16,962 research outputs found

    Finite-Size Scaling in Two-dimensional Continuum Percolation Models

    Full text link
    We test the universal finite-size scaling of the cluster mass order parameter in two-dimensional (2D) isotropic and directed continuum percolation models below the percolation threshold by computer simulations. We found that the simulation data in the 2D continuum models obey the same scaling expression of mass M to sample size L as generally accepted for isotropic lattice problems, but with a positive sign of the slope in the ln-ln plot of M versus L. Another interesting aspect of the finite-size 2D models is also suggested by plotting the normalized mass in 2D continuum and lattice bond percolation models, versus an effective percolation parameter, independently of the system structure (i.e. lattice or continuum) and of the possible directions allowed for percolation (i.e. isotropic or directed) in regions close to the percolation thresholds. Our study is the first attempt to map the scaling behaviour of the mass for both lattice and continuum model systems into one curve.Comment: 9 pages, Revtex, 2 PostScript figure

    Two-Dimensional Scaling Limits via Marked Nonsimple Loops

    Full text link
    We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE(6) and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We show that this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.Comment: 25 pages, 5 figure

    Theory of continuum percolation I. General formalism

    Full text link
    The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting ss-state spins which are free to move in the continuum. In the s→1s \to 1 limit, the Potts magnetization, susceptibility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem.Comment: 26 pages, Late

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    The Judicial Expansion of American Exceptionalism

    Get PDF
    The percolation theory is established as a useful tool in the field of pharmaceutical materials science.It is shown that percolation theory, developed for analyzing insulator–conductor transitions, can beapplied to describe imperfect dc conduction in pharmaceutical microcrystalline cellulose duringdensification. The system, in fact, exactly reproduces the values of the percolation threshold andexponent estimated for a three-dimensional random continuum. Our data clearly show a crossoverfrom a power-law percolation theory region to a linear effective medium theory region at a celluloseporosity of ;0.7

    Continuum percolation for Cox point processes

    Get PDF
    We investigate continuum percolation for Cox point processes, that is, Poisson point processes driven by random intensity measures. First, we derive sufficient conditions for the existence of non-trivial sub- and super-critical percolation regimes based on the notion of stabilization. Second, we give asymptotic expressions for the percolation probability in large-radius, high-density and coupled regimes. In some regimes, we find universality, whereas in others, a sensitive dependence on the underlying random intensity measure survives.Comment: 21 pages, 5 figure
    • …
    corecore