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SHAPE ANALYSIS AND TRACKING OF MIGRATING MACROPHAGES

José Alonso Solı́s-Lemus‹ Brian Stramer: Greg Slabaugh‹ Constantino Carlos Reyes-Aldasoro‹
‹School of Mathematics, Computer Science and Engineering, City, University of London, UK

:Randall Division of Cell & Molecular Biophysics, King’s College London, UK

ABSTRACT

This paper describes an algorithm to iteratively segment,
track and analyse the shape of macrophages from flu-
orescent microscopy image sequences. This process
allows observation of shape variations as the cells mi-
grate. The algorithm identifies and separates overlapping
and non-overlapping cells, then for the non-overlapping
cases analyses the shape and extracts a series of measure-
ments, including the number of “corner” or pointy edges
through a multiscale angle variation matrix, anglegram.
The shape evolution algorithm was tested on fluores-
cently labelled macrophages observed on embryos of
Drosophila melanogaster.

Index Terms— Shape evolution, active contours

1. INTRODUCTION

Cell migration processes are essential in numerous ar-
eas, for example in homoeostasis, where macrophages
hold roles that range from repairing tissue through to im-
mune responses to pathogens [1]. Macrophages are cells
of the immune system that filter microbes and foreign
particles when settled in lymphoid tissues and the liver
[2], these processes imply sophisticated migration mech-
anisms. The use of Drosophila Melanogaster as a model
organism has led to insights about how the macrophages
integrate cues to migration [3].

A precise analysis of the cell shapes as they evolve
through time could provide information for specific cells
in biological studies, where sharp corners suggest an ac-
tive migrating cell and rounded corners inactivity. The
interactions amongst the cells’ structures appear to an-
ticipate migration [4] and different shape states could
hint different movements. Such an analysis would re-
quire an accurate segmentation that incorporates shape
information as it evolves through time. Segmentation of
single frames and in the temporal context is a widely
studied area [5]. Single frame segmentation of fluores-
cent microscopy images involves a broad variety of tech-
niques, like automatic thresholding [6], curve evolution
techniques such as active contours, of active surfaces [7].

On the other hand, tracking techniques have been used
to follow link segmented cells into a track. Some tech-
niques include the keyhole algorithm [8] or more sophis-
ticated techniques that optimise both the tracking and the
segmentation in conjunction [9]. In this work a frame-
work to segment, track and analyse the shape of migrat-
ing macrophages is described.

2. MATERIALS AND METHODS

2.1. Macrophages embryos

Five hundred and forty one time frames with dimensions
pnh, nw, ndq “ p512, 672, 3q and two fluorescent chan-
nels (red = GFP-Moesin, green = Clip-GFP) were ac-
quired as described in [4]. Figure 2 shows the temporal
variation of one cell. Four basic shapes, Fig. 1, can be
recognised in the data: circles or ellipses, drops (one
pointy edge like a water drop), bi-drops and tri-drops
(similar to a drop but with more than one pointy edge).

(a) Full frame. (b) Regions of interest with
basic shapes

Fig. 1: One representative time frame where all basic shapes
can be recognised. The full frame is displayed in (a) with (red)
squares highlight the cells of interest. The detail of each cell is
shown in (b).

2.2. Synthetic data

A collection of 1000 images of basic shapes was gener-
ated with control points joined by cubic splines whose in-
dependent variable ranged in τ P r0, 2πs . Let tY ‹

i u
N
1 “

tpx1,i, y2,iqu
N
1 , be a collection of N control points of a
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Fig. 2: Evolution of a cell shape in time. The cell is shown in 8 different instances from 50 consecutive time frames.

basic shape such that Y ‹
i „ N pµ‹

i , σ
‹
i q. The value of

N depends on the type of basic shape: the circle has 4,
drop has 7, bi-drop has 8 and tridrop has 10. To model
the variations in the cells’ shapes, within their basic cat-
egories, the control points are distributed Normal. The
control points are joined with a spline that then produces
the boundary of the shape, B, which then models that of
a segmented cell (Fig. 3).

Fig. 3: Synthetic generation of random basic shapes. Per
shape, 200 cases were generated. The control points are shown
in blue(¨). The mean shapes are presented in magenta(´); and
the mean control points are represented in black(˛).

2.3. Shape tracking methodology

The shape of the cells was extracted from the green
channel whilst the red channel was used to distinguish
between individual and overlapping cells. Both channels
were low pass filtered with a 5ˆ5 Gaussian kernel and
then segmented by Otsu thresholding [10]. Finally, a
morphological opening with a disk structural element
(r “ 3) was performed to smooth the edges and remove
noise. As reported in [11], this segmentation can be
used to distinguish between overlapping groups of cells
called clumps. This work is focused in tracking the non
overlapping cells. The main functionality presented is a
framework in which a cell shape can be tracked through
a curve evolution algorithm. The PhagoSight package
[8] was used to track the movement of the nuclei through
time using the keyhole algorithm, and the segmentation
of the green channel was used to determine which nuclei
were involved in a clump. Clumps were removed from
the analysis. The tracking produced unique labels for
each of the tracks detected, as well as the position of
each nuclei at each point in time. Each track is repre-
sented by Tj , with j “ 1, 2, ¨ ¨ ¨ ,M being the number
of tracks. Each Tj contained the information regard-

ing the positions of the centroid of the nuclei txj,ku
T
k“1

as well as the time frames where the track was present
tj,0, ¨ ¨ ¨ , tj,k, ¨ ¨ ¨ , tj0,T´1

for the T consecutive time
frames. For simplicity, a time frame of an arbitrary track
T is shown as tk.

Given a track T , the shape of a cell Bk`1 at any
time tk`1 can be determined by the shape of the previ-
ous frame Bk, and the position change from tk into tk`1

of the red nuclei. Let B̄k be the shape Bk when moved
onto the position xk`1. The shape Bk`1 will be deter-
mined by evolving B̄k the shape from the previous time
frame, where Ik corresponds to the image of the kth time
frame (Algorithm 1). Every iteration of the algorithm
involves loading the known frame tk, the position infor-
mation from the unknown frame tk`1, performing the
evolution from B̄k`1 to Bk`1 and obtaining the region
properties of the new cell shape, these include (i) the ori-
entation, (ii) the ratio of the minor and major axes (aspect
ratio), (iii) the solidity, and (iv) the equivalent diameter.
The evolve function in Algorithm 1 is an implementa-

Algorithm 1: SHAPE EVOLUTION Tracks shape of
cells in a single track.

Input: Track: T , time frames: pt0 : tT´1q

1 tk Ð t0;
2 pIk,xkqload frame information at tk;
3 Bk Ð get boundarypIkq;
4 for tk`1 in time frames do
5 tk`1 Ð tk ` 1;

pIk`1,xk`1q Ð load frame at tk`1;
dk Ð xk`1 ´ xk;

6 B̄k`1 Ð move boundarypBk, dKq;
7 Bk`1 Ð evolvepIk`1, B̄k`1q;
8 savepBk`1, regionpropspBk`1qq;
9 tk Ð tk`1;

10 Bk Ð Bk`1;
11 end for

tion of the Chan-Vese active contour [12, 13] method in
MATLAB®. The function uses the moved boundary B̄ as
initialisation and is able to change its parameters based
on one of three states: Shrink, Grow, or Normal (Table
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1). The active contour is run once, with a set of parame-
ters, then the area of the output is compared to the area of
the input. The parameters would be adjusted to contract
or expand the shape and the active contour is run again.
In order to avoid an excessive leaking or contraction of
the segmentation, the area of the output was kept within
˘5% of the previous frame’s area.

Table 1: Parameters used of the active contour function based
on the desired state required. The parameters were chosen em-
pirically through numerous tests.

State Iterations smooth factor contraction bias
Normal 50 1.5 -0.1
Shrink 100 1.25 0.10
Grow 200 1.00 -0.25

2.4. Shape analysis through Anglegram

The anglegram [11] is a matrix, which describes mul-
tiscale angle variation of a shape. For each one of the
ordered points pi P B, the inner angles of every point is
computed for every separation and the maximum inten-
sity projection (MIP) per columns is calculated. To de-
tect clumps the angles of interest were those larger than
one standard deviation (std) above the mean of the MIP.
In this work, a similar idea is explored, but for acute an-
gles, using the minimum intensity projection (mIP) and
the threshold is one std below the mean. The implemen-
tation of the anglegram matrix involves the detection of
junctions that correspond to the corners of the analysed
boundary. Figure 5 shows the junction detection func-
tionality of the anglegram. The method works as reported
in [11], with two alterations: (i) resizing the anglegram
to have 64 rows to reduce noise, and (ii) taking the min-
imum intensity projection of the first half columns, as
the final columns are lower by the definition of the inner
point angle measurements. The corner detection method
was tested on 70,000 randomly generated boundaries of
the different types of shapes. Then, the corners were de-
tected on the shapes of the cells being tracked for a qual-
itative assessment.

Fig. 4: Anglegram on mean basic shapes from Figure 3. The
anglegram matrix was calculated and transposed for visualisa-
tion purposes. From left to right: circle, drop, bidrop and
tridrop.

(a) Junctions.
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(b) Anglegram and max intensity projection.

Fig. 5: Description of the original junction detection by angle-
gram. The junctions detected on a synthetic pair or ellipses is
shown in (a), where the boundary of the overlap is represented
in blue(–) and the junctions in magenta (˛). In (b), the angle-
gram matrix is displayed in a plane and the MIP is represented
along the boundary points. Detection of junctions are shown in
magenta (˛).

3. RESULTS

Tests on the synthetic data were in the range of 86-95%
correct detection (Table 2). The method achieved the
highest accuracy in the bidrop shape, and the lowest in
the drop shape. Figure 6 displays the shape evolution

Table 2: Number of corners detected per shape. The accuracy
of the method is highlighted.

Shapes / Number of corners detected (%)
Corners None 1 2 3 ě 4

Circle 89.35 0 0 0.47 10.18
Drop 4.42 86.02 6.81 2.52 0.23

Bidrop 0 0.41 95.17 4.31 0.11
Tridrop 0 0.02 2.76 92.94 4.28

of a track-fragment containing 50 frames in the dataset.
Eight frames are shown with the moved boundary dis-
played in the dotted line (cyan- -) and the evolved shape
in the solid line (magenta-). The corners detected by the
anglegram at each point are also displayed as asterisks
(yellow˚) for qualitative assessment. The orientation and
aspect ratio are plot together in the middle row, in the bot-
tom row, the number of corners and the measured angle.

4. DISCUSSION

Preliminary work involving curve evolution methods
such as multilevel set methods [14] and active contours
[12] have proven unsuccessful to segment even non
overlapping cells in the analysis of a single frame. Such
techniques require considerable precision when selecting
the parameters, but especially when selecting the initial-
isation given to the algorithms. In this work, a method
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Fig. 6: Evolution of cell shape throughout multiple frames. Top row: Eight instances of 50 consecutive frames. Previous seg-
mentation in cyan(- -), evolved in magenta(-) and corners detected in yellow(˚). Middle row: Comparison between the orientation
(blue ˚´) and the aspect ratio (orange `´). The values for the top frames are highlighted in blue(˝) and black (˛). Bottom row:
Minimum intensity projection of top’s’ respective anglegrams displaying the values of the angles measured per corner (red ˛).

to segment moving cells based on active contours was
proposed.

The main contribution was to provide a framework
for the consistent tracking of the shape of a cell and pro-
vide a measured evolution of some shape parameters. As
shown in Figure 6, the similarity of the previous frame
to the current is enough to provide an appropriate initial-
isation for the active contours, however, as shown in Ta-
ble 1, monitoring of the shape is necessary to avoid seg-
mentation leaking. A new implementation of the angle-
gram matrix allowed for the analysis of a single cell with
a straightforward identification of corners in the shapes.
Future developments involve extending the shape track-
ing into overlapping cells to disambiguate them. Further-
more, as seen in Figure 4, the distinctive patterns of the
anglegrams corresponding to the basic shapes, could be
further explored into a classification problem for shape
identification or correction of irregular segmentations.
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