t)X0‖H,2 ≤ ‖X0‖H,2 e
−Λt/2.

As T (t) ∈ L(H) for all t ≥ 0 and D(A) = H, the

above inequality can be extended for all X0 ∈ H. Thus,

T (t) is an exponentially stable C0-semigroup for ‖·‖H,2 with

‖T (t)‖H,2 ≤ e−Λt/2 for all t ≥ 0. Resorting to (10), it

shows that ‖T (t)‖H,1 ≤ KEe
−Λt/2 for all t ≥ 0 where

KE =
√
(1 +Kmεm)/(1−Kmεm). In particular, the growth

bound ω0(T ) of T (t) is such that ω0(T ) ≤ −Λ/2 < 0. �

B. Stability analysis for bounded input perturbations

Let X(t) be a solution of the boundary control problem (8).

Under Assumption 5.1, it can be obtained by (18) that for all

t ≥ 0,

‖X(t)‖H,1 ≤KE ‖X0 −BU(0)‖H,1 e
−Λt/2 + ‖B‖ ‖U(t)‖2

+KE ‖AdB‖
∫ t

0

e−Λ(t−s)/2 ‖U(s)‖2 ds

+KE ‖B‖
∫ t

0

e−Λ(t−s)/2
∥∥∥U̇(s)

∥∥∥
2
ds. (22)

1) Bounded input disturbances: Assume that U and U̇ are

bounded. It yields,

‖X(t)‖H,1 ≤KE ‖X0 −BU(0)‖H,1 e
−Λt/2

+

(
‖B‖+ 2KE

Λ
‖AdB‖

)
sup
s∈R+

‖U(s)‖2

+
2KE

Λ
‖B‖ sup

s∈R+

∥∥∥U̇(s)
∥∥∥
2
.

Thus, the system energy is bounded and, as t tends to infinity,

we have

lim sup
t→+∞

‖X(t)‖H,1 ≤
(
‖B‖+ 2KE

Λ
‖AdB‖

)
sup
s∈R+

‖U(s)‖2

+
2KE

Λ
‖B‖ sup

s∈R+

∥∥∥U̇(s)
∥∥∥
2
.

In particular, the contribution of the initial condition vanishes

exponentially. Employing Agmon’s and then Poincaré’s in-

equalities yields

‖h(·, t)‖4∞ ≤ 16l2

π2
‖h′(·, t)‖4L2(0,l) ≤

16l2

π2GJ2 ‖X(t)‖4H,1 .

Applying a similar procedure to f and f ′, it shows that in

the disturbance free case (i.e., U = 0), both bending and

twisting displacements converge exponentially and uniformly

over the wingspan to zero. In the presence of bounded input

disturbances, the contribution of the initial condition to the

displacements vanishes exponentially. Furthermore, the dis-

placements are bounded in time, uniformly over the wingspan,

and

lim sup
t→+∞

||f(·, t)||∞ ≤ 4l3/2

π3/2EI1/2
lim sup
t→+∞

‖X(t)‖H,1 < +∞,

lim sup
t→+∞

||f ′(·, t)||∞ ≤ 2l1/2

π1/2EI1/2
lim sup
t→+∞

‖X(t)‖H,1 < +∞,

lim sup
t→+∞

||h(·, t)||∞ ≤ 2l1/2

π1/2GJ1/2
lim sup
t→+∞

‖X(t)‖H,1 < +∞.

The obtained upper-bounds on the system energy and on both

bending and twisting displacements are function of ‖B‖ and

‖AdB‖ given by (15) and (16), respectively. It ensures that

the increase of the wing stiffness will reduce the impact of

the perturbations on the closed-loop system.

2) Vanishing input disturbances: Assume that the distur-

bance input is vanishing in the following sense:

lim
t→+∞ ‖U(t)‖2 = lim

t→+∞

∥∥∥U̇(t)
∥∥∥
2
= 0. (23)

Then, ‖X(t)‖H,1 converges to zero as t tends to infinity.

Indeed, based on (22), this claim will be true if the two integral

terms converge to zero as t tends to infinity. Consider an

arbitrary ε > 0. By (23), there exists T ≥ 0 such that for

any t ≥ T , ‖U(t)‖2 ≤ Λε/2. Fixing such a T ≥ 0, we have

for all t ≥ T ,∫ t

0

e−Λ(t−s)/2 ‖U(s)‖2 ds

=e−Λt/2

∫ T

0

eΛs/2 ‖U(s)‖2 ds+
∫ t

T

e−Λ(t−s)/2 ‖U(s)‖2 ds

≤e−Λt/2

∫ T

0

eΛs/2 ‖U(s)‖2 ds+ ε,

which yields

lim sup
t→+∞

∫ t

0

e−Λ(t−s)/2 ‖U(s)‖2 ds ≤ ε.

As this inequality is true for any ε > 0, and due to the fact

that the integral is positive for all t ≥ 0, it implies that

lim
t→+∞

∫ t

0

e−Λ(t−s)/2 ‖U(s)‖2 ds = 0.

Similarly, the second integral of (22) converges to zero when

t → ∞. Thus we have ‖X(t)‖H,1 −→
t→+∞ 0. Then, we deduce

from the bounded case that

lim
t→+∞ ||f(·, t)||∞ = lim

t→+∞ ||f ′(·, t)||∞ = lim
t→+∞ ||h(·, t)||∞ = 0,

i.e., both bending and twisting displacements converge uni-

formly over the wingspan to zero when t tends to infinity.
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VI. NUMERICAL SIMULATIONS

The numerical scheme is based on the Galerkin method

[7]. For simulations purposes, the following persistent input

perturbations are considered.

u1(t) = 3 cos(0.2πt) sin(πt) cos(3πt),

u2(t) = sin(0.2πt) cos(πt) sin(3πt).

The initial condition is selected as ω0(y) = y2(y−3l)/(40l2),
ωt0(y) = 0, φ0(y) = 2πy2/(45l2) and φt0(y) = 0. The

open-loop response is depicted in Fig. 1, which exhibits

poorly damped oscillations. Setting the controller gains as

k1 = 10 and k2 = 4, the behavior of the closed-loop

system is shown in Fig. 2. It can be seen that the flexible

displacements are damped out rapidly, even in the presence of

input perturbations.
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Fig. 1. Open-loop response.
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Fig. 2. Closed-loop response in the presence of input perturbations.

VII. CONCLUSION

The well-posedness and the stability properties of a flexible

nonhomogeneous wing in the presence of input disturbances

have been studied. The wing is modeled by a distributed

parameter system for which the well-posedness issue has been

tackled in the framework of semigroups. The stability of the

closed-loop system has been investigated by a Lyapunov-based

approach. It has been shown that, under physical structural

constraints, both flexible displacements are bounded and will

exponentialy converge to zero for vanishing disturbances.
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