26,073 research outputs found

    Alignment of contrast enhanced medical images

    Get PDF
    The re-alignment of series of medical images in which there are multiple contrast variations is difficult. The reason for this is that the popularmeasures of image similarity used to drive the alignment procedure do not separate the influence of intensity variation due to image feature motion and intensity variation due to feature enhancement. In particular, the appearance of new structure poses problems when it has no representation in the original image. The acquisition of many images over time, such as in dynamic contrast enhanced MRI, requires that many images with different contrast be registered to the same coordinate system, compounding the problem. This thesis addresses these issues, beginning by presenting conditions under which conventional registration fails and proposing a solution in the form of a ’progressive principal component registration’. The algorithm uses a statistical analysis of a series of contrast varying images in order to reduce the influence of contrast-enhancement that would otherwise distort the calculation of the image similarity measures used in image registration. The algorithm is shown to be versatile in that it may be applied to series of images in which contrast variation is due to either temporal contrast enhancement changes, as in dynamic contrast-enhanced MRI or intrinsically in the image selection procedure as in diffusion weighted MRI

    Ophthalmologic Image Registration Based on Shape-Context: Application to Fundus Autofluorescence (FAF) Images

    No full text
    Online access to subscriber only at http://www.actapress.com/Content_Of_Proceeding.aspx?ProceedingID=494International audienceA novel registration algorithm, which was developed in order to facilitate ophthalmologic image processing, is presented in this paper. It has been evaluated on FAF images, which present low Si gnal/Noise Ratio (SNR) and variations in dynamic grayscale range. These characteristics complicate the registration process and cause a failure to area-based registration techniques [1, 2] . Our method is based on shape-context theory [3] . In the first step, images are enhanced by Gaussian model based histog ram modification. Features are extracted in the next step by morphological operators, which are used to detect an approximation of vascular tree from both reference and floating images. Simplified medial axis of vessels is then calculated. From each image, a set of control points called Bifurcation Points (BPs) is extracted from the medial axis through a new fast algorithm. Radial histogram is formed for each BP using the medial axis. The Chi2 distance is measured between two sets of BPs based on radial histogram. Hungarian algorithm is applied to assign the correspondence among BPs from reference and floating images. The algorithmic robustness is evaluated by mutual information criteria between manual registration considered as Ground Truth and automatic one

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Performance of a fully automatic lesion detection system for breast DCE-MRI

    Get PDF
    PURPOSE: To describe and test a new fully automatic lesion detection system for breast DCE-MRI. MATERIALS AND METHODS: Studies were collected from two institutions adopting different DCE-MRI sequences, one with and the other one without fat-saturation. The detection pipeline consists of (i) breast segmentation, to identify breast size and location; (ii) registration, to correct for patient movements; (iii) lesion detection, to extract contrast-enhanced regions using a new normalization technique based on the contrast-uptake of mammary vessels; (iv) false positive (FP) reduction, to exclude contrast-enhanced regions other than lesions. Detection rate (number of system-detected malignant and benign lesions over the total number of lesions) and sensitivity (system-detected malignant lesions over the total number of malignant lesions) were assessed. The number of FPs was also assessed. RESULTS: Forty-eight studies with 12 benign and 53 malignant lesions were evaluated. Median lesion diameter was 6 mm (range, 5-15 mm) for benign and 26 mm (range, 5-75 mm) for malignant lesions. Detection rate was 58/65 (89%; 95% confidence interval [CI] 79%-95%) and sensitivity was 52/53 (98%; 95% CI 90%-99%). Mammary median FPs per breast was 4 (1st-3rd quartiles 3-7.25). CONCLUSION: The system showed promising results on MR datasets obtained from different scanners producing fat-sat or non-fat-sat images with variable temporal and spatial resolution and could potentially be used for early diagnosis and staging of breast cancer to reduce reading time and to improve lesion detection. Further evaluation is needed before it may be used in clinical practice

    Karakterizacija predkliničnega tumorskega ksenograftnega modela z uporabo multiparametrične MR

    Full text link
    Introduction: In small animal studies multiple imaging modalities can be combined to complement each other in providing information on anatomical structure and function. Non-invasive imaging studies on animal models are used to monitor progressive tumor development. This helps to better understand the efficacy of new medicines and prediction of the clinical outcome. The aim was to construct a framework based on longitudinal multi-modal parametric in vivo imaging approach to perform tumor tissue characterization in mice. Materials and Methods: Multi-parametric in vivo MRI dataset consisted of T1-, T2-, diffusion and perfusion weighted images. Image set of mice (n=3) imaged weekly for 6 weeks was used. Multimodal image registration was performed based on maximizing mutual information. Tumor region of interested was delineated in weeks 2 to 6. These regions were stacked together, and all modalities combined were used in unsupervised segmentation. Clustering methods, such as K-means and Fuzzy C-means together with blind source separation technique of non-negative matrix factorization were tested. Results were visually compared with histopathological findings. Results: Clusters obtained with K-means and Fuzzy C-means algorithm coincided with T2 and ADC maps per levels of intensity observed. Fuzzy C-means clusters and NMF abundance maps reported most promising results compared to histological findings and seem as a complementary way to asses tumor microenvironment. Conclusions: A workflow for multimodal MR parametric map generation, image registration and unsupervised tumor segmentation was constructed. Good segmentation results were achieved, but need further extensive histological validation.Uvod Eden izmed pomembnih stebrov znanstvenih raziskav v medicinski diagnostiki predstavljajo eksperimenti na živalih v sklopu predkliničnih študij. V teh študijah so eksperimenti izvedeni za namene odkrivanja in preskušanja novih terapevtskih metod za zdravljenje človeških bolezni. Rak jajčnikov je eden izmed glavnih vzrokov smrti kot posledica rakavih obolenj. Potreben je razvoj novih, učinkovitejših metod, da bi lahko uspešneje kljubovali tej bolezni. Časovno okno aplikacije novih terapevtikov je ključni dejavnik uspeha raziskovane terapije. Tumorska fiziologija se namreč razvija med napredovanjem bolezni. Eden izmed ciljev predkliničnih študij je spremljanje razvoja tumorskega mikro-okolja in tako določiti optimalno časovno okno za apliciranje razvitega terapevtika z namenom doseganja maksimalne učinkovitosti. Slikovne modalitete so kot raziskovalno orodje postale izjemno popularne v biomedicinskih in farmakoloških raziskavah zaradi svoje neinvazivne narave. Predklinične slikovne modalitete imajo nemalo prednosti pred tradicionalnim pristopom. Skladno z raziskovalno regulativo, tako za spremljanje razvoja tumorja skozi daljši čas ni potrebno žrtvovati živali v vmesnih časovnih točkah. Sočasno lahko namreč s svojim nedestruktivnim in neinvazivnim pristopom poleg anatomskih informacij podajo tudi molekularni in funkcionalni opis preučevanega subjekta. Za dosego slednjega so običajno uporabljene različne slikovne modalitete. Pogosto se uporablja kombinacija več slikovnih modalitet, saj so medsebojno komplementarne v podajanju željenih informacij. V sklopu te naloge je predstavljeno ogrodje za procesiranje različnih modalitet magnetno resonančnih predkliničnih modelov z namenom karakterizacije tumorskega tkiva. Metodologija V študiji Belderbos, Govaerts, Croitor Sava in sod. [1] so z uporabo magnetne resonance preučevali določitev optimalnega časovnega okna za uspešno aplikacijo novo razvitega terapevtika. Poleg konvencionalnih magnetno resonančnih slikovnih metod (T1 in T2 uteženo slikanje) sta bili uporabljeni tudi perfuzijsko in difuzijsko uteženi tehniki. Zajem slik je potekal tedensko v obdobju šest tednov. Podatkovni seti, uporabljeni v predstavljenem delu, so bili pridobljeni v sklopu omenjene raziskave. Ogrodje za procesiranje je narejeno v okolju Matlab (MathWorks, verzija R2019b) in omogoča tako samodejno kot ročno procesiranje slikovnih podatkov. V prvem koraku je pred generiranjem parametričnih map uporabljenih modalitet, potrebno izluščiti parametre uporabljenih protokolov iz priloženih tekstovnih datotek in zajete slike pravilno razvrstiti glede na podano anatomijo. Na tem mestu so slike tudi filtrirane in maskirane. Filtriranje je koristno za izboljšanje razmerja med koristnim signalom (slikanim živalskim modelom) in ozadjem, saj je skener za zajem slik navadno podvržen različnim izvorom slikovnega šuma. Uporabljen je bil filter ne-lokalnih povprečij Matlab knjižnice za procesiranje slik. Prednost maskiranja se potrdi v naslednjem koraku pri generiranju parametričnih map, saj se ob primerno maskiranem subjektu postopek bistveno pospeši z mapiranjem le na želenem področju. Za izdelavo parametričnih map je uporabljena metoda nelinearnih najmanjših kvadratov. Z modeliranjem fizikalnih pojavov uporabljenih modalitet tako predstavimo preiskovan živalski model z biološkimi parametri. Le-ti se komplementarno dopolnjujejo v opisu fizioloških lastnosti preučevanega modela na ravni posameznih slikovnih elementov. Ključen gradnik v uspešnem dopolnjevanju informacij posameznih modalitet je ustrezna poravnava parametričnih map. Posamezne modalitete so zajete zaporedno, ob različnih časih. Skeniranje vseh modalitet posamezne živali skupno traja več kot eno uro. Med zajemom slik tako navkljub uporabi anestetikov prihaja do majhnih premikov živali. V kolikor ti premiki niso pravilno upoštevani, prihaja do napačnih interpretacij skupnih informacij večih modalitet. Premiki živali znotraj modalitet so bili modelirani kot toge, med različnimi modalitetami pa kot afine preslikave. Poravnava slik je izvedena z lastnimi Matlab funkcijami ali z uporabo funkcij iz odprtokodnega ogrodja za procesiranje slik Elastix. Z namenom karakterizacije tumorskega tkiva so bile uporabljene metode nenadzorovanega razčlenjevanja. Bistvo razčlenjevanja je v združevanju posameznih slikovnih elementov v segmente. Elementi si morajo biti po izbranem kriteriju dovolj medsebojno podobni in se hkrati razlikovati od elementov drugih segmentov. Za razgradnjo so bile izbrane tri metode: metoda K-tih povprečij, kot ena izmed enostavnejšihmetoda mehkih C-tih povprečij, s prednostjo mehke razčlenitvein kot zadnja, nenegativna matrična faktorizacija. Slednja ponuja pogled na razčlenitev tkiva kot produkt tipičnih več-modalnih značilk in njihove obilice za vsak posamezni slikovni element. Za potrditev izvedenega razčlenjevanja z omenjenimi metodami je bila izvedena vizualna primerjava z rezultati histopatološke analize. Rezultati Na ustvarjene parametrične mape je imela poravnava slik znotraj posameznih modalitet velik vpliv. Zaradi dolgotrajnega zajema T1 uteženih slik nemalokrat prihaja do premikov živali, kar brez pravilne poravnave slik negativno vpliva na mapiranje modalitet in kasnejšo segmentacijo slik. Generirane mape imajo majhno odstopanje od tistih, narejenih s standardno uporabljenimi odprtokodnimi programi. Klastri pridobljeni z metodama K-tih in mehkih C-tih povprečij dobro sovpadajo z razčlenbami glede na njihovo inteziteto pri T2 in ADC mapah. Najobetavnejše rezultate po primerjavi s histološkimi izsledki podajata metoda mehkih C-povprečij in nenegativna matrična faktorizacija. Njuni segmentaciji se dopolnjujeta v razlagi tumorskega mikro-okolja. Zaključek Z izgradnjo ogrodja za procesiranje slik magnetne resonance in segmentacijo tumorskega tkiva je bil cilj magistrske naloge dosežen. Zasnova ogrodja omogoča poljubno dodajanje drugih modalitet in uporabo drugih živalskih modelov. Rezultati razčlenitve tumorskega tkiva so obetavni, vendar je potrebna nadaljna primerjava z rezultati histopatološke analize. Možna nadgradnja je izboljšanje robustnosti poravnave slik z uporabo modela netoge (elastične) preslikave. Prav tako je smiselno preizkusiti dodatne metode nenadzorovane segmentacije in dobljene rezultate primerjati s tukaj predstavljenimi

    Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI.

    Get PDF
    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement

    DCE-MRI perfusion and permeability parameters as predictors of tumor response to CCRT in patients with locally advanced NSCLC

    Get PDF
    In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT) and permeability parameters including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp) were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with V e and its standard variation V e-SD and positively correlated with K trans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve-SD, MTT, BV-SD and MTT-SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC. © 2016 The Author(s)
    corecore