833 research outputs found

    Continuously non-malleable codes with split-state refresh

    Get PDF
    Non-malleable codes for the split-state model allow to encode a message into two parts, such that arbitrary independent tampering on each part, and subsequent decoding of the corresponding modified codeword, yields either the same as the original message, or a completely unrelated value. Continuously non-malleable codes further allow to tolerate an unbounded (polynomial) number of tampering attempts, until a decoding error happens. The drawback is that, after an error happens, the system must self-destruct and stop working, otherwise generic attacks become possible. In this paper we propose a solution to this limitation, by leveraging a split-state refreshing procedure. Namely, whenever a decoding error happens, the two parts of an encoding can be locally refreshed (i.e., without any interaction), which allows to avoid the self-destruct mechanism. An additional feature of our security model is that it captures directly security against continual leakage attacks. We give an abstract framework for building such codes in the common reference string model, and provide a concrete instantiation based on the external Diffie-Hellman assumption. Finally, we explore applications in which our notion turns out to be essential. The first application is a signature scheme tolerating an arbitrary polynomial number of split-state tampering attempts, without requiring a self-destruct capability, and in a model where refreshing of the memory happens only after an invalid output is produced. This circumvents an impossibility result from a recent work by Fuijisaki and Xagawa (Asiacrypt 2016). The second application is a compiler for tamper-resilient RAM programs. In comparison to other tamper-resilient compilers, ours has several advantages, among which the fact that, for the first time, it does not rely on the self-destruct feature

    Continuously non-malleable codes with split-state refresh

    Get PDF
    Non-malleable codes for the split-state model allow to encode a message into two parts, such that arbitrary independent tampering on each part, and subsequent decoding of the corresponding modified codeword, yields either the same as the original message, or a completely unrelated value. Continuously non-malleable codes further allow to tolerate an unbounded (polynomial) number of tampering attempts, until a decoding error happens. The drawback is that, after an error happens, the system must self-destruct and stop working, otherwise generic attacks become possible. In this paper we propose a solution to this limitation, by leveraging a split-state refreshing procedure. Namely, whenever a decoding error happens, the two parts of an encoding can be locally refreshed (i.e., without any interaction), which allows to avoid the self-destruct mechanism in some applications. Additionally, the refreshing procedure can be exploited in order to obtain security against continual leakage attacks. We give an abstract framework for building refreshable continuously non-malleable codes in the common reference string model, and provide a concrete instantiation based on the external Diffie–Hellman assumption. Finally, we explore applications in which our notion turns out to be essential. The first application is a signature scheme tolerating an arbitrary polynomial number of split-state tampering attempts, without requiring a self-destruct capability, and in a model where refreshing of the memory happens only after an invalid output is produced. This circumvents an impossibility result from a recent work by Fujisaki and Xagawa (Asiacrypt 2016). The second application is a compiler for tamper-resilient read-only RAM programs. In comparison to other tamper-resilient RAM compilers, ours has several advantages, among which the fact that, in some cases, it does not rely on the self-destruct feature

    Limits to Non-Malleability

    Get PDF
    There have been many successes in constructing explicit non-malleable codes for various classes of tampering functions in recent years, and strong existential results are also known. In this work we ask the following question: When can we rule out the existence of a non-malleable code for a tampering class ?? First, we start with some classes where positive results are well-known, and show that when these classes are extended in a natural way, non-malleable codes are no longer possible. Specifically, we show that no non-malleable codes exist for any of the following tampering classes: - Functions that change d/2 symbols, where d is the distance of the code; - Functions where each input symbol affects only a single output symbol; - Functions where each of the n output bits is a function of n-log n input bits. Furthermore, we rule out constructions of non-malleable codes for certain classes ? via reductions to the assumption that a distributional problem is hard for ?, that make black-box use of the tampering functions in the proof. In particular, this yields concrete obstacles for the construction of efficient codes for NC, even assuming average-case variants of P ? NC

    Non-malleable secret sharing against joint tampering attacks

    Get PDF
    Since thousands of years ago, the goal of cryptography has been to hide messages from prying eyes. In recent times, cryptography two important changes: first, cryptography itself evolved from just being about encryption to a broader class of situations coming from the digital era; second, the way of studying cryptography evolved from creating ``seemingly hard'' cryptographic schemes to constructing schemes which are provably secure. However, once the mathematical abstraction of cryptographic primitives started to be too hard to break, attackers found another way to defeat security. Side channel attacks have been proved to be very effective in this task, breaking the security of otherwise provably secure schemes. Because of this, recent trends in cryptography aim to capture this situation and construct schemes that are secure even against such powerful attacks. In this setting, this thesis specializes in the study of secret sharing, an important cryptographic primitive that allows to balance privacy and integrity of data and also has applications to multi-party protocols. Namely, continuing the trend which aims to protect against side channel attacks, this thesis brings some contributions to the state of the art of the so-called leakage-resilient and non-malleable secret sharing schemes, which have stronger guarantees against attackers that are able to learn information from possibly all the shares and even tamper with the shares and see the effects of the tampering. The main contributions of this thesis are twofold. First, we construct secret sharing schemes that are secure against a very powerful class of attacks which, informally, allows the attacker to jointly leak some information and tamper with the shares in a continuous fashion. Second, we study the capacity of continuously non-malleable secret sharing schemes, that is, the maximum achievable information rate. Roughly speaking, we find some lower bounds to the size that the shares must have in order to achieve some forms of non-malleability

    Continuously Non-Malleable Codes from Authenticated Encryptions in 2-Split-State Model

    Get PDF
    Tampering attack is the act of deliberately modifying the codeword to produce another codeword of a related message. The main application is to find out the original message from the codeword. Non-malleable codes are introduced to protect the message from such attack. Any tampering attack performed on the message encoded by non-malleable codes, guarantee that output is either completely unrelated or original message. It is useful mainly in the situation when privacy and integrity of the message is important rather than correctness. Unfortunately, standard version of non-malleable codes are used for one-time tampering attack. In literature, we show that it is possible to construct non-malleable codes from authenticated encryptions. But, such construction does not provide security when an adversary tampers the codeword more than once. Later, continuously non-malleable codes are constructed where an attacker can tamper the message for polynomial number of times. In this work, we propose a construction of continuously non-malleable code from authenticated encryption in 2-split-state model. Our construction provides security against polynomial number of tampering attacks and non-malleability property is preserved. The security of proposed continuously non-malleable code reduces to the security of underlying leakage resilient storage when tampering experiment triggers self-destruct

    Interactive Non-Malleable Codes Against Desynchronizing Attacks in the Multi-Party Setting

    Get PDF
    Interactive Non-Malleable Codes were introduced by Fleischhacker et al. (TCC 2019) in the two party setting with synchronous tampering. The idea of this type of non-malleable code is that it "encodes" an interactive protocol in such a way that, even if the messages are tampered with according to some class F of tampering functions, the result of the execution will either be correct, or completely unrelated to the inputs of the participating parties. In the synchronous setting the adversary is able to modify the messages being exchanged but cannot drop messages nor desynchronize the two parties by first running the protocol with the first party and then with the second party. In this work, we define interactive non-malleable codes in the non-synchronous multi-party setting and construct such interactive non-malleable codes for the class F^s_bounded of bounded-state tampering functions

    Non-Malleable Codes for Partial Functions with Manipulation Detection

    Get PDF
    Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs (ICS \u2710) and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to ⊥\bot. Finally, our primitive implies All-Or-Nothing Transforms (AONTs) and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. In addition to this, we present a number of additional applications of our primitive in tamper resilience

    Bounded Tamper Resilience: How to go beyond the Algebraic Barrier

    Get PDF
    Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary in case of arbitrary key relations, as otherwise a generic attack of Gennaro et al. (TCC 2004) shows how to recover the key of almost any cryptographic primitive. We describe our contributions in more detail below. 1) We show that standard ID and signature schemes constructed from a large class of Σ\Sigma-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. 2) We show a bounded tamper and leakage resilient CCA secure public key cryptosystem based on the DDH assumption. We first define a weaker CPA-like security notion that we can instantiate based on DDH, and then we give a general compiler that yields CCA-security with tamper and leakage resilience. This requires a public tamper-proof common reference string. 3) Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper-free information) which can be used to refresh the secret key. We believe that bounded tampering is a meaningful and interesting alternative to avoid known impossibility results and can provide important insights into the security of existing standard cryptographic schemes

    Rate-Optimizing Compilers for Continuously Non-Malleable Codes

    Get PDF
    We study the *rate* of so-called *continuously* non-malleable codes, which allow to encode a message in such a way that (possibly adaptive) continuous tampering attacks on the codeword yield a decoded value that is unrelated to the original message. Our results are as follows: -) For the case of bit-wise independent tampering, we establish the existence of rate-one continuously non-malleable codes with information-theoretic security, in the plain model. -) For the case of split-state tampering, we establish the existence of rate-one continuously non-malleable codes with computational security, in the (non-programmable) random oracle model. We further exhibit a rate-1/2 code and a rate-one code in the common reference string model, but the latter only withstands *non-adaptive* tampering. It is well known that computational security is inherent for achieving continuous non-malleability in the split-state model (even in the presence of non-adaptive tampering). Continuously non-malleable codes are useful for protecting *arbitrary* cryptographic primitives against related-key attacks, as well as for constructing non-malleable public-key encryption schemes. Our results directly improve the efficiency of these applications
    • …
    corecore