3,711 research outputs found

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    DoctorEye: A clinically driven multifunctional platform, for accurate processing of tumors in medical images

    Get PDF
    Copyright @ Skounakis et al.This paper presents a novel, open access interactive platform for 3D medical image analysis, simulation and visualization, focusing in oncology images. The platform was developed through constant interaction and feedback from expert clinicians integrating a thorough analysis of their requirements while having an ultimate goal of assisting in accurately delineating tumors. It allows clinicians not only to work with a large number of 3D tomographic datasets but also to efficiently annotate multiple regions of interest in the same session. Manual and semi-automatic segmentation techniques combined with integrated correction tools assist in the quick and refined delineation of tumors while different users can add different components related to oncology such as tumor growth and simulation algorithms for improving therapy planning. The platform has been tested by different users and over large number of heterogeneous tomographic datasets to ensure stability, usability, extensibility and robustness with promising results. AVAILABILITY: THE PLATFORM, A MANUAL AND TUTORIAL VIDEOS ARE AVAILABLE AT: http://biomodeling.ics.forth.gr. It is free to use under the GNU General Public License

    Three-Dimensional GPU-Accelerated Active Contours for Automated Localization of Cells in Large Images

    Full text link
    Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. This becomes particularly challenging for extremely large images, since manual intervention and processing time can make segmentation intractable. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional (3D) contour evolution that extends previous work on fast two-dimensional active contours. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell segmentation tasks when compared to existing methods on large 3D brain images

    Medical Image Segmentation by Water Flow

    No full text
    We present a new image segmentation technique based on the paradigm of water flow and apply it to medical images. The force field analogy is used to implement the major water flow attributes like water pressure, surface tension and adhesion so that the model achieves topological adaptability and geometrical flexibility. A new snake-like force functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method has been assessed qualitatively and quantitatively, and shows decent detection performance as well as ability to handle noise

    Flexible shape extraction for micro/nano scale structured surfaces.

    Get PDF
    Surface feature is the one of the most important factors affecting the functionality and reliability of micro scale patterned surfaces. For micro scale patterned surface characterisation, it’s important to extract the surface feature effectively and accurately. The active contours, known as “snakes”, have been successfully used to segment, match and track the objects of interest. The active contours have been applied to facial boundary detection, medical image processing, motion correction, etc. In this paper, surface feature extraction techniques based on active contours have been investigated. Parametric active contour models and geometric active contour models have been presented. Also, a group of examples has been selected here to demonstrate the feasibility and applicability of the surface pattern extraction techniques based on active contours. At last, experimental results will be given and discussed

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but impeded by speed of computation. We have developed new ways to extract features based on notional use of physical paradigms, with parameterisation that is more familiar to a scientifically-trained user, aiming to make best use of computational resource. We describe how analogies based on gravitational force can be used for low-level analysis, whilst analogies of water flow and heat can be deployed to achieve high-level smooth shape detection. These new approaches to arbitrary shape extraction are compared with standard state-of-art approaches by curve evolution. There is no comparator operator to our use of gravitational force. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision
    • …
    corecore