119 research outputs found

    Additive domain decomposition operator splittings -- convergence analyses in a dissipative framework

    Full text link
    We analyze temporal approximation schemes based on overlapping domain decompositions. As such schemes enable computations on parallel and distributed hardware, they are commonly used when integrating large-scale parabolic systems. Our analysis is conducted by first casting the domain decomposition procedure into a variational framework based on weighted Sobolev spaces. The time integration of a parabolic system can then be interpreted as an operator splitting scheme applied to an abstract evolution equation governed by a maximal dissipative vector field. By utilizing this abstract setting, we derive an optimal temporal error analysis for the two most common choices of domain decomposition based integrators. Namely, alternating direction implicit schemes and additive splitting schemes of first and second order. For the standard first-order additive splitting scheme we also extend the error analysis to semilinear evolution equations, which may only have mild solutions.Comment: Please refer to the published article for the final version which also contains numerical experiments. Version 3 and 4: Only comments added. Version 2, page 2: Clarified statement on stability issues for ADI schemes with more than two operator

    Exponential Runge-Kutta methods for stiff kinetic equations

    Full text link
    We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques

    Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation

    Full text link
    The present work provides well-posedness and exponential decay results for the Blackstock-Crighton-Kuznetsov equation arising in the modeling of nonlinear acoustic wave propagation in thermally relaxing viscous fluids. First, we treat the associated linear equation by means of operator semigroups. Moreover, we derive energy estimates which we will use in a fixed-point argument in order to obtain well-posedness of the Blackstock-Crighton-Kuznetsov equation. Using a classical barrier argument we prove exponential decay of solutions.Comment: 18 page

    Spatial and Physical Splittings of Semilinear Parabolic Problems

    Get PDF
    Splitting methods are widely used temporal approximation schemes for parabolic partial differential equations (PDEs). These schemes may be very efficient when a problem can be naturally decomposed into multiple parts. In this thesis, splitting methods are analysed when applied to spatial splittings (partitions of the computational domain) and physical splittings (separations of physical processes) of semilinear parabolic problems. The thesis is organized into three major themes: optimal convergence order analysis, spatial splittings and a physical splitting application.In view of the first theme, temporal semi-discretizations based on splitting methods are considered. An analysis is performed which yields convergence without order under weak regularity assumptions on the solution, and convergence orders ranging up to classical for progressively more regular solutions. The analysis is performed in the framework of maximal dissipative operators, which includes a large number of parabolic problems. The temporal results are also combined with convergence studies of spatial discretizations to prove simultaneous space–time convergence orders for full discretizations.For the second theme, two spatial splitting formulations are considered. For dimension splittings each part of the formulation represents the evolution in one spatial dimension only. Thereby, multidimensional problems can be reduced to families of one-dimensional problems. For domain decomposition splittings each part represents a problem on only a smaller subdomain of the full domain of the PDE. The results of the first theme are applied to prove optimal convergence orders for splitting schemes used in conjunction with these two splitting formulations. The last theme concerns the evaluation of a physical splitting procedure in an interdisciplinary application. A model for axonal growth out of nerve cells is considered. This model features several challenges to be addressed by a successful numerical method. It consists of a linear PDE coupled to nonlinear ordinary differential equations via a moving boundary, which is part of the solution. The biological model parameters imply a wide range of scales, both in time and space. Based on a physical splitting, a tailored scheme for this model is constructed. Its robustness and efficiency are then verified by numerical experiments

    A description of all possible decay rates for solutions of some semilinear parabolic equations

    Get PDF
    We consider an abstract first order evolution equation in a Hilbert space in which the linear part is represented by a self-adjoint nonnegative operator A with discrete spectrum, and the nonlinear term has order greater than one at the origin. We investigate the asymptotic behavior of solutions. We prove that two different regimes coexist. Close to the kernel of A the dynamic is governed by the nonlinear term, and solutions (when they decay to 0) decay as negative powers of t. Close to the range of A, the nonlinear term is negligible, and solutions behave as solutions of the linearized problem. This means that they decay exponentially to 0, with a rate and an asymptotic profile given by a simple mode, namely a one-frequency solution of the linearized equation. The abstract results apply to semilinear parabolic equations.Comment: 35 page

    Explicit stabilized multirate method for stiff differential equations

    Get PDF
    Stabilized Runge-Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge-Kutta methods overcome the stringent stability condition of standard methods without sacrificing explicitness. However, when stiffness is only induced by a few components, as in the presence of spatially local mesh refinement, their efficiency deteriorates. To remove the crippling effect of a few severely stiff components on the entire system of differential equations, we derive a modified equation, whose stiffness solely depend on the remaining mildly stiff components. By applying stabilized Runge-Kutta methods to this modified equation, we then devise an explicit multirate Runge-Kutta-Chebyshev (mRKC) method whose stability conditions are independent of a few severely stiff components. Stability of the mRKC method is proved for a model problem, whereas its efficiency and usefulness are demonstrated through a series of numerical experiments.Comment: With respect to the previous version: Added a new numerical experiment where the mRKC method (first-order) is compared against a second-order RKC method and implicit Euler method on a nonlinear proble

    Explicit stabilized multirate method for stiff differential equations

    Get PDF
    Stabilized Runge–Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge–Kutta methods overcome the stringent stability condition of standard methods without sacrificing explicitness. However, when stiffness is only induced by a few components, as in the presence of spatially local mesh refinement, their efficiency deteriorates. To remove the crippling effect of a few severely stiff components on the entire system of differential equations, we derive a modified equation, whose stiffness solely depends on the remaining mildly stiff components. By applying stabilized Runge–Kutta methods to this modified equation, we then devise an explicit multirate Runge–Kutta–Chebyshev (mRKC) method whose stability conditions are independent of a few severely stiff components. Stability of the mRKC method is proved for a model problem, whereas its efficiency and usefulness are demonstrated through a series of numerical experiments

    Waveform relaxation methods for stochastic differential equations

    Get PDF
    An operator equation X = Π X + G in a Banach space 퓔 of 퓕t-adapted random elements describing an initial- or boundary value problem of a system of stochastic differential equations (SDEs) is considered. Our basic assumption is that the underlying system consists of weakly coupled subsystems. The proof of the convergence of corresponding waveform relaxation methods depends on the property that the spectral radius of an associated matrix is less than one. The entries of this matrix depend on the Lipschitz-constants of a decomposition of Π. In proving an existence result for the operator equation we show how the entries of the matrix depend on the right hand side of the stochastic differential equations. We derive conditions for the convergence under "classical" vector-valued Lipschitz-continuity of an appropriate splitting of the system of stochastic ODEs. A generalization of these key results under one-sided Lipschitz continuous and anticoercive drift coefficients of SDEs is also presented. Finally, we consider a system of SDEs with different time scales (singularly perturbed SDEs) as an illustrative example

    Waveform relaxation methods for stochastic differential equations

    Get PDF
    An operator equation X = Π X + G in a Banach space 퓔 of 퓕t-adapted random elements describing an initial- or boundary value problem of a system of stochastic differential equations (SDEs) is considered. Our basic assumption is that the underlying system consists of weakly coupled subsystems. The proof of the convergence of corresponding waveform relaxation methods depends on the property that the spectral radius of an associated matrix is less than one. The entries of this matrix depend on the Lipschitz-constants of a decomposition of Π. In proving an existence result for the operator equation we show how the entries of the matrix depend on the right hand side of the stochastic differential equations. We derive conditions for the convergence under "classical" vector-valued Lipschitz-continuity of an appropriate splitting of the system of stochastic ODEs. A generalization of these key results under one-sided Lipschitz continuous and anticoercive drift coefficients of SDEs is also presented. Finally, we consider a system of SDEs with different time scales (singularly perturbed SDEs) as an illustrative example

    Convergence and component splitting for the Crank-Nicolson--Leap-Frog integration method

    Get PDF
    A new convergence condition is derived for the Crank-Nicolson--Leap-Frog integration scheme. The convergence condition guarantees second-order temporal convergence uniformly in the spatial grid size for a wide class of implicit-explicit splittings. This is illustrated by successfully applying component splitting to first-order wave equations resulting in such second-order temporal convergence. Component splitting achieves that only on part of the space domain Crank-Nicolson needs to be used. This reduces implicit solution costs when for Leap-Frog the step size is severely limited by stability only on part of the space domain, for example due to spatial coefficients of a strongly varying magnitude or locally refined space grids
    • …
    corecore