1,895 research outputs found

    A Markovian Model For Contour Grouping

    Get PDF
    In order to interpret and analyse a scene, determining the contours is a fundamental step. Classical methods of contour extration do not always allow the detection of all the controus. We notice, for exemple, that the contours obtained by a Canny-Deriche filter have some gaps, especially at corners or at T-junctions. In short, the boundaries which are detected are not always closed. In this report, we present an algorith that restores incomplete contours. We model the image by Markov Random Fields and we define the Gibbs Distribution associated with it. In order to complete the contours, several criteria are defined and introduced in an energy function, which has to be optimized. The deterministic ICM "Iterated Conditional Mode" relaxation algorithm is implemented to minimize this energy function. The result is a contour image consisting of closed contours. This method has been tested on different images which present different types of difficulties (indoors, outdoors, satellite (SPOT), industrial and medical images)

    GeoSay: A Geometric Saliency for Extracting Buildings in Remote Sensing Images

    Full text link
    Automatic extraction of buildings in remote sensing images is an important but challenging task and finds many applications in different fields such as urban planning, navigation and so on. This paper addresses the problem of buildings extraction in very high-spatial-resolution (VHSR) remote sensing (RS) images, whose spatial resolution is often up to half meters and provides rich information about buildings. Based on the observation that buildings in VHSR-RS images are always more distinguishable in geometry than in texture or spectral domain, this paper proposes a geometric building index (GBI) for accurate building extraction, by computing the geometric saliency from VHSR-RS images. More precisely, given an image, the geometric saliency is derived from a mid-level geometric representations based on meaningful junctions that can locally describe geometrical structures of images. The resulting GBI is finally measured by integrating the derived geometric saliency of buildings. Experiments on three public and commonly used datasets demonstrate that the proposed GBI achieves the state-of-the-art performance and shows impressive generalization capability. Additionally, GBI preserves both the exact position and accurate shape of single buildings compared to existing methods

    The role of terminators and occlusion cues in motion integration and segmentation: a neural network model

    Get PDF
    The perceptual interaction of terminators and occlusion cues with the functional processes of motion integration and segmentation is examined using a computational model. Inte-gration is necessary to overcome noise and the inherent ambiguity in locally measured motion direction (the aperture problem). Segmentation is required to detect the presence of motion discontinuities and to prevent spurious integration of motion signals between objects with different trajectories. Terminators are used for motion disambiguation, while occlusion cues are used to suppress motion noise at points where objects intersect. The model illustrates how competitive and cooperative interactions among cells carrying out these functions can account for a number of perceptual effects, including the chopsticks illusion and the occluded diamond illusion. Possible links to the neurophysiology of the middle temporal visual area (MT) are suggested

    Segmentation and Shape Analysis of Macrophages Using Anglegram Analysis

    Get PDF
    Cell migration is crucial in many processes of development and maintenance of multicellular organisms and it can also be related to disease, e.g., Cancer metastasis, when cells migrate to organs different to where they originate. A precise analysis of the cell shapes in biological studies could lead to insights about migration. However, in some cases, the interaction and overlap of cells can complicate the detection and interpretation of their shapes. This paper describes an algorithm to segment and analyse the shape of macrophages in fluorescent microscopy image sequences, and compares the segmentation of overlapping cells through different algorithms. A novel 2D matrix with multiscale angle variation, called the anglegram, based on the angles between points of the boundary of an object, is used for this purpose. The anglegram is used to find junctions of cells and applied in two different applications: (i) segmentation of overlapping cells and for non-overlapping cells; (ii) detection of the “corners” or pointy edges in the shapes. The functionalities of the anglegram were tested and validated with synthetic data and on fluorescently labelled macrophages observed on embryos of Drosophila melanogaster. The information that can be extracted from the anglegram shows a good promise for shape determination and analysis, whether this involves overlapping or non-overlapping objects

    A new asymmetrical corner detector(ACD) for a semi-automatic image co-registration scheme

    No full text
    Co-registration of multi-sensor and multi-temporal images is essential for remote sensing applications. In the image co-registration process, automatic Ground Control Points (GCPs) selection is a key technical issue and the accuracy of GCPs localization largely accounts for the final image co-registration accuracy. In this thesis, a novel Asymmetrical Corner Detector (ACD) algorithm based on auto-correlation is presented and a semi-automatic image co-registration scheme is proposed. The ACD is designed with the consideration of the fact that asymmetrical corner points are the most common reality in remotely sensed imagery data. The ACD selects points more favourable to asymmetrical points rather than symmetrical points to avoid incorrect selection of flat points which are often highly symmetrical. The experimental results using images taken by different sensors indicate that the ACD has obtained excellent performance in terms of point localization and computation efficiency. It is more capable of selecting high quality GCPs than some well established corner detectors favourable to symmetrical corner points such as the Harris Corner Detector (Harris and Stephens, 1988). A semi-automatic image co-registration scheme is then proposed, which employs the ACD algorithm to extract evenly distributed GCPs across the overlapped area in the reference image. The scheme uses three manually selected pairs of GCPs to determine the initial transformation model and the overlapped area. Grid-control and nonmaximum suppression methods are used to secure the high quality and spread distribution of GCPs selected. It also involves the FNCC (fast normalised crosscorrelation) algorithm (Lewis, 1995) to refine the corresponding point locations in the input image and thus the GCPs are semi-automatically selected to proceed to the polynomial fitting image rectification. The performance of the proposed coregistration scheme has been demonstrated by registering multi-temporal, multi-sensor and multi-resolution images taken by Landsat TM, ETM+ and SPOT sensors. Experimental results show that consistent high registration accuracy of less than 0.7 pixels RMSE has been achieved. Keywords: Asymmetrical corner points, image co-registration, AC
    • …
    corecore