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Abstract

Non-malleable codes for the split-state model allow to encode a message into two parts,
such that arbitrary independent tampering on each part, and subsequent decoding of the
corresponding modified codeword, yields either the same as the original message, or a com-
pletely unrelated value. Continuously non-malleable codes further allow to tolerate an un-
bounded (polynomial) number of tampering attempts, until a decoding error happens. The
drawback is that, after an error happens, the system must self-destruct and stop working,
otherwise generic attacks become possible.

In this paper we propose a solution to this limitation, by leveraging a split-state refreshing
procedure. Namely, whenever a decoding error happens, the two parts of an encoding can
be locally refreshed (i.e., without any interaction), which allows to avoid the self-destruct
mechanism in some applications. Additionally, the refreshing procedure can be exploited in
order to obtain security against continual leakage attacks. We give an abstract framework for
building refreshable continuously non-malleable codes in the common reference string model,
and provide a concrete instantiation based on the external Diffie-Hellman assumption.

Finally, we explore applications in which our notion turns out to be essential. The first
application is a signature scheme tolerating an arbitrary polynomial number of split-state
tampering attempts, without requiring a self-destruct capability, and in a model where re-
freshing of the memory happens only after an invalid output is produced. This circumvents
an impossibility result from a recent work by Fuijisaki and Xagawa (Asiacrypt 2016). The
second application is a compiler for tamper-resilient read-only RAM programs. In compar-
ison to other tamper-resilient RAM compilers, ours has several advantages, among which
the fact that, in some cases, it does not rely on the self-destruct feature.
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1 Introduction

Tampering attacks are subtle attacks that undermine the security of cryptographic implemen-
tations by exploiting physical phenomena that allow to modify the underlying secrets. Indeed,
a long line of works (see, e.g., [12, 10, 42, 53]) has established that black-box interaction with a
tampered implementation can potentially expose the entire content of the secret memory. Given
this state of affairs, protecting cryptographic schemes against tampering attacks has become an
important goal for modern cryptographers.

An elegant solution to the threat of tampering attacks against the memory comes from the
notion of non-malleable codes (NMCs), put forward by Dziembowski, Pietrzak, and Wichs [32].
Intuitively, a non-malleable encoding (Encode,Decode) allows to encode a value M into a code-
word C ← Encode(M), with the guarantee that a modified codeword C̃ = f(C) w.r.t. a
tampering function f ∈ F , when decoded, yields either M itself, or a completely unrelated
value. An important parameter for characterizing the security guarantee offered by NMCs is
the class of modifications F that are supported by the scheme. Since non-malleability is im-
possible to obtain for arbitrary (albeit efficient) modifications,1 research on NMCs has focused
on constructing such schemes in somewhat restricted, yet interesting, models. One such model
that has been the focus of intensive research (see, e.g., [50, 36, 3, 2]) is the split-state model,
where the codeword C consists of two parts (C0, C1) that can be modified independently (yet
arbitrarily). This setting is also the focus of this paper.

Unfortunately, standard NMCs protect only against a single tampering attack.2 To over-
come this limitation, Faust et al. [36] introduced continuously non-malleable codes (CNMCs for
short), where the attacker can tamper for an unbounded (polynomial) number of times with

1As it can be seen by considering the tampering function that first decodes the codeword, flips one bit of the
message, and then encodes the result.

2When using NMCs to obtain security against memory tampering, one can still obtain security against con-
tinuous attacks by enforcing a re-encoding of the secret key after each invocation; however, this comes with
several disadvantages [33], among which the fact that the encoding process is considerably more complex than
the decoding process.
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the codeword, until a decoding error happens which triggers the self-destruction of the device.
As argued in [36], the self-destruct capability is necessary, as each decoding error might be used
to signal one bit of information about the target codeword.

Another desirable feature of non-malleable codes is their ability to additionally tolerate
leakage attacks, by which the adversary can obtain partial information on the codeword while
performing a tampering attack. Note that in the split-state model this means that the adversary
can leak independently from the two parts C0 and C1. All previous constructions of leakage-
resilient NMCs either achieve security in the so-called bounded-leakage model [50, 36, 4], where
the total amount of leakage (from each part) is upper-bounded by a value ` that is a parameter
of the scheme, or only satisfy non-continuous non-malleability [33].

1.1 Our Contributions

We introduce a new form of CNMCs (dubbed R-CNMCs) that include a split-state algorithm
for refreshing a valid codeword. The refresh procedure is invoked either after a decoding error
happens, or in order to amplify resilience to leakage, and takes place directly on the memory
and without the need of a central unit. Our new model has two main attractive features, which
we emphasize below.

• It captures security in the so-called continual noisy-leakage model, where between each
refresh the adversary can leak an arbitrary (yet independent) amount of information on
the two parts C0, C1, as long as the leakage does not reveal (information-theoretically)
more than ` bits of information. Importantly, this restriction is well-known to better
capture realistic leakage attacks.

• It avoids the need for the self-destruct capability in some applications. Besides mitigating
simple denial-of-service attacks, this feature is useful in situations where a device (storing
an encoding of the secret state) is not in the hands of the adversary (e.g., because it has
been infected by a malware), as it still allows to (non-interactively) refresh the secret state
and continue to safely use the device in the wild.

Our first contribution is an abstract framework for constructing R-CNMCs, which we are
able to instantiate under the external Diffie-Hellman assumption. This constitutes the first
NMC that achieves at the same time continuous non-malleability and security under continual
noisy leakage, in the split-state model (assuming an untamperable common reference string).

Next, we explore applications of R-CNMCs. As second contribution, we show how to con-
struct a split-state3 signature scheme resilient to continuous tampering and leakage attacks,
without relying on the self-destruct capability, and where the memory content is refreshed in
case a decoding error is triggered. Interestingly, Fujisaki and Xagawa [40] recently showed that
such a notion is impossible to achieve for standard (i.e., non split-state) signature schemes, even
if the self-destruct capability is available; hence, our approach can be interpreted as a possible
way to circumvent the impossibility result in [40].

Our third contribution consists of two generic compilers for protecting random access ma-
chine (RAM) computations against tampering attacks [24, 37]. Here, we build on the important
work of Dachman-Soled et al. [24], who showed how to compile any RAM to be resilient to
continual tampering and leakage attacks, by relying both on an update and a self-destruct mech-
anism. We refer the reader to Section 6.2 for further details on our RAM compilers. Below, we
highlight the main technical ideas behind our code construction.

3This means that the signing key is made of two shares that are stored in two separate parts of the memory,
and need to be combined upon signing.
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1.2 Code Construction

The starting point of our code construction is the recent work of Faonio and Nielsen [33]. The
scheme built in [33] follows a template that originates in the work of Liu and Lysyanskaya [50],
in which the left side of the encoding stores the secret key sk of a public-key encryption (PKE)
scheme, whereas the right side of the encoding stores a ciphertext c, encrypting the encoded
message M , plus a non-interactive zero-knowledge (NIZK) argument that proves knowledge of
the secret key under the label c; the PKE scheme is chosen to be a continual-leakage resilient
storage friendly PKE (CLRS friendly PKE for short) scheme (see Dodis et al. [29]), whereas the
NIZK is chosen to be a malleable NIZK argument of knowledge (see Chase et al. [15]). Such
a code was shown to admit a split-state refresh procedure, and, at the same time, to achieve
bounded-time non-malleability.

The NM code of [33] does not satisfy security against continuous attacks. In fact, an
attacker can create two valid codewords (C0, C1) and (C0, C

′
1) such that Decode(C0, C1) 6=

Decode(C0, C
′
1). Given this, the adversary can tamper the left side to C0 and the right side to

either C1 or C ′1 according to the bits of the right side of the target encoding. This way, assuming
tampering is non-persistent, the adversary can leak all the bits of C1 without activating the
self-destruct mechanism. More in general, for any CNMC it should be hard to find two valid
codewords (C0, C1) and (C0, C

′
1) such that Decode(C0, C1) 6= Decode(C0, C

′
1). This property,

called “message uniqueness”, was originally defined in [36].4

Going back to the described code construction, an attacker can sample a secret key sk and
create two ciphertexts, c0 for M and c′ for M ′, where M 6= M ′, together with the corresponding
honestly computed NIZKs, and thus break message uniqueness. We fix this issue by further
binding the right and the left side of an encoding. To do so, while still being able to refresh
the two parts independently, we keep untouched the structure of the right side of the codeword,
but we change the message that it carries. Specifically, the ciphertext c in our code encrypts
the message M concatenated with the randomness r for a commitment γ that is stored in
the left side of the codeword together with the secret key for the PKE scheme. Observe that
“message uniqueness” is now guaranteed by the binding property of the commitment scheme.
Our construction additionally includes another NIZK for proving knowledge of the committed
value under the label sk , in order to further link together the left and the right side of the
codeword.

Proof strategy. Although our construction shares similarities with previous work, our proof
techniques diverge significantly from the ones in [33, 36]. The main trick of [36] is to show
that given one half of the codeword it is possible to fully simulate the view of the adversary
in the tampering experiment, until a decoding error happens. To catch when a decoding error
happens, [36] carries on two independent simulators in an interleaved fashion; as they prove,
a decoding error happens exactly when the outputs of the two simulations diverge. The main
obstacle they faced is how to succinctly compute the index where the two simulations diverge,
so that non-malleability can be reduced to the security of the inner leakage-resilient storage
scheme (see Dav́ı et al. [27]) they rely on. To solve this, [36] employs an elegant dichotomous
search-by-hash strategy over the partial views produced by the two simulators. At this point
the experiment can terminate, and thanks to a specific property of the leakage-resilient storage
scheme, the simulator can “extract” the decoded value corresponding to a tampered codeword.

4Faust et al. also consider “codeword uniqueness”, where the fact that Decode(C0, C1) 6= Decode(C0, C
′
1) is

not required (as long as C1 6= C′1). However, this flavor of uniqueness only allows to rule out so-called continuous
super non-malleability, where one asks that not only the decoded value, but the entire modified codeword, be
independent of the message. It is easy to see that no R-CNMC can satisfy “codeword uniqueness”, as for instance
C′1 could be obtained as a valid refresh of C1.
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Unfortunately, we cannot generalize the above proof strategy to multiple rounds. Indeed,
Faust et al. exploit the fact that the leakage-resilient storage scheme remains secure even when
the adversary is allowed to obtain one half of the encoding in full. Clearly, after that, the
adversary is not allowed to leak further from the other half of the codeword. In our case, we
would need to repeat the above trick again and again, in particular after each decoding error
(and subsequent refresh of the target encoding) happens; however, once the reduction obtains
one half of the codeword it cannot ask leakage queries anymore, so that it is unclear how to
complete the proof. We give a solution to this problem by relying on a simple information-
theoretic observation.

Let (X0, X1) be two random variables, and consider a process that interleaves the com-
putation of a sequence of leakage functions g1, g2, g3, . . . from X0 and from X1. The pro-
cess continues until, for some index i ∈ N, we have that gi(X0) 6= gi(X1). We claim that
ḡi(X0) := g1(X0), g2(X0), · · · , gi−1(X0) do not reveal more information about X0 than what
X1 and the index i already reveal. To see this, consider H̃∞(X0 | ḡi(X0)), i.e. the average con-
ditional min-entropy of X0, which is, roughly speaking, the amount (on average) of uncertainty
of X0 given ḡi(X0) as side information. (See Section 2.1 for the formal definition.) Now, since
ḡi(X0) and ḡi(X1) are exactly the same random variables we can derive5:

H̃∞(X0 | ḡi(X0)) = H̃∞(X0 | ḡi(X1)) ≥ H̃∞(X0 | X1, i).

The latter implies that the size of the view of the adversary, although potentially much larger
than the leakage bound, might reveal only little information.

One can use the above observation in order to give an alternative proof of security for
the scheme in [36], where the reduction to the leakage-resilient storage scheme loses only a
factor O(κ) in the leakage bound (instead of O(κ log κ)). Briefly, the idea is to carry on two
independent simulators in an interleaved fashion (as in [36]) and, at each invocation, outputting
first the hashes6 of the simulated tampered codeword, and then, if the hashes match, leak
the full simulated tampered codeword. This allows to avoid the dichotomous search-by-hash
strategy, and thus to limit the total amount of leakage to O(κ).

1.3 Limitations of the Refresh Paradigm

The original motivation behind the concept of CNMCs, as discussed in [36], was to make the
standard tampering application of NMCs more realistic, in the following sense. Imagine that
the device we want to protect, besides storing an encoding of the secret key, also contains other
non-encoded data. For example the device could be a laptop, and tampering attacks could be
launched by a virus with read and write access to the memory. The virus could exploit the
space available on the device to make multiple copies of the original codeword, which thus can be
tampered continuously. However, since the underlying NMC is resilient to continuous attacks,
the privacy of the secret key is still preserved. Intuitively, this works because the adversary, to
gather information about the codeword, needs to trigger a decoding error, however, once such
an event happens the device self-destructs and the game is over.

While our notion of R-CNMCs allows for the very same application as considered in [36] (as
any R-CNMC is in particular a CNMC), the straight-forward extension of the above scenario to
a setting where the self-destruct is not available, but the encoding of the key is refreshed after
a decoding error happens, does not work. To make the attack even harder, suppose that all the
locations in the memory are encoded using a R-CNMC, and whenever a decoding error happens,

5 In the last equation, we also use that the output of a function is at most as informative as the input.
6By collision resistance of the hash function, if the two hashes match then the simulated tampered codewords

are the same for both the simulators.
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the full memory is refreshed. An adversary could perform the following tampering attack. In
case the i-th bit of the attacked codeword is equal to 1, the i-th location of the memory is
corrupted (i.e., it is replaced with an invalid codeword), otherwise it is left untouched. Thus,
the adversary reads sequentially all the memory locations. Very soon a decoding error will be
triggered and all the codewords refreshed, however the information of the original codeword is
still present in the memory (as the untouched codewords will be refreshed to valid codewords,
while the corrupted codewords will still trigger a decoding error). This means that eventually
the adversary is able to fully retrieve the original codeword (even if it has been refreshed many
times), which leads to a clear breach of non-malleability.

1.4 Further Related Work

Several constructions of non-malleable codes in the split-state model appeared in the literature,
both for the information-theoretic [32, 31, 3, 20, 4, 2, 14, 5, 48, 49, 17] and computational
setting [50, 36, 24, 1, 46, 52, 23]. Non-malleable codes exist also for several other models
besides split-state tampering, including bit-wise independent tampering and permutations [20,
6, 7, 22, 21], circuits of polynomial size [32, 19, 38, 39], constant-state tampering [18], block-wise
tampering [13], space-bounded algorithms [35, 9], bounded-depth circuits [8, 16], and partial
functions [47].

The concept of non-malleable codes with split-state refresh was recently proposed in [33].
The main difference with our work is that in [33] the refresh mechanism essentially allows to
only tolerate continual leakage, but the codeword needs to be refreshed at each invocation in
order to achieve security against continuous tampering attacks. In contrast, R-CNMCs satisfy
both resilience to continual leakage and to continuous tampering without invoking a refresh at
each invocation.

Security against tampering attacks against the memory can also be obtained without relying
on non-malleable codes. See, e.g., [45, 25, 40, 34, 26] (and the references therein) for some
examples.

2 Preliminaries and Building Blocks

2.1 Basic Notation

We let N denote the naturals and R denote the reals. For a, b ∈ R, we define [a, b] = {x ∈
R : a ≤ x ≤ b}; for a ∈ N we let [a] = {0, 1, . . . , a}. If x is a bit-string, we denote its length
by |x|, and, for any i ≤ |x|, we let x[i] be the i-th bit of x. If X is a set, |X | represents the
number of elements in X . When x is chosen randomly in X , we write x ← X . When A is an
algorithm, we write y ← A(x) to denote a run of A on input x and output y; if A is randomized,
then y is a random variable and A(x; r) denotes a run of A on input x and random coins r. An
algorithm A is probabilistic polynomial-time (PPT) if A is allowed to make random choices, and
the computation of A(x; r) terminates in at most a polynomial number of steps (in |x|), for any
input x ∈ {0, 1}∗ and randomness r ∈ {0, 1}∗.

Indistinguishability and min-entropy. We let κ ∈ N be a security parameter. A function
ν : N → [0, 1] is called negligible in κ (or simply negligible) if it vanishes faster than the
inverse of any polynomial in κ. For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write
X≈cY, meaning that every PPT distinguisher D has negligible advantage in distinguishing
X and Y, i.e., |P[D(Xκ) = 1] − P[D(Yκ) = 1]| ≤ ν(κ) where ν(κ) is a negligible function.
Similarly, we write X≈sY for statistical indistinguishability between X and Y, meaning that
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the above indistinguishability holds for all (even computationally unbounded) distinguishers
(or, equivalently, that the statistical distance between X and Y is negligible).

The min-entropy of a random variable X, defined over a set X , is denoted as H∞(X) :=
− log maxx∈X P [X = x] and represents the best chance of guessing X by an unbounded adver-
sary. Conditional average min-entropy captures how hard it is to guess X on average, given
some side information Z ∈ Z (possibly related to X), and it is denoted as H̃∞(X|Z) :=
− logEz∈Z maxx∈X P [X = x|Z = z]. We rely on the following lemmata [30].

Lemma 1. Let X and Z be possibly correlated random variables, and let f be any (possibly
randomized) function. Then, H̃∞(X|f(Z)) ≥ H̃∞(X|Z).

Lemma 2. Let X,Z1, Z2 be possibly correlated random variables, where Z2 takes at most 2`

values. Then, H̃∞(X|Z1, Z2) ≥ H̃∞(X|Z1)− `.

Following [28], we define a notion of a function being `-leaky.

Definition 1 (`-leaky function). A (possibly randomized) function g : {0, 1}∗ → {0, 1}∗ is
`-leaky, if for all X distributed over {0, 1}∗ we have that H̃∞(X|g(X)) ≥ H∞(X)− `.

As shown in [28, Lemma L.3] the above notion composes nicely, meaning that if two functions
are respectively `1-leaky and `2-leaky, their concatenation is (`1 + `2)-leaky.

Oracle machines. Given a pair of strings X = (X0, X1) ∈ ({0, 1}∗)2 define the oracle O∞(X)
to be the split-state leakage oracle that takes as input tuples of the form (β, g), where β ∈ {0, 1}
is an index and g is a function described as a circuit, and outputs g(Xβ). An adversary A with
oracle access to O∞(X) is called `-valid, for some ` ∈ N, if for all β ∈ {0, 1} the concatenation
of the leakage functions sent by A is an `-leaky function of Xβ.

Given two PPT interactive algorithms A and B we write (yA; yB) ← (A(xA) � B(xB)) to
denote the execution of algorithm A (with input xA) and algorithm B (with input xB). The
string yA (resp. yB) is the output of A (resp. B) at the end of such interaction. In particular,
we write A � O∞(X) to denote A having oracle access to the leakage oracle with input X.
Moreover, we write A � B,C to denote A interacting in an interleaved fashion both with B and
with C.

2.2 Non-Interactive Zero-Knowledge

Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation; the language associated with R is LR := {x :
∃w s.t. (x,w) ∈ R}. We typically assume that given a pair (x,w) it is possible to efficiently
verify whether (x,w) ∈ R or not. Roughly, a non-interactive argument (NIA) for an NP-relation
R allows to create non-interactive proofs for statements x ∈ L, when additionally given a valid
witness w corresponding to x. More formally, a NIA NIA := (CRSGen,Prove,Ver) for R,
with label space Λ, is a tuple of PPT algorithms specified as follows: (1) The (randomized)
initialization algorithm CRSGen takes as input the security parameter 1κ, and creates a common
reference string (CRS) ω ∈ {0, 1}∗; (2) The (randomized) prover algorithm Prove takes as input
the CRS ω, a label λ ∈ Λ, and a pair (x,w) such that (x,w) ∈ R, and produces a proof
π ← Proveλ(ω, x,w); (3) The (deterministic) verifier algorithm Ver takes as input the CRS ω,
a label λ ∈ Λ, and a pair (x, π), and outputs a decision bit Verλ(ω, x, π).

Completeness means that for all CRSs ω output by CRSGen(1κ), for all labels λ ∈ Λ, and for
all pairs (x,w) ∈ R, we have that Verλ(ω, x,Proveλ(ω, x,w)) = 1 with all but a negligible prob-
ability. Below, we define the security properties we require for NIAs. The first property, known
as adaptive multi-theorem zero-knowledge, intuitively says that honestly computed proofs do
not reveal anything beyond the validity of the statement.
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Game Glm-se
NIA,A,K(κ,Φ):

Q↓,Q ← ∅;
(ω, τsim, τext)← S0(1κ);

(x̃, λ̃, π̃)← A(ω) � O∗sim(·);
(ŵ, φ, λ̂)← K(τext, λ̃, x̃, π̃);

Output 1 iff ((λ̃, x̃), π̃) 6∈ Q and Verλ̃(ω, x̃, π̃) = 1,
but either:

(i) ŵ 6= ⊥ and (x̃, ŵ) 6∈ R; or

(ii) (λ̂, φ) 6= (⊥,⊥) and either φ 6∈ Φ,

or (λ̂, x̃) 6∈ Q↓, or φ(λ̂) 6= λ̃; or

(iii) (ŵ, φ, λ̂) = (⊥,⊥,⊥).

Oracle O∗sim(λ, x):

Q↓ ← Q∪ {(λ, x)};
Q ← Q∪ {((λ, x), π)};
Return S1(τsim, λ, x).

Game Glb-prv
NIA,A(κ):

ω ← CRSGen(1κ); b← {0, 1};
(φ, λ, x, w, π)← A(ω);
If (b = 0)

π′ ← Prove(ω, φ(λ), x, w);
Else

π′ ← LEval(ω, φ, (x, λ, π));
b′ ← A(ω, π′);
Output 1 iff:

(i) b = b′;
(ii) (x,w) ∈ R;

(iii) Verλ(ω, x, π) = 1;
(iv) φ ∈ Φ.

Figure 1: Games defining Φ-malleable label simulation extractability, and label simulation
privacy, of a NIA NIA.

Definition 2 (Adaptive multi-theorem zero-knowledge). Let NIA be a NIA for a relation R.
We say that NIA satisfies adaptive multi-theorem zero-knowledge if the following holds:

(i) There exists a PPT algorithm S0 that outputs a CRS ω, and a simulation trapdoor τsim.

(ii) There exist a PPT simulator S1 and a negligible function ν : N→ [0, 1] such that, for all
PPT adversaries A, we have∣∣∣P [A(ω) � Oprv(ω, ·) = 1 : ω ← CRSGen(1κ)]

− P [A(ω) � Osim(τsim, ·) = 1 : (ω, τsim)← S0(1κ)]
∣∣∣ ≤ ν(κ).

In the above equation, both oracles Oprv and Osim take as input a tuple (λ, x, w) and check
if (x,w) ∈ R: If this is the case, Oprv returns Proveλ(ω, x,w), whereas Osim ignores w and
outputs a simulated argument S1(τsim, λ, x); otherwise, both oracles return ⊥.

Roughly speaking, a NIA satisfies soundness if no efficient malicious adversary can create
an accepting proof for a false statement (i.e., for a statement x such that x 6∈ L). Knowledge
soundness is a stronger form of soundness, essentially demanding that we can efficiently extract
a witness from any accepting proof created by an efficient adversary. Our construction will be
based on a so-called label-malleable NIA, parameterized by a set of label transformations Φ,
where for any φ ∈ Φ, the co-domain of φ is a subset of Λ. For such NIAs, given a proof π
under some label λ ∈ Λ, and the CRS ω, one can efficiently generate new proofs π′ for the
same statement under a different label φ(λ), for any φ ∈ Φ (without knowing a witness); this
is formalized via an additional (randomized) label-derivation algorithm LEval, which takes as
input the CRS ω, a transformation φ ∈ Φ, a label λ ∈ Λ, and a pair (x, π), and outputs a new
proof π′. The property below intuitively says that a NIA satisfies knowledge soundness, except
that labels are malleable w.r.t. Φ.
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Definition 3 (Φ-Malleable label simulation extractability). Let NIA be a NIA for a relation
R, with label set Λ, and let Φ be a set of label transformations. We say that NIA is Φ-malleable
label simulation extractable (Φ-ml-SE for short) if the following holds.

(i) There exists a PPT algorithm S0 that outputs a CRS ω, a simulation trapdoor τsim, and
an extraction trapdoor τext.

(ii) There exists a PPT algorithm K and a negligible function ν : N→ [0, 1] such that, for all
PPT adversaries A, we have

P
[
Glm-se
NIA,A,K(κ,Φ)

]
≤ ν(κ),

where the game Glm-se
NIA,A,K(κ,Φ) is described in Fig. 1.

The last property, called label derivation privacy, says that it is hard to distinguish a fresh
proof for some statement x (with witness w) under label λ, from a proof re-randomized using
algorithm LEval w.r.t. some function φ ∈ Φ; moreover, the latter should hold even if (x,w, λ, φ)
are chosen adversarially (possibly depending on the CRS).

Definition 4 (Label derivation privacy). Let NIA be a NIA for a relation R, and let Φ be a
set of label transformations. We say that NIA has label derivation privacy if for all PPT A
there exists a negligible function ν : N→ [0, 1] such that∣∣∣∣P [Glb-prv

NIA,A(κ) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

where game Glb-prv
NIA,A(κ) is described in Fig. 1.

2.3 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms PKE = (Setup,KGen,Enc,Dec)
defined as follows. (1) The (randomized) algorithm Setup takes as input the security parameter
1κ and outputs public parameters ρ ∈ {0, 1}∗; all algorithms are implicitly given ρ as input.
(2) The (randomized) algorithm KGen takes as input the public parameters ρ and outputs a
public/secret key pair (pk , sk); the set of all secret keys is denoted by SK, and the set of all
public keys by PK. Additionally, we require the existence of a (randomized) function PK which,
upon input sk ∈ SK, produces a valid public key pk ∈ PK. (3) The (randomized) algorithm Enc
takes as input the public key pk , a message m ∈M, and randomness r ∈ {0, 1}∗, and outputs a
ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is denoted by C. (4) The (deterministic)
algorithm Dec takes as input the secret key sk and a ciphertext c, and outputs m = Dec(sk , c)
which is either equal to some message m ∈ M, or to an error symbol ⊥. We will require
two additional algorithms, the first one to re-randomize a given ciphertext, and the second one
for re-randomizing the secret key (without changing the public key). More formally: (5) The
(randomized) algorithm UpdateC takes as input a ciphertext c, and outputs a new ciphertext
c′. (6) The (randomized) algorithm UpdateS takes as input a secret key sk , and outputs a new
secret key sk ′.

We say that PKE satisfies correctness if for all ρ← Setup(1κ) and for all (pk , sk)← KGen(ρ),
we have that P[Dec(UpdateS(sk),UpdateC(Enc(pk ,m))) = m] = 1, where the randomness is
taken over the internal coin tosses of algorithms Enc, UpdateS and UpdateC. Additionally,
we require that for all ρ output by Setup, and for all (pk , sk) ← KGen(ρ): (i) For any sk ′

such that PK(sk ′) = pk , and any c ∈ C, we have that Dec(sk , c) = Dec(sk ′, c); (ii) For any
sk ′ ← UpdateS(sk), we have that PK(sk) = PK(sk ′).
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Game Gclrs
PKE,A(κ, `):

b← {0, 1};
ρ← Setup(1κ);
(pk , sk)← KGen(ρ);
(m0,m1)← A(ρ, pk);
If (|m0| 6= |m1|)

m0 ← m1;
c← Enc(pk ,mb);
S0 ← sk ; S1 ← c;
b′ ← (A(ρ, pk) � Update(·),O∞((S0, S1), ·))
Return (b′ = b).

Oracle Update(β):

If (β = 0)
sk ← S0;
sk ′ ← UpdateS(sk);
S0 ← sk ′;

If (β = 1)
c← S1;
c′ ← UpdateC(c);
S1 ← c′.

Figure 2: Game defining CLRS security of a PKE scheme.

We now turn to define continual leakage-resilient storage (CLRS) friendly PKE. Consider
the game Gclrs

PKE,A(κ, `) as defined in Fig. 2. The definition below roughly say that a PKE scheme
satisfies semantic security against all `-valid efficient adversaries that can observe independent
leakage from S0 = sk and S1 = c (where c is the challenge ciphertext).

Definition 5 (CLRS friendly PKE). For κ ∈ N, let ` = `(κ) be the leakage parameter. We say
that PKE = (Setup,KGen,Enc,Dec,UpdateC,UpdateS) is `-noisy CLRS friendly if for all PPT
`-valid adversaries A there exists a negligible function ν : N→ [0, 1] such that∣∣∣∣P [Gclrs

PKE,A(κ, `) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

where the game Gclrs
PKE,A(κ, `) is described in Fig. 2.

We observe that Definition 5 is slightly different w.r.t. the definition of Dodis et al. [29]. In
fact, on the one hand, our definition does not consider leakage from the update process, but,
on the other hand, we consider noisy leakage and not just bounded leakage as in [29].

Finally, we introduce two extra properties relative to the algorithms UpdateC and UpdateS of
a PKE scheme. The first property says that the distributions of fresh and updated ciphertexts
are the same. The second property formalizes a similar requirement for fresh and updated keys.

Definition 6 (Ciphertext-update privacy). We say that PKE is perfectly chipertext-update
private if for all κ ∈ N, all ρ ← Setup(1κ), all (pk , sk) ← KGen(ρ), and any m ∈ M, c ∈
C such that c = Enc(pk ,m; r) for some r ∈ {0, 1}∗, the distributions {pk ,Enc(pk ,m)} and
{pk ,UpdateC(c)} are equivalent.

Definition 7 (Secret-key-update privacy). We say that PKE is perfectly secret-key-update pri-
vate if for all κ ∈ N, all ρ ← Setup(1κ), and all (pk , sk) ← KGen(ρ), the distributions {pk ,
UpdateS(sk)} and {(pk ′, sk ′)← KGen(ρ) : pk ′ = pk} are equivalent.

2.4 Commitment Schemes

A (non-interactive) commitment scheme with message spaceM is a tuple of algorithms COM =
(CRSGen,Commit) defined as follow: (1) The (randomized) algorithm CRSGen takes as input
the security parameter 1κ, and outputs a commitment key ω; (2) The (randomized) algorithm
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Experiment Geuf-cma
SS,A (κ):

Q ← ∅; ρ← Setup(1κ);
(vk , sk)← Gen(ρ);
(m∗, σ∗)← (A(vk , ρ) � Osign(sk , ·));
Return 1 iff:

(i) m∗ 6∈ Q;
(ii) Vrfy(vk , (m∗, σ∗) = 1).

Oracle Osign(sk ,m):

Q ← Q∪ {m};
Return σ ← Sign(sk ,m).

Experiment Ghide
COM,A(κ, b):

ω ← CRSGen(1κ);
(m0,m1)← A(ω);
γ ← Commit(ω,mb);
Return A(ω, γ).

Figure 3: Games defining computational hiding of a commitment scheme, and universal un-
forgeability against chosen-message attacks of a signature scheme.

Commit takes as input the commitment key ω, a message m ∈M, and randomness r ∈ {0, 1}∗,
and outputs a commitment γ.

Intuitively a commitment scheme satisfies two properties. The first property, called the
hiding property, says that the commitment hides the message; the second property, called the
binding property says that it is hard to open a valid commitment in two different ways. Below,
we define these properties directly in the flavor we need for our application.

Definition 8 (Hiding and binding). Let COM = (CRSGen,Commit) be a commitment scheme.
We say that COM is:

• Computationally hiding, if for all PPT adversaries A there exists a negligible function
ν : N→ [0, 1] such that∣∣∣|P [Ghide

COM,A(κ, 0) = 1
]
− P

[
Ghide
COM,A(κ, 1) = 1

]∣∣∣ ≤ ν(κ),

where the game Ghide
COM,A is described in Fig. 3.

• Statistically binding if for all even unbounded adversaries A there exists a negligible func-
tion ν : N→ [0, 1] such that:

P
[

Commit(ω,m; r) = Commit(ω,m′; r′) ∧m 6= m′ :
ω ← CRSGen(1κ);

(m, r,m′, r′)← A(ω)

]
≤ ν(κ).

2.5 Signature Schemes

A signature scheme is a tuple of algorithms SS = (Setup,KGen, Sign,Vrfy) defined as follow:
(1) The (randomized) algorithm Setup takes as input the security parameter 1κ and outputs
public parameters ρ ∈ {0, 1}∗; all algorithms are implicitly given ρ as input. (2) The (random-
ized) algorithm KGen takes as input the public parameters and outputs a verification/signing
key pair (vk , sk). (3) The (randomized) algorithm Sign takes as input the secret key sk and a
message m, and outputs a signature σ. (4) The (deterministic) algorithm Vrfy takes as input
the verification key vk and a pair (m,σ) and outputs a decision bit.

For completeness, we require that for all ρ output by Setup, and for all (vk , sk) output by
KGen(ρ), and for any message m, we have that Vrfy(vk ,Sign(sk ,m)) = 1 with probability one
over coin tosses of the signing algorithm. As for security, we require that no efficient adversary
with oracle access to a signature oracle and given the verification key, can forge a valid signature
on a fresh message (i.e., a message not returned by the signature oracle).
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Experiment Gsem
SKE,A(κ):

b← {0, 1}; K ← Gen(1κ);

b′ ← AOlr(K,b,·,·)(1κ);
Return 1 iff b′ = b.

Oracle Olr(K, b,m0,m1):

If |m0| 6= |m1|
Return ⊥;

Else
Return c← Enc(K,mb).

Experiment Gauth
SKE,A(κ):

K ← KGen(1κ);

c∗ ← AEnc(K,·)(1κ);
Return 1 iff:

(i) Dec(K, c∗) 6= ⊥;
(ii) c∗ 6∈ Q;

Figure 4: Games defining semantic security and authenticity of an SKE scheme; the set Q in
the last game contains all ciphertexts returned by oracle Enc(K, ·).

Definition 9 (EUF-CMA security). Let SS = (Setup,KGen,Sign,Vrfy) be a signature scheme.
We say that SS is existentially unforgeable against chosen-message attacks (EUF-CMA) if for
all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such that

P
[
Geuf-cma
SS,A (κ) = 1

]
≤ ν(κ),

where the game Geuf-cma
SS,A (κ) is described in Fig. 3.

2.6 Authenticated Encryption

A secret key encryption (SKE) scheme consists of three PPT algorithms SKE := (KGen,Enc,Dec)
specified as follows. (1) The (randomized) key generation algorithm KGen takes as input the
security parameter 1κ, and outputs a key K; (2) The (randomized) encryption algorithm Enc
takes as input a key K, a message m ∈ {0, 1}∗, random coins r ∈ {0, 1}∗, and outputs a ci-
phertext c; (3) The (deterministic) decryption algorithm Dec takes as input a key K and a
ciphertext c, and outputs a message m or a special symbol ⊥ (indicating an error).

An SKE scheme meets correctness if for all keys K output by KGen(1κ), and for all messages
m ∈ {0, 1}∗, we have that Dec(K,Enc(K,m)) = m with probability one over the random coin
tosses of the encryption algorithm. As for security, we define two properties that make SKE a
so-called authenticated encryption scheme.

Let Olr(K, b) be an oracle that, upon input two message m0,m1 ∈ {0, 1}∗, returns c ←
Enc(K,mb) if |m0| = |m1| (and ⊥ otherwise). The first property says that it is hard to dis-
tinguish the encryption of two messages, even when given access to such an encryption oracle.

Definition 10. (Semantic security) An SKE scheme SKE = (KGen,Enc,Dec) is semantically
secure if for all PPT adversaries A there is a negligible function ν : N→ [0, 1] such that∣∣∣∣P [Gsem

SKE,A(κ) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

where the game Gsem
SKE,A(κ) is described in Fig. 4.

The second property says that SKE has an elusive range, meaning that, without knowing
the secret key, it is hard to produce a valid ciphertext.

Definition 11. (Authenticity) An SKE scheme SKE = (KGen,Enc,Dec) satisfies authenticity
if for all PPT adversaries A there is a negligible function ν : N→ [0, 1] such that

P
[
Gauth
SKE,A(κ) = 1

]
≤ ν(κ),

where the game Gauth
SKE,A(κ) is described in Fig. 4.
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3 Non-Malleability with Refresh

3.1 Split-State Codes

A coding scheme in the CRS model is a tuple of polynomial-time algorithms CS = (Init,Encode,
Decode) with the following syntax: (1) The (randomized) initialization algorithm Init takes
as input the security parameter 1κ, and outputs a CRS ω ∈ {0, 1}∗; (2) The (randomized)
encoding algorithm Encode takes as input the CRS ω and a message M ∈ M, and outputs a
codeword C ∈ C; (3) The (deterministic) decoding algorithm Decode takes as input the CRS
ω and a codeword C ∈ C, and outputs a value M ∈ M ∪ {⊥} (where ⊥ denotes an invalid
codeword). A coding scheme is correct if for all ω output by Init(1κ), and any M ∈M, we have
P[Decode(ω,Encode(ω,M)) = M ] = 1, where the probability is taken over the randomness of
the encoding algorithm.

We consider coding schemes with an efficient refreshing algorithm. Specifically, for a coding
scheme CS we assume there exists a randomized algorithm Rfrsh that, upon input the CRS
ω and a codeword C ∈ C, outputs a codeword C ′ ∈ C. For correctness we require that for
all ω output by Init(1κ), we have P[Decode(ω,Rfrsh(ω,C)) = Decode(ω,C)] = 1, where the
probability is over the randomness used by the encoding and refreshing algorithms.

Split-state model. In this paper we are interested in coding schemes in the split-state model,
where a codeword consists of two parts that can be refreshed independently and without the
need of any interaction. More precisely, given a codeword C := (C0, C1), the refresh procedure
Rfrsh(ω, (β,Cβ)), for β ∈ {0, 1}, takes as input either the left or the right part of the codeword,
and updates it. Sometimes we also write Rfrsh(ω,C) as a shorthand for the algorithm that
independently executes Rfrsh(ω, (0, C0)) and Rfrsh(ω, (1, C1)).

Correctness here means that for all ω output by Init(1κ), for all C ∈ C, and for any β ∈
{0, 1}, if we let C ′ = (C ′0, C

′
1) be such that C ′β ← Rfrsh(ω, (β,Cβ)) and C ′1−β = C1−β, then

P[Decode(ω,C ′) = Decode(ω,C)] = 1.

3.2 The Definition

We give the security definition for continuously non-malleable codes with split-state refresh
(R-CNMCs for short). Our notion compares two experiments, which we denote by Tamper
and SimTamper (cf. Fig. 5). Intuitively, in the experiment Tamper we consider an adversary
continuously tampering with, and leaking from, a target encoding C = (C0, C1) of a message
M ∈ M (the message can be chosen adaptively, depending on the CRS). For each tampering

attempt (f0, f1), the adversary gets to see the output M̃ of the decoding corresponding to
the modified codeword C̃ = (f0(C0), f1(C1)). Tampering is non-persistent, meaning that each
tampering function is applied to the original codeword C, until, eventually, a decoding error
happens; after that, the target encoding C is refreshed, and the adversary can start tampering
with, and leaking from, the refreshed codeword.

In the experiment SimTamper, we consider a simulator S = (S0,S1), where S0 outputs a
simulated CRS, while S1’s goal is to simulate the view of the adversary in the real experiment;
the simulator S1, in faking a tampering query (f0, f1), is allowed to output a special value �,
signaling that (it believes) the adversary did not change the encoded message, in which case
the experiment replaces � with M . We stress that the simulator S is stateful; in particular
algorithms S0, S1 implicitly share a state.

For technical reasons, in some of our applications, we will actually need a slightly stronger
security property, where after a decoding error happens, and before the original codeword is
refreshed, the adversary is allowed to make one extra tampering query (f∗0 , f

∗
1 ). Hence, if the
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TamperCS,A(κ, `, q):

i← 0; err, stop← 0
ω ← Init(1κ)
(M, s0)← A0(ω)
C0 := (C0

0 , C
0
1 )← Encode(ω,M)

For all i ∈ [0, q]:
si+1 ← (A1(si) � O∞(Ci),Otamp(Ci))
Ci+1 ← Rfrsh(ω,Ci)
i← i+ 1; err, stop← 0

Return A2(sq).

SimTamperA,S(κ, `, q):

i← 0
ω ← S0(1κ)
(M, s0)← A0(ω)
For all i ∈ [0, q]:

si+1 ← (A1(si) � S1(Leak, ·),OS1,M
sim tamp(·))

i← i+ 1
Return A2(sq).

Oracle Otamp(Ci, (f0, f1)):

Upon (Tamp, f0, f1):

M̃ = Decode(ω, f0(Ci0), f1(Ci1))

If (M̃ = ⊥)
err← 1

If ((err = 1) ∨ (stop = 1))

M̃ ← ⊥
Return M̃

Upon (Final, f∗0 , f
∗
1 ):

stop← 1

C̃∗ = (f∗0 (Ci0), f∗1 (Ci1))

M̃∗ = Decode(ω, C̃∗)

If (M̃∗ ∈ {⊥,M})
C̃ ′ ← M̃∗

Else, C̃ ′ ← Rfrsh(ω, C̃∗)

Return C̃ ′.

Oracle OS1,M
sim tamp(·):

Upon (Tamp, f0, f1):

M̃ ← S1(Tamp, f0, f1)

If (M̃ = �)
M̃ ←M

Return M̃
Upon (Final, f∗0 , f

∗
1 ):

C̃ ′ ← S1(Final, f∗0 , f
∗
1 )

If ((C̃ ′ = �) ∨ (Decode(ω, C̃ ′) = M))

C̃ ′ ←M

Return C̃ ′

Figure 5: Experiments defining continuously non-malleable codes with split-state refresh.

corresponding tampered codeword C̃∗ is valid and is not an encoding of the original message
M , the attacker receives a refreshing of C̃∗; otherwise it obtains either M (in the former case)
or ⊥ (in the latter case). Unfortunately, it is impossible to further generalize our definition to
handle the refreshing of invalid codewords.7

Definition 12 (Continuous non-malleability with split-state refresh). For κ ∈ N, let ` = `(κ)
be a parameter. We say that a coding scheme CS is an `-leakage-resilient and continuously
non-malleable code with split-state refresh (R-CNMC for short) if for all adversaries A :=
(A0,A1,A2), where A0 and A2 are PPT algorithms and A1 is an `-valid (cf. Section 2.1) deter-
ministic polynomial-time algorithm, there exists a PPT simulator S = (S0, S1) and a negligible

7This can be seen by the following attack. Consider an adversary that computes offline a valid codeword
(C0, C1), and then makes two extra tampering queries (at the end of two subsequent rounds, say, i and i + 1)
such that the first query overwrites (Ci0, C

i
1) with (Ci0, C1), and the second query overwrites (Ci+1

0 , Ci+1
1 ) with

(C0, C
i+1
1 ); by combining the refreshed codewords obtained as output, the adversary gets a refreshing of the

original codeword, which cannot be simulated in the ideal experiment (recall that the refresh algorithm updates
the two shares independently).
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function ν : N→ [0, 1] such that, for any polynomial q(κ), the following holds:∣∣P [TamperCS,A(κ, `, q) = 1
]
− P

[
SimTamperA,S(κ, `, q) = 1

]∣∣ ≤ ν(κ),

where the experiments TamperCS,A(κ, `, q) and SimTamperA,S(κ, `, q) are defined in Fig. 5.

We note that in the Tamper security game the adversary does not have “direct” access to
a refreshing oracle (namely, an oracle that, upon request, would refresh the codeword). This
choice is without loss of any generality, as a call to the refreshing oracle can always be simulated
by a tampering query yielding an invalid codeword (which indeed triggers a refreshing in our
experiment).

4 Code Construction

Let PKE = (Setup,KGen,Enc,Dec,UpdateC,UpdateS) be a CLRS friendly PKE scheme, with
secret-key space SK. Let COM = (CRSGen,Commit) be a commitment scheme in the CRS
model. Consider the following NP-relations, parameterized by the PKE and the commitment
scheme, respectively:

R0 := {(pk , sk) : pk = PK(sk), sk ∈ SK} ,
R1 := {((ω, γ), (M, r)) : γ = Commit(ω,M ; r)} .

Let Φ0 and Φ1 be two sets of label transformations defined below:

Φ0 := {φ : ∃pk , sk s.t. (∀m, r) Dec(sk , φ(Enc(pk ,m; r))) = m, pk = PK(sk)}
Φ1 := {φ : (∀sk) PK(sk) = PK(φ(sk))} .

Notice that R0,R1,Φ0 and Φ1 are implicitly parameterized by the public parameters ρ ∈ {0, 1}∗
of the PKE scheme. Finally, let U0 and U1 be the following sets of label transformations:

U0 := {UpdateC( · ; ru) : ru ∈ {0, 1}∗}
U1 := {UpdateS( · ; ru) : ru ∈ {0, 1}∗} .

It is easy to verify that Uβ ⊆ Φβ, for β ∈ {0, 1}. In fact, for β = 0, by the correctness of the PKE
scheme, there exists sk such that P[Dec(sk ,UpdateC(Enc(pk ,m))) = m] = 1 and pk = PK(sk);
similarly, for β = 1, again by correctness of the PKE scheme, for any sk ′ ← UpdateS(pk , sk) we
have that PK(sk) = PK(sk ′).

Scheme description. LetNIA0 = (CRSGen0,Prove0,Vrfy0, LEval0) andNIA1 = (CRSGen1,
Prove1,Vrfy1, LEval1) be NIAs for the above defined relations R0 and R1. Our code CS =
(Init,Encode,Decode) works as follows.

• Init(1κ): For β ∈ {0, 1}, sample ωβ ← CRSGenβ(1κ), ω ← CRSGen(1κ), and ρ← Setup(1κ).
Return ω = (ω0, ω1, ω, ρ).

• Encode(ω,M): Parse ω := (ω0, ω1, ω, ρ), sample (pk , sk) ← KGen(ρ), and r ← {0, 1}∗.
Compute c ← Enc(pk ,M ||r), γ = Commit(ω,M ; r), and π0 ← Provec0(ω0, pk , sk), and
π1 ← Provesk1 (ω1, (ω, γ), (M, r)). Set C0 := (pk , c, π0) and C1 := (sk , γ, π1), and return
C := (C0, C1).

• Decode(ω,C): Parse ω := (ω0, ω1, ω, ρ) and C := (C0, C1), where C1 := (sk , γ, π1) and
C0 = (pk , c, π0). Compute M ||r := Dec(sk , c), and if the following conditions hold return
M else return ⊥:
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I. Left check: Verc0(ω0, pk , π0) = 1.

II. Right check: Versk1 (ω1, (ω, γ), π1) = 1.

III. Cross check: Commit(ω,M ; r) = γ.

• Rfrsh(ω, (β,Cβ)): Parse ω := (ω0, ω1, ω, ρ), C0 := (pk , c, π0), and C1 = (sk , γ, π1). Hence:

– For β = 0, pick r0
upd ← {0, 1}∗, let c′ := UpdateC(c; r0

upd) and π′0 ← LEval0(ω0,

UpdateC(·; r0
upd), (pk , c, π0)), and return C ′0 := (pk , c′, π′0).

– For β = 1, pick r1
upd ← {0, 1}∗, let sk ′ := UpdateS(sk ; r1

upd), and π′1 ← LEval1(ω1,

UpdateS(·; r1
upd), ((γ, ω), sk , π1)), and return C ′1 := (γ, sk ′, π′1).

Theorem 1. Let PKE be a PKE scheme with message space Mpke and public-key space PK,
let COM be a commitment scheme with message space M, and let NIA0 (resp. NIA1) be a
NIA w.r.t. the relations R0 (resp. R1). Define µ(κ) := log |M|, µpke(κ) := log |Mpke|, and
δ(κ) := log |PK|.

For any ` ∈ N, assuming that PKE is an (`+ 3µ+ 2κ+ max{δ, µpke})-noisy CLRS-friendly
PKE scheme (cf. Definition 5), that COM is a non-interactive statistically binding commitment
scheme, and that NIA0 (resp. NIA1) satisfies adaptive multi-theorem zero-knowledge (cf. Def-
inition 2), Φ0-malleable (resp. Φ1-malleable) label simulation extractability (cf. Definition 3),
and label derivation privacy (cf. Definition 4), then the coding scheme CS described above is an
`-leakage-resilient continuously non-malleable code with split-state refresh.

4.1 Proof Intuition

The proof of the above theorem is quite involved. We provide some highlights here. Consider a
simulator (S0, S1), where S0 simulates a fake CRS ω = (ω0, ω1, ω, ρ) by additionally sampling the
corresponding zero-knowledge and extraction trapdoors for the NIAs (which are then passed
to S1). At the core of our simulation strategy are two algorithms T0 and T1, whose goal
is essentially to emulate the outcome of the real tampering experiment, with the important
difference that T0 is only given the left part of a (simulated) codeword C0 and the left tampering
function f0, whereas T1 is given (C1, f1).

The simulator S1 then works as follows. Initially, it samples a fresh encoding (C0, C1) of 0µ.
More in details, the fresh encoding comes from the (computationally close) distribution where
the proofs π0 and π1 are simulated proofs. At the beginning of each round, it runs a simulated
refresh procedure in which the ciphertext c is updated via UpdateC (and the simulated proof π0

is re-computed using fresh randomness), and similarly the secret key sk is updated via UpdateS
(and the simulated proof π1 is re-computed using fresh randomness). Hence, for each tampering

query (f0, f1), the simulator S1 runs M̃0 := T0(C0, f0), M̃1 := T1(C1, f1), and it returns M̃0 as

long as ⊥ 6= M̃0 = M̃1 6= ⊥ (and ⊥ otherwise). The extra tampering query (f∗0 , f
∗
1 ) is simulated

similarly, based on the outcome of the tampering simulators (T0,T1). We briefly describe the
tampering simulators T0 and T1:

• Algorithm T0 lets f0(C0) := (p̃k , c̃, π̃0). If the proof π̃0 does not verify, it returns ⊥. Else,

if (p̃k , c̃, π̃0) = (pk , c, π0), it returns �. Else, it extracts the proof π̃0, this leads to two
possible outcomes:8

(a) The extractor outputs a secret key ŝk which is used to decrypt c̃, and the tampering

simulator returns the corresponding plaintext M̃ .

8The above description is simplified, in that extraction could potentially fail, however, this happens only with
negligible probability when the proof verifies correctly.
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(b) The extractor outputs a transformation φ which maps the label of the simulated proof
π0, namely the encryption of 0µ, to c̃. In this case the tampering function f0 has
modified the original ciphertext c to the mauled ciphertext c̃ which is an encryption
of the same message, so the tampering simulator returns �.

• Algorithm T1 lets f1(C1) := (γ̃, s̃k , π̃1). If the proof π̃1 does not verify, it returns ⊥. Else,
if (γ̃, s̃k , π̃1) = (γ, sk , π1), it returns �. Else, it extracts the proof π̃1, again, this leads to
two possible outcomes:

(a) The extractor outputs the committed message M̃ (along with the randomness of the

commitment), so the tampering simulator can simply return M̃ .

(b) The extractor outputs a transformation φ which maps the label of the simulated
proof π1, namely the original secret key sk , to the mauled secret key s̃k . In this case,
the mauled proof π̃1 must be a valid proof whose instance is the original commitment,
and so, once again, the tampering simulator returns �.

To show that the above simulator indeed works, we use a hybrid argument where we incremen-
tally change the distribution of the ideal tampering experiment until we reach the distribution
of the real tampering experiment. Each step introduces a negligible error, thanks to the security
properties of the underlying building blocks. Perhaps, the most interesting step is the one where
we switch the ciphertext c from an encryption of zero to an encryption of the real message (to
which we always have to append the randomness of the commitment); in order to show that
this change is unnoticeable, we rely on the CLRS storage friendly security of the PKE scheme.
In particular, this step of the proof is based on the following observations:

• The reduction can perfectly emulate the distribution of the CRS ω, and of all the ele-
ments (pk , π0, γ, π1), except for (c, sk). However, by outputting (0µ||r,M ||r) as challenge
plaintexts—where r ∈ {0, 1}∗ is the randomness for the commitment—the reduction can
obtain independent leakages from C0 and C1 with the right distribution.

• Refresh of codewords can also be emulated by exploiting the fact that the reduction is
allowed to update the challenge secret key and ciphertext.

• The reduction can answer tampering queries from the adversary by using T0 and T1 as
leakage functions. The main obstacle is to ensure that T0 and T1 are `-leaky, where ` ∈ N
is the leakage bound tolerated by the PKE scheme. In particular, between each refresh,
the reduction needs to interleave the executions of T0 and T1 until their outputs diverge.
Let i∗ be the number of tampering queries that the simulator performs until triggering a
decoding error. The leakage that the reduction needs to perform during this stage (namely,
between two consecutive refreshes) is T0(C0, f

0
0 ),T1(C1, f

0
1 ), . . . ,T0(C0, f

i∗
0 ),T1(C1, f

i∗
1 )

where (f0
0 , f

0
1 ), . . . , (f i

∗
0 , f

i∗
1 ) is the list of tampering functions chosen by the adversary.

We have:

H̃∞(C0| T0(C0, f
0
0 ), . . . ,T0(C0, f

i∗
0 )) =

H̃∞(C0| T1(C1, f
0
1 ), . . . ,T1(C1, f

i∗−1
1 ),T0(C0, f

i∗
0 )).

In fact, the output of T0(C0, f
i
0) and T0(C0, f

i
0) is, by definition, exactly the same whenever

i < i∗. Moreover, since the output of a function cannot be more informative than its own
inputs,

H̃∞(C0| T1(C1, f
0
1 ), . . . ,T1(C1, f

i∗−1
1 ),T0(C0, f

i∗
0 )) ≥

H̃∞(C0| C1, i
∗,T0(C0, f

i∗
0 )).
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Lastly, we will use the fact that C1 reveals only little information about C0 (a requirement
met by known schemes), and further that i∗ and T0(C0, f

i∗
0 ) can decrease the min-entropy

of C0 of at most their size, which is O(κ). The reduction, therefore, defines a valid
adversary in the CLRS storage-friendly security experiment of the PKE.

Remark 1 (On the refreshing procedure). The feature of split-state refresh does not require
that a refreshed codeword be indistinguishable from a freshly sampled one. And, indeed, this is
not the case in our construction, as the public key pk (resp. the commitment γ) do not change
after the refreshing algorithms are executed. However, the latter property is not required for our
proof, as the only thing that matters is that the information about the target codeword that an
adversary gathers before a refresh takes place will not be useful after the refresh. Put differently,
the adversary could potentially leak the entire values pk and γ, but this information would not
be useful for breaking the security of our scheme.

4.2 Description of the Simulator

Let S0 := (S0
0,S

0
1) and S1 := (S1

0,S
1
1) be the zero-knowledge simulators for the NIAs NIA0 and

NIA1, respectively. We start by defining the simulator S0, whose goal is to simulate the CRS
generation for the encoding scheme. Briefly, S0 samples the keys for the PKE scheme and the
commitment scheme, and generates an encoding of a dummy message by using simulated proofs
in place of real proofs.

Simulator S0(1κ):

• For β ∈ {0, 1} sample (ωβ, τ
β
sim, τ

β
ext)← Sβ0 (1κ).

• Pick ω ← CRSGen(1κ) and ρ← Setup(1κ).

• Define τ∗ := (τ0
sim, τ

0
ext, τ

1
sim, τ

1
ext).

• Sample r ← {0, 1}∗, let γ := Commit(ω, 0µ; r), and compute c ← Enc(pk , 0µ‖r), where
µ ∈ N is the bit-length associated to the message space M for the commitment scheme.

• Let C := ((pk , c, π0), (γ, sk , π1)) := (C0, C1), where π0 ← S0
1(τ0

sim, c, pk) and π1 ← S1
1(τ1

sim,
sk , (γ, ω)).

• Output ω := (ω0, ω1, ω, ρ) and auxiliary information α := (τ∗, (C0, C1)).

We also define a simulated refresh algorithm, which will be used in the simulation in place
of the original refresh mechanism.

Algorithm Rfrsh∗((τ0
sim, τ

1
sim), (β,Cβ)):

• For β = 0, parse C0 := (c, pk , π0), compute c′ ← UpdateC(c) and π′0 ← S0
1(τ0

sim, c
′, pk),

and return C ′0 := (pk , c′, π′0).

• For β = 1, parse C1 := (γ, sk , π1), compute sk ′ ← UpdateS(sk), and π′1 ← S1
1(τ1

sim, sk ′,
(γ, ω)), and return C ′1 := (γ, sk ′, π′1).
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The Tampering Simulators

Algorithm T0(C0, f0; r0
ext):

1. Parse C0 := (pk , c, π0).

2. Compute C̃0 = f0(C0) := (p̃k , c̃, π̃0). Hence:

(a) If Vrfyc̃0(ω0, p̃k , π̃0) = 0, set M̃ := ⊥.

(b) If (p̃k , c̃, π̃0) = (pk , c, π0), set M̃ = �.

(c) Else, run (ŝk , φ0, ĉ) := K0(τ0
ext, c̃, p̃k , π̃0; r0

ext).

(d) Output Abort in case either of the following happens:

i. ŝk 6= ⊥ and p̃k 6= PK(ŝk); or

ii. (φ0, ĉ) 6= (⊥,⊥) and (φ0(ĉ) 6= c̃) ∨ (φ0 6∈ Φ0); or

iii. (ŝk , φ0, ĉ) = (⊥,⊥,⊥).

(e) If ŝk 6= ⊥ and p̃k = PK(ŝk), let M̃‖r̃ := Dec(ŝk , c̃).

(f) If (φ0, ĉ) 6= (⊥,⊥) and (φ0(ĉ) = c̃) ∧ (φ0 ∈ Φ0), and ĉ = c, let M̃ := �.

3. Return M̃ .

Algorithm T1(C1, f1; r1
ext):

1. Parse C1 := (γ, sk , π1).

2. Compute C̃1 = f1(C1) := (γ̃, s̃k , π̃1). Hence:

(a) If Vrfys̃k1 (ω1, (γ̃, ω), π̃1) = 0, set M̃ := ⊥.

(b) If (γ̃, s̃k , π̃1) = (γ, sk , π1), set M̃ = �.

(c) Else, run (M̂‖r̂, φ1, ŝk) := K1(τ1
ext, s̃k , (γ̃, ω), π̃1; r1

ext).

(d) Output Abort in case either of the following happens:

i. M̂‖r̂ 6= ⊥ and γ̃ 6= Commit(ω, M̂ ; r̂); or

ii. (φ1, ŝk) 6= (⊥,⊥) and (φ1(ŝk) 6= s̃k) ∨ (φ1 6∈ Φ1); or

iii. (M̂‖r̂, φ1, ŝk) = (⊥,⊥,⊥).

(e) If M̂‖r̂ 6= ⊥ and γ̃ = Commit(ω, M̂ ; r̂), let M̃ := M̂ .

(f) If (φ1, ŝk) 6= (⊥,⊥) and (φ1(ŝk) = s̃k) ∧ (φ1 ∈ Φ1), and ŝk = sk , let M̃ := �.

3. Return M̃ .

Figure 6: The tampering simulators T0 and T1.

The tampering simulators. We now turn to defining the simulator S1. To facilitate the
description, in Fig. 6, we formalize two algorithms that we call the tampering simulators. Intu-
itively, for β ∈ {0, 1}, algorithm Tβ simulates the outcome corresponding to a tampering query
(f0, f1) from the adversary, by using only Cβ (i.e., one piece of the simulated codeword). On a

very high level, as long as both T0 and T1 return the same message M̃ , the simulator S1 uses
M̃ to answer the tampering queries from the adversary; otherwise, in case T0 and T1 disagree,
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it emulates a decoding error.

Simulator S1:

1. Parse α := ((τ0
sim, τ

0
ext, τ

1
sim, τ

1
ext), (C0, C1)) := (τ∗, C), and run Rfrsh∗((τ0

sim, τ
1
sim), C). Set

the flag err← 0.

2. Hence, upon a command from the adversary, behave as follows.

(a) Upon input a leakage query (Leak, β, gβ), for β ∈ {0, 1}, return y := gβ(Cβ).

(b) Upon input a tampering query (Tamp, (f0, f1)), if err = 1 return ⊥. Otherwise,

let M̃0 ← T0(C0, f0) and M̃1 := T1(C1, f1). If either of the tampering simulators
returned Abort, abort the simulation outputting the special value Abort. If either
M̃0 = ⊥, or M̃1 = ⊥, return ⊥ and set err← 1; else, return M̃ := M̃0 = M̃1.

(c) Upon input the extra tampering query (Final, (f∗0 , f
∗
1 )), let M̃∗0 := T0(C0, f

∗
0 ; r0

ext)

and M̃∗1 := T1(C1, f
∗
1 ; r1

ext), for random r0
ext, r

1
ext ← {0, 1}∗. If either of the tampering

simulators returned Abort, abort the simulation outputting the special value Abort.
If either M̃∗0 6= M̃∗1 , or M̃∗0 = ⊥, or M̃∗1 = ⊥, return ⊥. Otherwise, if M̃∗0 = M̃∗1 = �,
return �. Else, proceed as follows:

i. Let C̃∗0 := f∗0 (C0) := (p̃k , c̃, π̃0) and C̃∗1 := f∗1 (C1) := (γ̃, s̃k , π̃1).

ii. Extract the values (ŝk0, φ0, ĉ0) := K0(τ0
ext, c̃, p̃k , π̃0; r0

ext), and let sk ′ = UpdateS(ŝk0).

iii. Extract the values ((M̂, r̂), φ1, ŝk1) := K1(τ1
ext, s̃k , (γ̃, ω), π̃1; r1

ext), and compute

c′ ← Enc(p̃k , M̂‖r̂).9

iv. Run π̃′0 ← S0
1(τ0

sim, c
′, p̃k) and π̃′1 ← S1

1(τ1
sim, sk ′, (γ̃, ω)).

v. Output C̃ ′ := ((p̃k , c′, π̃′0), (γ̃, sk ′, π̃′1)).

3. Go back to step 1 until the adversary is done with its queries.

4.3 Hybrids

We define a sequence of games, starting with the simulated experiment SimTamperA,S(κ, `, q)
for the above defined simulator S = (S0,S1). The games are described in an incremental manner,
meaning that for each game we only highlight the differences with the previous game, implicitly
assuming that all other steps are unchanged. Each game is parameterized by the adversary A
and, implicitly, by a simulator that is typically derived by the original simulator S.

Game G0
A(κ). This game is identical to SimTamperA,S(κ, `, q), for the above defined simula-

tor S = (S0, S1).

Game G1
A(κ). The simulator S0 is additionally given M as input, and computes the commit-

ment in the simulated codeword (C0, C1) as γ = Commit(ω,M ; r), for r ← {0, 1}∗.

Game G2
A(κ). The simulator S0 computes the ciphertext in the simulated codeword (C0, C1)

as c← Enc(pk ,M‖r).

Game G3
A(κ). The simulator S1 keeps track of all the ciphertexts and secret keys contained in

each dummy encoding computed in step 1. Namely, for each i ∈ [q], it lets α← α‖(ci, sk i),
where ci, sk i are, respectively, the ciphertext and the secret key as obtained by refreshing
the initial encoding C using procedure Rfrsh∗.

9Note that the extractors K0 and K1 are run, respectively, using the same random coins on which the tampering
simulators T0 and T1 are run.
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Game G4
A(κ). For each round i ∈ [q], the tampering simulators T0 and T1 are modified as

follows (cf. Fig. 6):

T0 = (C0, f0):

• The check at step 2(d)ii becomes (φ0, ĉ) 6= (⊥,⊥) and (φ0(ĉ) 6= c̃) ∨ (φ0 6∈ Φ0) ∨ (ĉ 6∈
{c1, . . . , ci−1}).
• The simulator additionally sets M̃ = � at step 2b if c̃ ∈ {c1, . . . , ci−1}.

T1 = (C1, f1):

• The check at step 2(d)ii becomes (φ1, ŝk) 6= (⊥,⊥) and (φ1(ŝk) 6= s̃k) ∨ (φ1 6∈
Φ1) ∨ (ŝk 6∈ {sk1, . . . , sk i−1}).
• The simulator additionally sets M̃ = � at step 2b if s̃k ∈ {sk1, . . . , sk i−1}.

Game G5
A(κ). We change the way tampering queries for which the simulator returns � are

treated. In particular,

• For each query (Tamp, (f0, f1)) such that S1 outputs M̃ = �, we treat this query
exactly as in the real experiment (i.e., we apply (f0, f1) to the target encoding and
decode the resulting codeword).

• For each query (Final, (f∗0 , f
∗
1 )) such that S1 outputs �, we treat this query exactly

as in the real experiment (i.e., we apply (f∗0 , f
∗
1 ) to the target encoding and decode

the resulting codeword).

Game G6
A(κ). We change the way tampering queries for which the simulator returns a value

which is not in {⊥, �} are treated. In particular,

• For each query (Tamp, (f0, f1)) such that S1 outputs M̃ = M̃0 = M̃1, we treat this
query exactly as in the real experiment (i.e., we apply (f0, f1) to the target encoding
and decode the resulting codeword).

• For each query (Final, (f∗0 , f
∗
1 )) such that S1 outputs a codeword C̃ ′ that is valid but

does not decode to M , we treat this query exactly as in the real experiment (i.e., we
apply (f∗0 , f

∗
1 ) to the target encoding and decode the resulting codeword).

Game G7
A(κ). This game is identical to the previous one, except that the tampering simulators

T0 and T1 do not perform the check in step 2d, i.e. in game G7
A(κ) the tampering simulators

never output Abort (and so does S1).

Game G8
A(κ). We change the way tampering queries for which the simulator returns ⊥ are

treated. In particular,

• For each query (Tamp, (f0, f1)) such that S1 outputs M̃ = ⊥, we treat this query
exactly as in the real experiment (i.e., we apply (f0, f1) to the target encoding and
decode the resulting codeword).

• For each query (Final, (f∗0 , f
∗
1 )) such that S1 outputs ⊥, we treat this query exactly

as in the real experiment (i.e., we apply (f∗0 , f
∗
1 ) to the target encoding and decode

the resulting codeword).

Game G9
A(κ). We change the way the codeword C̃∗0 corresponding to the extra tampering query

is computed in each round. Namely, instead of running the extractor K0 and letting sk ′ ←
UpdateS(ŝk) (where ŝk is the extracted secret key), we directly let sk ′ ← UpdateS(s̃k).
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Game G10
A (κ). We change the way the codeword C̃∗1 corresponding to the extra tampering

query is computed in each round. Namely, instead of running the extractor K1 and letting
c′ ← Enc(pk , M̂‖r̂) (where M̂‖r̂ is the extracted message/randomness), we directly let
c′ ← UpdateC(c̃).

Game G11
A (κ). We setup the CRS differently. Namely, we change the distribution of ω0 as

in ω0 ← CRSGen0(1κ). Moreover, the simulator S1 always runs the prover algorithm
Prove0 instead of the zero-knowledge simulator S0

1. (Observe that this happens in three
different steps: (i) When the original codeword (C0, C1) is computed; (ii) Whenever S1

runs algorithm Rfrsh∗ at the beginning of each round; (iii) Whenever S1 needs to answer
the extra tampering query.)

Game G12
A (κ). We setup the CRS differently. Namely, we change the distribution of ω1 as in

ω1 ← CRSGen1(1κ). Moreover, the simulator S1 always runs the prover algorithm Prove1

instead of the zero-knowledge simulator S1
1. (Once again, this happens in the exact same

cases as in the previous game.)

Game G13
A (κ). We change the way a codeword is refreshed. Namely, instead of computing

π′0 ← Provec
′

0 (ω0, pk , sk) via the prover algorithm, we now run the label evaluation pro-
cedure as done by the real refresh algorithm. The same modification affects the way the
proof π′0 is computed during each of the extra tampering queries (f∗0 , f

∗
1 ).

Game G14
A (κ). We change the way a codeword is refreshed. Namely, instead of computing

π′1 ← Provesk
′

1 (ω1, (ω, γ), (M, r)) via the prover algorithm, we now run the label evaluation
procedure as done by the real refresh algorithm. The same modification affects the way
the proof π′1 is computed during each of the extra tampering queries (f∗0 , f

∗
1 ).

Notice that in game G14
A (κ), the “simulator” S1 computes an encoding of the message M .

Moreover, tampering queries are always answered by decoding the modified codeword, and code-
words are refreshed exactly as in the real experiment. Thus, G14

A (κ) and TamperCS,A(κ, `, q)
are identically distributed.

4.4 Indistinguishability of the Hybrids

We now prove that the above defined games are computationally indistinguishable. Together
with the fact that the last game is identically distributed to the real tampering experiment, this
implies Theorem 1.

Lemma 3. For all PPT adversaries A there exists a negligible function ν0,1 : N → [0, 1] such
that

∣∣P [G0
A(κ) = 1

]
− P

[
G1

A(κ) = 1
]∣∣ ≤ ν0,1(κ).

Proof sketch. The proof is down to the hiding property of the commitment scheme (cf. Defini-
tion 8). Since the reduction is straightforward, we only highlight the main ideas here and leave
the details to the reader.

Assume there exists a PPT adversary A and a polynomial p0,1(·) such that, for infinitely
many values of κ ∈ N, we have

∣∣P [G0
A(κ) = 1

]
− P

[
G1

A(κ) = 1
]∣∣ ≥ 1/p0,1(κ). We construct

a PPT adversary B (with black-box access to A), that is playing either Ghide
COM,B(κ, 0) or

Ghide
COM,B(κ, 1). Roughly, B works as follows:

• Receive ω from the challenger. Compute ω as S0(1κ) would do it, except that the CRS
for the commitment scheme is set to be equal to the CRS ω from the game.
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• Run A0(ω), obtaining a message M . Forward (0µ,M) to the challenger, receiving back a
commitment γ.

• Sample the simulated codeword (C0, C1) exactly as S0 would do it, except that the com-
mitment is set to be equal to γ from the game.

• Continue running A and answer its queries exactly as S1 would do it.

• Return the same output as that of A.

It is immediate to see that if B is playing Ghide
COM,B(κ, 0), then the view of A when running as

a sub-routine of B is identical to the view in game G0
A(κ); similarly, if B is playing Ghide

COM,B(κ, 1),

then the view of A when running as a sub-routine of B is identical to the view in game G1
A(κ).

Hence, B retains the same advantage of A, concluding the proof of the lemma.

Lemma 4. For all PPT adversaries A there exists a negligible function ν1,2 : N → [0, 1] such
that

∣∣P [G1
A(κ) = 1

]
− P

[
G2

A(κ) = 1
]∣∣ ≤ ν1,2(κ).

Proof. The proof is down to the fact that PKE is an `-noisy CLRS friendly PKE scheme. By
contradiction, assume there exists a PPT adversary A and a polynomial p1,2(·) such that, for
infinitely many values of κ ∈ N, we have

∣∣P [G1
A(κ) = 1

]
− P

[
G2

A(κ) = 1
]∣∣ ≥ 1/p1,2(κ). We

construct a PPT adversary B (with black-box access to A), that is playing game Gclrs
PKE,B(κ, `′′),

with `′′ := `′ − 2κ, and `′ as in the statement of Theorem 1. A formal description of B follows.

Adversary B:

1. Receive (ρ, pk) from the challenger. For all β ∈ {0, 1}, sample (ωβ, τ
β
sim, τ

β
ext) ← Sβ0 (1κ),

and ω ← CRSGen(1κ). Let ω = (ω0, ω1, ω, ρ) and τ∗ = (τ0
sim, τ

0
ext, τ

1
sim, τ

1
ext).

2. Run A0(ω), obtaining a message M ∈ M. Forward (0µ‖r,M‖r) to the challenger, for
r ← {0, 1}∗, and let γ := Commit(ω,M ; r).

3. Repeat the following, until A is done with its queries.

(a) Query Update(0) and Update(1), sample uniform coins r0, r1 ← {0, 1}∗, and set the
flag err← 0.

(b) Upon input (Leak, β, gβ), forward (β, gβ) to the target leakage oracle, receiving back
a value y; send y to A.

(c) Upon input (Tamp, (f0, f1)), answer this query exactly as S1 would do, except that

the values M̃0 and M̃1 are obtained, respectively, via queries (0, g0) and (1, g1) to the
target leakage oracle, where the functions g0, g1 are defined as follows:

g0(·) := T0((pk , ·,S0
1(τ0

sim, ·, pk ; r0), f0) (1)

g1(·) := T1((γ, ·,S1
1(τ1

sim, ·, (γ, ω); r1), f1). (2)

(Notice that the above might eventually lead to set the flag err← 1.)

(d) Upon input (Final, (f∗0 , f
∗
1 )), answer this query exactly as S1 would do, except for

the following differences.

i. The values M̃∗0 , M̃
∗
1 are obtained via leakage queries (0, g0), (1, g1), where the

functions g0, g1 are defined as in Eq. (1) and Eq. (2) but with f0 replaced by f∗0
and f1 replaced by f∗1 .
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ii. The values p̃k , sk ′ (as part of the simulated codeword C̃ ′) are obtained via a leak-
age query (0, g∗0), where the function g∗0(c) hard-wires values (pk , τ0

sim, r
0, τ0

ext,

r0
ext) and behaves as follows: Compute C̃∗0 := f∗0 (pk , c,S0

1(τ0
sim, c, pk ; r0)) :=

(p̃k , c̃, π̃0), extract the values (ŝk0, φ0, ĉ0) := K0(τ0
ext, c̃, p̃k , π̃0; r0

ext), and output

(p̃k , sk ′), where sk ′ ← UpdateS(ŝk0).

iii. The values γ̃, c′ (as part of the simulated codeword C̃ ′) are obtained via a leakage
query (1, g∗1), where the function g∗1(sk) hard-wires values (ω, γ, τ1

sim, r
1, τ1

ext, r
1
ext)

and behaves as follows: Compute C̃∗1 := f∗1 (γ, sk ,S1
1(τ1

sim, sk , (ω, γ); r1)) := (γ̃, s̃k ,

π̃1), extract the values ((M̂, r̂), φ1, ŝk1) := K1(τ1
ext, s̃k , (γ̃, ω), π̃1; r1

ext), and output

(γ̃, c′), where c′ ← Enc(p̃k , M̂‖r̂).

4. Output the same as A does.

Notice that, assuming the leakage bound is not violated, adversary B perfectly simulates the
view of A; namely, if the challenge bit is b = 0, the view of A is identically distributed to that
of game G1

A, and if the challenge bit is b = 1, the view of A is identically distributed to that of
game G2

A. Thus,

1/p1,2(κ) ≤
∣∣P [G1

A(κ) = 1
]
− P

[
G2

A(κ) = 1
]∣∣

=
∣∣∣P [Gclrs

PKE,B(κ, `′′) = 1| b = 1
]
− P

[
Gclrs
PKE,B(κ, `′′) = 0| b = 0

]∣∣∣
= 2

∣∣∣∣P [Gclrs
PKE,B(κ, `′′) = 1

]
− 1

2

∣∣∣∣ ,
contradicting the fact that PKE is a CLRS friendly PKE scheme.

It remains to show that the adversary B does not violate the leakage bound as stated in
Theorem 1. To this end, assume that, between each update, the adversary A makes at most
t ∈ poly(κ) tampering queries (not counting the final extra query (f∗0 , f

∗
1 )), and let i∗ ∈ [t] be

the first index for which we have M̃0,i∗ := T0(C0, f
i∗
0 ) 6= T1(C1, f

i∗
1 ) := M̃1,i∗ . Define

Z := (Z0, Z1) := ((Y0, M̃0,1, . . . M̃0,i∗ , M̃
∗
0 ), (Y1, M̃1,1, . . . , M̃1,i∗ , M̃

∗
1 ))

to be the random variable corresponding to the partial view of A in each epoch, up until step 3c
included, which consists of the leakage Y0 done on C0, the leakage Y1 done on C1, and the
messages M̃0,1, . . . M̃0,i∗ , M̃

∗
0 and M̃1,1, . . . M̃1,i∗ , M̃

∗
1 as defined by the tampering simulators T0

and T1. For β ∈ {0, 1}, let Xβ be the random variable corresponding to Cβ conditioned on the
value pk , and notice that, after each update (performed by the reduction in step 3a), X0 and
X1 are independent. We can write:

H̃∞(Xβ|Zβ) = H̃∞(Xβ| Yβ, M̃β,1, . . . , M̃β,i∗−1, M̃β,i∗ , M̃
∗
β) (3)

= H̃∞(Xβ| Yβ, M̃1−β,1, . . . , M̃1−β,i∗−1, M̃β,i∗ , M̃
∗
β) (4)

≥ H̃∞(Xβ| Yβ, X1−β, i
∗, M̃β,i∗ , M̃

∗
β) (5)

= H̃∞(Xβ| Yβ, i∗, M̃β,i∗ , M̃
∗
β) (6)

≥ `− 3µ, (7)

where Eq. (3) uses the definition of the random variable Zβ, Eq. (4) uses the fact that M̃0,i = M̃1,i

for all i < i∗, Eq. (5) follows by Lemma 1 and the fact that the messages M̃1−β,1, . . . , M̃1−β,i∗−1

can be computed as a deterministic function of X1−β and the index i∗, Eq. (6) uses the inde-
pendence between X0 and X1, and Eq. (7) follows by Lemma 2, using the fact that A is `-valid
and by the definition of µ := log |M|.
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It remains to account for the leakage performed by the reduction to answer the final tam-
pering query before the state is updated. In particular:

• In step 3(d)ii, B leaks the public key p̃k and the secret key sk ′; since sk ′ is uniformly

distributed over the set {sk : PK(sk) = p̃k}, the function g∗0 is at most log |PK| = δ-
leaky.

• In step 3(d)iii, B leaks the commitment γ̃ and the ciphertext c′; since c′ is uniformly

distributed over the set {c : Enc(p̃k , M̂‖r̂)}, the function g∗1 is at most log |Mpke| = µpke-
leaky.

Putting the above facts together with the bound from Eq. 7, we obtain that B is `′′-admissible
for `′′ := `+ 3µ+ max{δ, µpke} = `′ − 2κ. This concludes the proof.

Lemma 5. For any κ ∈ N, we have G2
A(κ) ≡ G3

A(κ).

Proof. Follows directly by the fact that the change in the game G3
A(κ) is only syntactical, and

in particular the view of the adversary is identical in the two games.

Lemma 6. For all PPT adversaries A there exists a negligible function ν3,4 : N → [0, 1] such
that

∣∣P [G3
A(κ) = 1

]
− P

[
G4

A(κ) = 1
]∣∣ ≤ ν3,4(κ).

Proof. The proof is again down to the security of the CLRS friendly PKE scheme. Consider
the following events:

Old0: The event becomes true whenever, for some i ∈ [q], either the adversary generates a tam-
pered ciphertext c̃ ∈ {c1, . . . , ci−1}, or the tampering simulator T0 extracts a ciphertext
ĉ ∈ {c1, . . . , ci−1}.

Old1: The event becomes true whenever, for some i ∈ [q], either the adversary generates a
tampered secret key s̃k ∈ {sk1, . . . , sk i−1}, or the tampering simulator T1 extracts a
secret key ŝk ∈ {sk1, . . . , sk i−1}.

Define Old = Old0∨Old1. Clearly, G3
A(κ) and G4

A(κ) are identically distributed conditioned on
Old not happening. Hence,∣∣P [G3

A(κ) = 1
]
− P

[
G4

A(κ) = 1
]∣∣ ≤ P [Old].

We now show that Old only happens with negligible probability. By contradiction, assume there
is an efficient adversary A and a polynomial p3,4 such that A provokes event Old with probability
at least 1/p3,4(κ). We construct an adversary B (with black-box access to A), that is playing
game Gclrs

PKE,B(κ, `), with the parameter ` as in the statement of Theorem 1. The execution of
B is almost identical to that of the reduction used to prove Lemma 4; hence, we only outline
the main differences between the two reductions below.

• At the beginning B additionally samples h0 ← H0 and h1 ← H1, where H0 := {h0 :
C → {0, 1}κ} and H1 := {h1 : SK → {0, 1}κ} are families of pair-wise independent hash
functions.10

10Recall that H := {h : X → Y} is a family of pair-wise independent hash functions, if the following condition
holds: For all distinct x, x′ ∈ X , and any y, y′ ∈ Y,

Ph←H
[
h(x) = y ∧ h(x′) = y′

]
≤ |Y|−2.
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• The challenge messages are chosen to be (0µ‖r, 1µpke). (The choice of the second message
is completely arbitrary, in fact any value in Mpke would do.)

• Before running the adversary, in each round i ∈ [q], the reduction makes leakage queries
(0, h0) and (1, h1), obtaining y0

i = h0(ci) and y1
i = h1(sk i), where ci and sk i are, respec-

tively, the challenge ciphertext and the secret key after the i-th update.

• The leakage function g0 of Eq. (1), additionally hard-wires a description of h0, and all
values y0

1, . . . , y
0
i−1, and it checks if either y0

j = h0(c̃) or y0
j = h0(ĉ), for some j ≤ i− 1; in

case that happens, the leakage function returns (Old0, c
∗), where c∗ ∈ {c̃, ĉ} is such that

y0
j = h0(c∗), and otherwise it behaves as before.

• The leakage function g1 of Eq. (2), additionally hard-wires a description of h1, and all
values y1

1, . . . , y
1
i−1, and it checks if either y1

j = h1(s̃k) or y1
j = h1(ŝk), for some j ≤ i− 1;

in case that happens, the leakage function returns (Old1, sk∗), where sk∗ ∈ {s̃k , ŝk} is
such that y1

j = h1(sk∗), and otherwise it behaves as before.

• After the adversary is done with tampering queries, the reduction checks whether for some
of the leakage queries it received either a pair (Old0, c

∗) or a pair (Old1, sk∗). Thus,

– In the former case, it asks an additional leakage query (1, gc∗,M‖r,1µpke ), where the
function gc∗,M‖r,1µpke (sk) uses the secret key to decrypt c∗, and signals whether the
obtained plaintext is equal to M‖r or to 1µpke .

– In the latter case, it asks an additional leakage query (1, gsk∗,M‖r,1µpke ), where the
function gsk∗,M‖r,1µpke (c) uses the secret key sk∗ to decrypt c, and signals whether
the obtained plaintext is equal to M‖r or to 1µpke .

Otherwise, the reduction returns a random guess b′ ← {0, 1}.

Assume first that B is an `′-admissible adversary (i.e., it does not violate the leakage bound),
where the parameter `′ is as in the statement of Theorem 1. Notice that, if Old0 happens,
with probability 1− 2−κ due to the use of a pair-wise independent hash function, the extracted
ciphertext ĉ obtained by the reduction is equal to one of the ciphertexts cj obtained by updating
the original challenge ciphertext c; hence, in such a case, by correctness of the PKE scheme,
adversary B wins with overwhelming probability. Furthermore, a similar argument shows that
B wins with overwhelming probability in case Old1 happens. On the other hand, if none of the
events happen, B is successful with probability 1/2. Putting these observations together with
the fact that Old happens if at least one of Old0 and Old1 happen, we obtain

2

∣∣∣∣P [Gclrs
PKE,B(κ, `′) = 1

]
− 1

2

∣∣∣∣
=
∣∣∣P [Gclrs

PKE,B(κ, `′) = 1| b = 1
]
− P

[
Gclrs
PKE,B(κ, `′) = 0| b = 0

]∣∣∣
=

∣∣∣∣P [Old] ·
(
P
[
Gclrs
PKE,B(κ, `′) = 1|b = 1, Old

]
− P

[
Gclrs
PKE,B(κ, `′) = 0|b = 0, Old

])
+ P

[
Old
]
·
(
P
[
Gclrs
PKE,B(κ, `′) = 1|b = 1, Old

]
− P

[
Gclrs
PKE,B(κ, `′) = 0|b = 0, Old

])∣∣∣∣
≥ 1/p3,4(κ)− 2 · 2−κ,

a contradiction.
It remains to show that B is `′-admissible. Assume first that the event Old does not happen.

Then, using an argument identical to that in the proof of the previous lemma, and considering
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that the reduction here additionally leaks two hash values at the beginning of each round, one
can show that the composition of B’s leakage functions is (` + 3µ + 2κ + max{δ, µpke})-leaky.
Thus, in order to conclude the proof, it suffices to show that the additional leakage due to the
fact that the event Old happens does not reduce the entropy of the state further. While doing
this, we distinguish the case where event Old0 and event Old1 happen. In particular:

Old0: We use the perfect secret-key-update privacy of the PKE scheme (cf. Definition 7). Let
UpdateSi(·) := UpdateS(UpdateSi−1(·)) if i > 1, and UpdateS1(·) := UpdateS(·). By
Definition 7, for any (p, s) such that PK(s) = p, the distribution {p,UpdateS(s)} is identical
to {(pk , sk)← KGen(1κ) : pk = p}; this implies that for any (p, s)← KGen(1κ), if sk is in
the support of {UpdateS(s)}, then sk is also in the support of {sk ′ : (pk ′, sk ′)← KGen(1κ),
pk ′ = p}. Therefore, by a simple inductive argument, we can show that for any 0 ≤ i < i′

and any (p, s)← KGen(1κ), the distributions below are equivalent:

Dp,si,i′ :=

{
(sk , sk ′) :

sk ′ ← UpdateSi(s)

sk ← UpdateSi
′
(sk ′)

}
D̃p,si,i′ :=

{
(sk , sk ′) :

pk ′ = p; (pk ′, sk ′)← KGen(1κ)

sk ← UpdateSi+i
′
(s)

}
.

Let now i∗ be the first index where Old0 happens, and let P′ be an unbounded predictor.
Then, for any i < i∗, we get:

H̃∞(sk i∗ |pk , sk i) ≥ − log max
P′

P

[
P′(pk , sk i) = sk i∗ :

(pk , sk)← KGen(1κ),

(sk i∗ , sk i)← Dpk ,sk
i,i∗−i

]

= − log max
P′

P

[
P′(pk , sk i) = sk i∗ :

(pk , sk)← KGen(1κ)

(sk i∗ , sk i)← D̃pk ,sk
i,i∗−i

]
= − log max

P′
P
[
PP′(pk) = sk i∗ : (pk , sk)← KGen(1κ)

]
≥ H̃∞(sk i∗ |pk),

where P samples sk i from {(pk ′, sk ′)← KGen(1κ) : pk ′ = pk}, and then runs P′(pk , sk i).

Old1: We use the perfect ciphertext-update privacy property of the PKE scheme (cf. Def-
inition 6). Let UpdateCi(·) := UpdateC(UpdateCi−1(·)) if i > 1, and UpdateC1(·) :=
UpdateC(·). By Definition 6, for any m ∈ Mpke and c, such that c = Enc(pk ,m; r) for
some r ∈ {0, 1}∗, the distribution {pk ,UpdateC(c)} is identical to {pk ,Enc(pk ,m)}. This
implies that for any 0 ≤ i < i′, and any (pk , sk)← KGen(1κ), the distributions below are
equivalent:

Dpk ,m
i,i′ :=

{
(c, c′) :

c̄← Enc(pk ,m); c′ ← UpdateCi(c̄)

c← UpdateCi
′
(c′)

}
D̃pk ,m
i,i′ :=

{
(c, c′) :

c̄← Enc(pk ,m); c′ ← Enc(pk ,m)

c← UpdateCi+i
′
(c̄)

}
.

Let now i∗ be the first index where Old1 happens, and let P′ be an unbounded predictor.
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Then, for all m ∈Mpke, and any i < i∗, we get:

H̃∞(ci∗ |pk , ci) ≥ − log max
P′

P

[
P′(pk , ci) = ci∗ :

(pk , sk)← KGen(1κ)

(ci∗ , ci)← Dpk ,m
i,i∗−i

]

= − log max
P′

P

[
P′(pk , ci) = ci∗ :

(pk , sk)← KGen(1κ)

(ci∗ , ci)← D̃pk ,m
i,i∗−i

]
= − log max

P′
P
[
PP′(pk) = ci∗ : (pk , sk)← KGen(1κ)

]
≥ H̃∞(ci∗ |pk),

where P samples ci from {Enc(pk ,m)}, and then runs P′(pk , ci).

Lemma 7. For all κ ∈ N, we have G4
A(κ) ≡ G5

A(κ).

Proof. Recall that the simulator S1 returns same if and only if both tampering simulators T0

and T1 return �; furthermore:

• The tampering simulator T0 returns � at round i if either:

– c̃ ∈ {c, ci−1, . . . , c1}; or

– ĉ = c, and φ0(ĉ) = c̃ (after running the extractor).

• The tampering simulator T1 returns � at round i if either:

– s̃k ∈ {sk , sk i−1, . . . , sk1}; or

– ŝk = sk , and φ1(ŝk) = s̃k (after running the extractor).

Let NotSame be the event that S1 outputs � in game G4
A(κ), but Decode(ω, C̃) 6= M in game

G5
A(κ). Since the two games are identical conditioned on NotSame not happening, it suffices to

bound the probability of event NotSame.
By definition of the set Φ1, we have that, in both cases where T1 returns �, the secret

key s̃k is a valid secret key for the value pk . Similarly, by definition of the set Φ0, we have
that, in both cases where T0 returns �, the ciphertext c̃ must meet the condition Dec(sk , c̃) =
Dec(sk , c). Putting these observations together, we obtain that Dec(s̃k , c̃) = Dec(sk , c) = M‖r,
and thus event NotSame happens with zero probability (assuming the PKE scheme has perfect
correctness). This concludes the proof of the claim.

Lemma 8. For all (even unbounded) adversaries A, there exists a negligible function ν5,6 : N→
[0, 1] such that |P

[
G5

A(κ) = 1
]
− P

[
G6

A(κ) = 1
]
| ≤ ν5,6(κ).

Proof. Game G5
A(κ) and G6

A(κ) are identical, unless there exists a tampering query such that

both T0 and T1 return the same message M̃ 6∈ {⊥, �}, but Decode(ω, C̃) 6= M̃ in game G6
A(κ).

(This could happen also during the extra tampering query.) This means that the following
situation happens in G6

A(κ):

• Dec(ŝk , c̃) = M̃‖r̃ and γ̃ = Commit(ω, M̃ ; r̂);

• Dec(s̃k , c̃) = M̃ ′‖r̃′ and γ̃ = Commit(ω, M̃ ′; r̃′), for some M̃ ′ 6= M̃ .
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The above implies that there exist (M̃, r̂), (M̃ ′, r̃′) (with M̃ 6= M̃ ′) such that γ̃ = Commit(ω,

M̃ ; r̂) = Commit(ω, M̃ ′; r̃′), which in turn contradicts the statistical binding property of the
commitment scheme.

Lemma 9. For all PPT adversaries A there exists a negligible function ν6,7 : N → [0, 1] such
that

∣∣P [G6
A(κ) = 1

]
− P

[
G7

A(κ) = 1
]∣∣ ≤ ν6,7(κ).

Proof. The proof is down to the label-malleable simulation extractability of the argument sys-
tems NIA0 and NIA1. For β ∈ {0, 1}, let Abortβ be the event that S1 outputs Abort in
game G6

A(κ) because Tβ returned Abort as an answer to one of the tampering queries from
the adversary. Define Abort = Abort0 ∨ Abort1, and note that G6

A(κ) and G7
A(κ) are identical

conditioned on Abort not happening. Thus, it suffices to bound the probability that Abort

happens.
We start by proving that Abort0 happens only with negligible probability. By contradic-

tion, assume that there exists a PPT adversary A and a polynomial p6,7(κ), such that, for
infinitely many values of κ ∈ N, adversary A provokes event Abort0 with probability at least
1/p6,7(κ). Consider the following adversary B (with black-box access to A), that is playing game
Glm-se
NIA0,B,K0

(κ,Φ0).

Adversary B:

• Receive ω0 from the challenger. Run (ω1, τ
1
sim, τ

1
ext)← S1

0(1κ), pick ω ← CRSGen(1κ), and
ρ← Setup(1κ).

• Run A(ω), where ω := (ω0, ω1, ω, ρ), obtaining a message M .

• Compute the initial target encoding (C0, C1) as S0 would do it in game G7
A(κ), except

that the proof π0 is obtained by forwarding (c, pk) to the oracle O∗sim(·).

• Keep running A by answering all of its queries exactly as S1 would do it in game G7
A(κ),

but with the following differences:

– Whenever S1 needs to run Rfrsh∗((τ0
sim, τ

1
sim), (C0, C1)), compute C ′0 := (pk , c′, π′0)

and C ′1 := (γ, sk ′, π′1) exactly as described in algorithm Rfrsh∗, except that the proof
π′0 is obtained by forwarding (c′, pk) to the oracle O∗sim(·);

– Whenever S1 returns Abort, upon input a tampering query (f0, f1) from the ad-

versary,11 compute (p̃k , c̃, π̃0) = f0(pk , c, π0), and forward (λ̃, x̃, π̃) to the challenger,

where λ̃ := c̃, x̃ := p̃k , and π̃ := π̃0.

By our assumption, with probability at least 1/p6,7(κ), the attacker A will provoke event Abort0.

This means that, with the same probability, the tuple (λ̃, x̃, π̃) returned by B satisfies the
following:

• The proof π̃ is accepting for the statement x̃ w.r.t. the label λ̃ (i.e., Vrfyc̃(ω0, p̃k , π̃0) = 1).

• The tuple (λ̃, x̃, π̃) is not within the set Q of simulated proofs and corresponding state-

ments/labels; this is because the tampering simulator extracts the proof only if (p̃k , c̃, π̃0) 6=
(pk , c, π0), and further it does not abort if c̃ ∈ {c1, . . . , ci−1} where c1, . . . , ci−1 are the
refreshed ciphertexts computed by the simulator S1 up to the i-th round.

• Either of the following conditions are met:

11Note that the pair (f0, f1) might be either part of a (Tamp, ·) command or of a (Final, ·) command.
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(i) ŝk 6= ⊥ and (p̃k , ŝk) 6∈ R0; or

(ii) (φ0, ĉ) 6= (⊥) and either φ0 6∈ Φ0, or (ĉ, p̃k) 6∈ Q↓,12 or φ0(ĉ) 6= c̃; or

(iii) (ŝk, φ0, ĉ) = (⊥,⊥,⊥).

Hence, B breaks label-malleable simulation extractability of NIA0 with non-negligible proba-
bility, and thus Abort0 only happens with a negligible probability. A similar argument (omitted
here) shows that Abort1 also happens with negligible probability. The proof of the lemma now
follows by an application of the union bound.

Lemma 10. For all (even unbounded) adversaries A, there exists a negligible function ν7,8 :
N→ [0, 1] such that

∣∣P [G7
A(κ) = 1

]
− P

[
G8

A(κ) = 1
]∣∣ ≤ ν7,8(κ).

Proof. We rely on the statistical binding property of the commitment and the correctness prop-
erty of the PKE scheme. Assume (f0, f1) be any tampering query produced by the adversary,

such that Decode(ω, (f0(C0), f1(C1))) = M̃ 6= ⊥ in game G8
A(κ), but the simulator S1 of game

G7
A(κ) instead would return ⊥. Further, let M̃0 and M̃1 the values returned by the tampering

simulators S0 and S1, respectively, upon input the tampering query (f0, f1). We distinguish two
cases.

Case 1: M̃0 6= M̃1 and M̃0, M̃1 6= ⊥. We claim that M̃ = M̃0. In fact, the decoding algorithm
decrypts c̃ using s̃k , whereas T0 decrypts c̃ using ŝk , but PK(s̃k) = PK(ŝk). Therefore, by

the correctness of the PKE scheme, we must have M̃ = M̃0.

On the other hand, the decoding algorithm also checks that γ̃ is a valid commitment to
M̃ , and T1 extracts M̂ = M̃1 as a valid opening of γ̃. This contradict the statistical
binding property of the commitment scheme.

Case 2: At least one of M̃0, M̃1 is equal to ⊥. Note that the tampering simulator T0 (resp.,
T1) returns ⊥ only in case the proof π̃0 (resp., π̃1) is invalid. However, in such a case also

the decoding algorithm outputs ⊥, and thus we conclude that M̃ = ⊥ (a contradiction).

Lemma 11. For all κ ∈ N, and for all (even unbounded) adversaries A, we have G8
A(κ) ≡

G9
A(κ).

Proof. The only difference between the two games is that, while answering the extra tampering
query, the former game computes sk ′ as a refresh of the extracted secret key ŝk0, whereas the
latter game computes sk ′ as refresh of the tampered secret key s̃k . However, note that the
simulator S1 runs the extractor K0 on the same random coins as used to obtain the messages
M̃∗0 and M̃∗1 . Since S1 never aborts in game G8

A(κ), and since we are looking at the case

M̃∗0 = M̃∗1 6∈ {⊥, �}, we conclude that s̃k is a valid secret key corresponding to pk . Hence, the
lemma directly follows by the secret-key update privacy property of the PKE scheme.

Lemma 12. For all κ ∈ N, and for all (even unbounded) adversaries A, we have G9
A(κ) ≡

G10
A (κ).

12The fact that (ĉ, p̃k) 6∈ Q↓ follows by the fact that T0 outputs Abort in step 2d of game G7
A(κ) only if

ĉ 6∈ {c1, . . . , ci−1}, where c1, . . . , ci−1 are the refreshed ciphertexts computed by the simulator S1 up to the i-th
round; furthermore, in case ĉ = ci, the tampering simulator does not abort.
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Proof. The only difference between the two games is that, while answering the extra tampering
query, the former game computes c′ as a fresh encryption of the extracted value M̂‖r̂, whereas
the latter game computes c′ as refresh of the tampered ciphertext c̃. However, note that the
simulator S1 runs the extractor K1 on the same random coins as used to obtain the messages
M̃∗0 and M̃∗1 . Since S1 never aborts in game G9

A(κ), and since we are looking at the case

M̃∗0 = M̃∗1 6∈ {⊥, �}, we conclude that c̃ is a valid encryption of the value M̂‖r̂. Hence, the
lemma directly follows by the ciphertext update privacy property of the PKE scheme.

Lemma 13. For all PPT adversaries A there exists a negligible function ν10,11 : N→ [0, 1] such
that

∣∣P [G10
A (κ) = 1

]
= P

[
G11

A (κ) = 1
]∣∣ ≤ ν10,11(κ).

Proof. The only difference between the two games is that in the former game all proofs for the
relation R0 are computed via the zero-knowledge simulator S0

1, whereas in the latter game such
proofs are computed by running the real prover algorithm Prove0. Hence, the lemma follows by
a straightforward reduction to the adaptive multi-theorem property of NIA0.

Lemma 14. For all PPT adversaries A there exists a negligible function ν11,12 : N→ [0, 1] such
that

∣∣P [G11
A (κ) = 1

]
= P

[
G12

A (κ) = 1
]∣∣ ≤ ν11,12(κ).

Proof. Identical to the proof of the previous lemma, but we now reduce to the (adaptive multi-
theorem) zero-knowledge property of NIA1.

Lemma 15. For all PPT adversaries A there exists a negligible function ν12,13 : N→ [0, 1] such
that

∣∣P [G12
A (κ) = 1

]
= P

[
G13

A (κ) = 1
]∣∣ ≤ ν12,13(κ).

Proof. The only difference between the two games is that in the former game, while refreshing a
codeword, the proof corresponding to relation R0 is computed by running the prover algorithm
Prove0, whereas in the latter game such proof is obtained by running the label evaluation pro-
cedure LEval0. Hence, the lemma follows by a straightforward reduction to the label derivation
privacy of NIA0.

Lemma 16. For all PPT adversaries A there exists a negligible function ν13,14 : N→ [0, 1] such
that

∣∣P [G13
A (κ) = 1

]
= P

[
G14

A (κ) = 1
]∣∣ ≤ ν13,14(κ).

Proof. Identical to the proof of the previous lemma, but we now reduce to the label derivation
privacy property of NIA1.

5 Concrete Instantiations

For a group G of prime order q and a generator g of G, we denote by [a]g := ga ∈ G the implicit
representation of an element a ∈ Zq. Let G be a PPT pairing generation algorithm that, upon
input the security parameter 1κ, outputs a tuple params = (G1,G2,GT , q, g, h, ê) where the first
three elements are the description of groups of prime order q > 2κ, g (resp. h) is a generator
for the group G1 (resp. G2), and ê : G1×G2 → GT is an efficiently computable non-degenerate
pairing function.

Within this section, vectors and matrices are denoted boldface, and vectors are intended as
row vectors. Given a group G, two matrices X ∈ Gn×m and Y ∈ Gm×t, for some n,m, t ≥ 1,
and an element a ∈ G, we denote by X ·Y the matrix product of X and Y, and by a ·X the
scalar multiplication of X by a. Given two elements [a]g ∈ G1 and [b]h ∈ G2, we denote by
[a]g • [b]h = [a · b]e(g,h) the value ê([a]g, [b]h); this notation is also applied to vectors and matrices
in the natural way. Given a field F and natural numbers n,m, j ∈ N, where j ≤ min(n,m), we
define Rkj(Fn×m) to be the set of matrices in Fn×m with row rank j; given a matrix B we let
Rank(B) be the rank of B.
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Definition 13 (k-Rank hiding assumption). Let G be a pairing generation algorithm as above.
The k-rank hiding assumption holds for G if, for any k ≤ j, j′ ≤ min(n,m), we have that
(g, [B]g) ≈c (g, [B′]g) and (h, [B]h) ≈c (h, [B′]h), where B ← Rkj , B′ ← Rkj′ , and (G1,G2,GT ,
q, g, h, ê)← G(1κ).

As shown by Naor and Segev in [51], the k-rank hiding assumption follows from the more
common k-linear assumption. The assumption gets weaker as k increases; in fact, for k = 1,
this assumption is equivalent to the DDH assumption. Unfortunately, DDH does not hold in
symmetric pairing groups where G1 = G2. However, it is widely believed that DDH still holds
in asymmetric pairing groups; this is sometimes known as the external Diffie-Hellman (SXDH)
assumption [11].

5.1 The PKE Scheme

We consider the CLRS Friendly PKE scheme of [33] (which in turn is based on the one in
[29]). Consider the following PKE scheme PKE = (Setup,KGen,Enc,Dec,UpdateC,UpdateS),
with message space M := {0, 1} and parameters n,m, d ∈ N.

• Setup(1κ): Sample params← G(1κ), and vectors p,w← Zmq such that p ·wT = 0 mod q.
Return ρ := (params, [p]g, [w]h). (Recall that all algorithms implicitly take ρ as input.)

• KGen(ρ): Sample t← Zmq , r← Znq and compute sk := [rT ·w +1T
n · t]h, set α := p · tT and

compute pk := [α]g. (The latter can be done given only [p]g ∈ Gm
1 and t ∈ Zmq .) Return

(pk , sk).

• Enc(pk , b): Sample u ← Znq and compute c1 := [uT · p]g and c2 := [αu + b1n]g. Return
c := (c1, c2).

• Dec(sk , C): Let f = ê(g, h), parse sk = [S]h ∈ Gn×m
2 , let S1 be the first row of S, and

parse c = ([C]g, [c]g) ∈ Gn×m
1 ×Gn

1 . Compute b := [c−C ·ST
1 ]f and output 1 if and only

if b = [1n]f . Note that [b]f can be determined by first computing [c]f := ê([c]g, h), and
then [C · ST

1 ]f :=
∏
i ê(C[i],S[i]).

• UpdateC(C): Parse c = ([C]g, [c]g) ∈
(
Gn×m

1 ×Gn
1

)
. Sample B← Zn×nq such that B ·1T

n =

1n and the rank of B is d. Return ([B ·C], [B · cT]).

• UpdateS(sk): Parse sk = [S]h ∈ Gn×m
2 . Sample A← Zn×nq such that A · 1T

n = 1n and the
rank of A is d. Return [A · S]h.

Faonio and Nielsen [33] showed that, under the SXDH assumption, the above PKE scheme is
CLRS-friendly in the bounded leakage model (i.e., the total amount of leakage is upper bounded
by a value ` ∈ N). The theorem below states that the same PKE is also secure in the more
general noisy leakage model.

Theorem 2. For any m ≥ 6, n ≥ 3m − 6, and d := n −m + 3, the above construction gives
an `-noisy CLRS-friendly PKE scheme under the SXDH assumption, for ` = min{m/6−1, n−
3m+ 6} · log(q)− ω(log κ).

Proof sketch. The proof is heavily based on the elegant proof in [29]. Most of the hybrids are
identical. The main difference is that we need a “noisy version” of the so-called subspace hiding
lemma (cf. Lemma B7 in [29]). We state this lemma below.
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Lemma 17 (Noisy model version of Lemma B.7 of [29]). Let the integers d, n, s, u be polynomials
in the security parameter κ ∈ N. Let S ∈ Zd×sq be an arbitrary (fixed and public) matrix, and

L an `-leaky function (possibly chosen depending on S). For randomly sampled A ← Zn×dq ,

V← Zd×uq , and U← Zn×uq , we have:

(L(A),AS,V,AV) ≈s (L(A),AS,V,U),

as long as (d− s− u) log(q)− ` = ω(log κ).

Proof sketch. The proof follows almost verbatim the one in [29]. In particular, it suffices to
apply the leftover-hash lemma for leaky sources [30] to each row of A independently. Take any
row ai of A, and think of it as a random source whose conditional average min-entropy is

H̃∞(ai| AS, L(A)) ≥ H̃∞(ai| L(A))− s log(q) ≥ d log(q)− s log(q)− `,

where, in the second step, we simply applied the definition of an `-leaky function (notice that
A is uniform). Now, think of V as the seed of the universal hash function hV(ai) = aiV, whose
output size is u log(q) bits. The leftover-hash lemma tells us that the ith row of AV looks
uniform. By using the hybrid argument over all the rows we obtain the lemma.

For any k ∈ N, let PKE×k = (Setup,KGen,Enc×k,Dec×k) where Enc×k(pk ,m1, . . . ,mk) :=
(Enc(pk ,m1),Enc(pk ,m2), . . . ,Enc(pk ,mk)), and Dec×k performs the obvious decryption pro-
cedure. The lemma below says that constructing single-bit PKE is sufficient for obtaining k-bit
PKE, in the setting of CLRS-friendly security.

Lemma 18. For any polynomial k(κ), if PKE is an `-noisy CLRS-friendly secure PKE, then
PKE×k is an `-noisy CLRS-friendly secure PKE.

5.2 The Commitment Scheme

We use the commitment scheme of [43], that is secure under the 2-LIN (a.k.a. DLIN) assumption.
The scheme depends on some global parameters, that for simplicity we consider to be the same
as the ones for the PKE scheme from the previous section. Let ψ : Z2

q → Z3
q be such that

ψ(r1, r2) = (r1, r2, r1 + r2).

• Setup(1κ): Sample p← Z3
q , and output ω = [x]g.

• Commit(ω,m): Sample r← Z2
q , and compute γ = [m · x + ψ(r)]g where ω = [x]g.

5.3 The Label-Malleable NIZK

In [33], the authors show that lm-NIZK are a special kind of Controlled-Malleable NIZK (cm-
NIZK) argument of knowledge systems [15], and provide a generic transformation to obtain
lm-NIZK. In particular, their paradigm identifies a sufficient set of conditions which we review
below.

Definition 14. For a relation R, and a set of transformations Φ on the set of labels Λ, we say
(R,Φ) is label-malleable friendly if the following properties hold.

1. Representable statements and labels: Any instance and witness of R can be repre-
sented as a set of group elements; i.e., there are efficiently computable bijections Fstm : LR →
Gdstm
istm

for some dstm and istm, Fwit : WR → Gdwitiwit
for some dwit and iwit, and where WR is

the witness space for the relation R, and Flbl : Λ→ Gdlbl
ilbl

for some dlbl and ilbl = istm.
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2. Representable transformations: Any transformation in Φ can be represented as a set
of group elements; i.e., there is an efficiently computable bijection Ftrs : Φ → Gdtrsitrs

for
some dtrs and some itrs.

3. Provable statements: We can prove the statement “(x,w) ∈ R” (using the above
representation for x and w) via pairing product equations; i.e., there is a pairing product
statement that is satisfied by Fstm(x) and Fwit(w) if and only if (x,w) ∈ R.

4. Provable transformations: We can prove the statement “φ(λ′) = λ∧φ ∈ Φ” (using the
above representations for labels λ, λ′ and transformation φ) via a pairing product equation,
i.e., there is a pairing product statement that is satisfied by Ftrs(φ), Flbl(λ), Flbl(λ

′) if and
only if φ ∈ Φ ∧ φ(λ′) = λ.

5. Transformable transformations: For any φ, φ′ ∈ Φ, there is an efficient transformation
(depending on φ, φ′) that takes the statement “φ(λ′) = λ ∧ φ ∈ Φ” (phrased using
pairing product equations as above) and transforms it into the statement “(φ′ ◦ φ)(λ′) =
φ(λ) ∧ (φ′ ◦ φ) ∈ Φ” while preserving the label λ′.

Theorem 3 (Theorem 3 of [33]). If the DLIN assumption holds, then we can construct a lM-
NIZK with label derivation privacy from any label-malleable friendly relation and transformation
set (R,Φ).

Consider now the relation and transformation set (R0
ρ,Φ

0
ρ) defined below:

R0
ρ = {([α]g, [S]h) : [α]g = [p · ST

1 ]g},
Φ0
ρ =

{
φB(C, c) :=

(
[B ·CT]g, [B · cT]g

)
: 1 = B · 1T

}
.

where ρ = (params, [p]g, [w]h) ← Setup(1κ) is as in the PKE scheme from Section 5.1. Notice
that the set of all the possible updates of a ciphertext, i.e.{

φ : φ(·) = UpdateC(ρ, · ; B),B ∈ Zn×nq ,1n = B · 1T
n , rank(B) = d

}
,

is a subset of Φ0
ρ. We show that (R0

ρ,Φ
0
ρ) is label-malleable friendly.

Representable statements and labels: Notice that LR0
ρ
⊆ G1, while the set of valid labels

is equal to Gn×m
1 ×Gn

1 .

Representable transformations: We can describe a transformation φB ∈ Φ0
ρ as a matrix of

elements [B]h ∈ Gn×n
2 .

Provable statements: The relation R0
ρ can be represented by the pairing product statement

[α]g • [1]h = [p] • [ST
1 ]h.

Provable transformations: Given a transformation φB ∈ Φ0
ρ and labels c = ([C]g, [c]g), c

′ =
([C′]g, [c

′]g), the statement “φB(c′) = c∧φB ∈ Φ” can be expressed as a system of pairing
product equations: 

[B]h • [C′T]g = [C]g • [1]h
[B]h • [c′T]g = [c]g • [1]h
[B]h • [1T]g = [1]f .

(8)

Transformable transformations: Let φB, c, c
′ be as before, and let φB′ ∈ Φ0

ρ. We show
that we can transform the system in Eq. (8) into a system of pairing product equations
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corresponding to the statement (φB′ ◦ φB)(c′) = φB′(c) ∧ (φB′ ◦ φB) ∈ Φ. In particular,
we obtain 

[B′ ·B]h • [C′T]g = [B′ ·CT]g • [1]h
[B′ ·B]h • [c′T]g = [B′ · cT]g • [1]h
[B′ ·B]h • [1T]g = [1]f .

For any k ∈ N, consider the PKE scheme PKE×k defined in Section 5.1, let CPKE×k = (CPKE)k

be the ciphertext space of PKE×k, and Φ0
ρ
×k

= (Φ0
ρ)
k. One can easily show that, for any

positive polynomial k(κ), the tuple (R0
ρ,Φ

0
ρ
×k

) is label-malleable friendly.
Next, consider the relation and transformation set (R1

ρ,Φ
1
ρ) defined below:

R1
ρ = {([x]g, [α]g) , (m, r) : [α]g = [m · x + ψ(r)]g},

Φ1
ρ =

{
φA(S) :=

(
[A · ST]h

)
: 1 = A · 1T

}
,

where ρ = (params, [p]g, [w]h)← Setup(1κ). Notice that the set of all the possible updates of a
secret key, i.e.{

φ : φ(·) = UpdateS(ρ, · ; A),A ∈ Zn×nq ,1n = A · 1T
n , rank(A) = d

}
,

is a subset of Φ1
ρ. We show that (R1

ρ,Φ
1
ρ) is label-malleable friendly.

Representable statements and labels: Notice that LR1
ρ
⊆ G1, while the set of valid labels

is the equal to Gn×m
2 .

Representable transformations: We can describe a transformation φA ∈ Φ1
ρ as a matrix of

elements [A]h ∈ Gn×n
2 .

Provable statements: The relation R1
ρ can, obviously, be represented by the pairing product

equation [α]g = [m · x + ψ(r)]g.

Provable transformations: Given a transformation φA ∈ Φ1
ρ, and labels sk = [S]h, sk ′ =

[S′]h, the statement “φA(sk ′) = sk ∧ φA ∈ Φ1” can expressed as a system of pairing
product equations: {

[A]g • [S′T]g = [S]g • [1]h
[A]g • [1T]h = [1]f .

(9)

Transformable transformations: Let φA, sk , sk ′ be as before, and let φA′ ∈ Φ1
ρ. We show

that we can transform the system in Eq. (9) into a system of pairing product equations
for the statement (φA′ ◦ φA)(sk ′) = φA′(c) ∧ (φA′ ◦ φA) ∈ Φ. In particular, we obtain{

[A′ ·A]g • [S′T]h = [A′ · ST]g • [1]h
[A′ ·A]g • [1T]h = [1]f .

6 Applications

6.1 Tamper-Resilient Signatures

Consider a signature scheme SS (cf. Section 2.5). We would like to protect SS against tam-
pering attacks with the memory, storing the signing key. As observed originally by Gennaro et
al. [41], however, without further assumptions, this goal is too ambitious. Their attack can be
circumvented by either assuming the self-destruct capability, or a key-update mechanism.
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Interestingly, Fujisaki and Xagawa [40] observed that, whenever the key-update mechanism
is invoked only after an invalid output is generated, the goal of constructing tamper-resilient
signature is impossible, even assuming the self-destruct capability. The idea behind the attack
is to generate two valid pairs of independent signing/verification keys, and thus to overwrite
the original secret key with either of the two sampled signing keys in order to signal one bit of
the original key. Note that such an attack never generates invalid signatures, thus rendering
both the self-destruct capability and a key-update mechanism useless.

6.1.1 Split-State Signature Schemes

A split-state signature scheme is a tuple of algorithms SS = (Setup,Gen,Sign,Vrfy,Rfrsh) spec-
ified as follows. (1) The (randomized) algorithm Setup takes as input the security parameter
κ ∈ N, and outputs public parameters ρ ∈ {0, 1}∗; all algorithms are implicitly given ρ as
input. (2) The (randomized) algorithm Gen takes as input the public parameters ρ ∈ {0, 1}∗,
and outputs a pair of verification/signing key (vk , sk), such that sk consists of two shares
(S0,S1). (3) The (randomized) algorithm Sign takes as input two shares S0,S1, and a message
m ∈ {0, 1}∗, and outputs a signature σ. (4) The (deterministic) algorithm Vrfy takes as input
the verification key vk , and a message/signature pair (m,σ), and outputs a decision bit. (5) The
(randomized) algorithm Rfrsh takes as input two shares S0,S1, and returns two updated shares
S ′0,S

′
1.

We say that SS satisfies completeness if for all ρ output by Setup(1κ), for all (vk , (S0,S1))
output by Gen(ρ), and for all messages m ∈ {0, 1}∗, the following holds:

P [Vrfy(vk ,Sign(sk ,Rfrsh(S0,S1),m))] ≥ 1− ν(κ),

for a negligible function ν.
Informally, a split-state signature scheme is secure against continuous leakage and tampering

attacks if no efficient adversary can forge a signature on a “fresh” message, even if it is given
access to the following oracles: (i) A leakage oracle that returns entropy-bounded leakage on
the shared secret key (computed on the two shares of the key independently); (ii) A tampering
oracle that returns signatures on adaptively chosen messages, computed with a related secret
key (obtained by modifying the two shares of the key independently). A formal definition
(inspired by the work of Halevi and Lin [44] on after-the-fact leakage in PKE) follows below.

Definition 15 (Tamper-resilient signatures). Let SS = (Setup,Gen, Sign,Vrfy) be a split-state
signature scheme. For any ` ∈ N, we say that SS is `-secure against continuous leakage and
tampering attacks, if for all PPT `-valid adversaries A there is a negligible function ν : N→ [0, 1]
such that

P
[
Expclt-cma

SS,A (κ, `) = 1
]
≤ ν(κ),

where the experiment is defined in Fig. 7.

6.1.2 Construction and Analysis

Let SS = (Gen,Sign,Vrfy) be a signature scheme, and CS = (Init,Encode,Decode) be a cod-
ing scheme. Consider the following construction of a split-state signature scheme SS∗ =
(Setup∗,Gen∗, Sign∗,Vrfy∗,Rfrsh∗).

• Setup∗(1κ): Run ω ← Init(1κ) and output ρ := ω.

• Gen∗(ρ): Parse ρ := ω, run (pk , sk) ← Gen(1κ) and (C0, C1) ← Encode(ω, sk); return vk
and (S0,S1) := (C0, C1).
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Experiment Expclt-cma
SS,A (κ, `):

ρ← Setup(1κ); Q := ∅
(vk , (S0,S1))← Gen(ρ) ; S := (S0,S1)
(m∗, σ∗)← (A(ρ, vk) � Osign(S ),ORfrsh(S ),O∞(S ))
Return 1 iff:

(i) m∗ 6∈ Q
(ii) Vrfy(vk , (m∗, σ∗)) = 1

Oracle Osign(S0,S1,m, f0, f1):

(S̃0, S̃1) = (f0(S0), f1(S1))
Q ← Q∪ {m}
σ ← Sign((S̃0, S̃1),m)
If σ = ⊥

Return ⊥
(S ′0,S

′
1)← Rfrsh(S0,S1)

(S0,S1) := (S ′0,S
′
1)

Else
Return σ

Oracle ORfrsh(S0,S1):

(S ′0,S
′
1)← Rfrsh(S0,S1)

(S0,S1) := (S ′0,S
′
1)

Figure 7: Experiment defining unforgeability of a split-state signature scheme against continuous
leakage and tampering attacks.

• Sign∗((S0,S1),m): Parse (S0,S1) := (C0, C1), and let s̃k = Decode(ω, (C0, C1)); if the
result is ⊥, set σ := ⊥. Else, let σ ← Sign(s̃k ,m). Output σ.

• Vrfy∗(vk , (m,σ)): Output Vrfy(vk , (m,σ)).

• Rfrsh∗(S0,S1): Parse (S0,S1) := (C0, C1) and return (C ′0, C
′
1)← Rfrsh(ω,C0, C1).

We prove the following theorem.

Theorem 4. Assume that SS is a EUF-CMA signature scheme, and that CS is a refreshable
continuously non-malleable and `-leakage-resilient split-state code, then the above defined split-
state signature scheme SS∗ is `-secure against continuous leakage and tampering attacks.

In the proof we define an intermediate experiment where tampering and leakage queries are
answered by running the simulator of the underlying R-CNMC. Whenever the simulator returns
�, we replace the output of the simulator with a signature computed using the original secret
key. By the security of the R-CNMC, the above experiment is computationally indistinguishable
from the real experiment. Next, we show that no PPT adversary can forge in the intermediate
experiment. The proof is down to the unforgeability of the underlying signature scheme Π. The
main observation is that tampering queries can now either be simulated using the simulator of
the R-CNMC, or using the signing oracle (in case the simulator returns �).

Proof sketch. Let G1
A(κ) := Expclt-cma

SS,A (κ, `) be the experiment defined in Fig. 7, and denote by

S = (S0,S1) the simulator for the non-malleable code. Consider the hybrid experiment G2
A(κ)

where we make two changes: (i) The public parameters ω are computed using the simulator
S0(1κ); (ii) The signature oracle Osign(S0,S1) is modified in such a way that, instead of running
Decode as in the original experiment, we first run the simulator S1 upon input (f0, f1) in order
to obtain a value s̃k ∈ SK ∪ {�}, and then we proceed as before unless s̃k = �, in which case
the query is answered with σ ← Sign(sk ,m).

Lemma 19. For all PPT adversaries A, there is a negligible function ν1,2 : N→ [0, 1] such that∣∣P [G1
A(κ) = 1

]
− P

[
G2

A(κ) = 1
]∣∣ ≤ ν1,2(κ).

36



Proof. Follows by a straightforward reduction to the non-malleability of the underlying code, as
the only difference between the two games is that in the former game the tampering oracle always
runs Sign on the output of Decode(ω, f0(C0), f1(C1)), whereas in the latter game we replaced the
output of the decoding algorithm with the output of the simulator of the underlying code.

Lemma 20. For all PPT adversaries A, there is a negligible function ν2 : N→ [0, 1] such that

P
[
G2

A(κ) = 1
]
≤ ν2(κ).

Proof. Follows by a straightforward reduction to the unforgeability of the underlying signature
scheme, since the reduction can simulate signature queries on which the non-malleable code
simulator returns � by using the target signing oracle (in the definition of EUF-CMA), whereas
all other queries are already answered by running Sign on the output of the simulator of the
underlying code.

6.2 Tamper-Resilient RAM

A read-only RAM program Λ = (Π,D) consists of a next instruction function Π, a state state
stored in a non-tamperable but non-persistent register, and some database D. The next instruc-
tion function Π takes as input the current state state and input inp, and outputs an instruction
I and a new state state′. The initial state is set to (start, ?).

A RAM compiler is a tuple of algorithms Σ = (Setup,CompMem,CompNext) specified as
follows. (1) Algorithm Setup takes as input the security parameter 1κ, and outputs an untam-
perable CRS ω; (2) The memory compiler CompMem takes as input the CRS ω, and a database
D, and outputs a database D̂ along with an initial internal state state; (3) The next instruction
function Π is compiled to Π̂ using CompNext and the CRS. To define security, we compare
two experiments (cf. Fig. 8). The real experiment features an adversary A that is allowed, via
the interface doNext, to execute RAM programs on chosen inputs step-by-step; upon input x,
oracle doNext(x) outputs the result of a single step of the computation, as well as the memory
location that is accessed during that step. Additionally, adversary A can also apply tampering
attacks that are parameterized by two families of functions Fmem and Fbus, where each function
f ∈ Fmem is applied to the compiled memory, whilst each function f ∈ Fbus is applied to the
data in transit on the bus.

The ideal experiment features a simulator S that is allowed, via the interface Execute, to
execute RAM programs on chosen inputs. Upon input x, oracle Execute(x) outputs the result
of the entire computation and the list of all the memory locations that were accessed during
that computation. Briefly, a RAM compiler is tamper-resilient if for all possible logics Π, and
all efficient adversaries A, there exists a simulator S such that the real and ideal experiment are
computationally indistinguishable. A formal definition follows.

Definition 16 (Tamper simulatability). A compiler Σ = (Setup,CompMem,CompNext) is tam-
per simulatable w.r.t. (Fbus,Fmem) if for every next instruction function Π, and for every PPT
adversary A, there exists a PPT simulator S and a negligible function ν : N→ [0, 1] such that,
for all PPT distinguisher D and any database D, we have that:∣∣∣P [D(TamperExecFbus,Fmem

A,Σ,Λ (κ)) = 1
]
− P

[
D(IdealExecS,Λ(κ)) = 1

]∣∣∣ ≤ negl(κ)

with Λ := (Π,D), and where the experiments TamperExecFbus,Fmem

A,Σ,Λ and IdealExecS,Λ(κ) are
defined in Fig. 8.
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Experiment TamperExecFbus,Fmem

A,Σ,Λ (k):

ω ← Setup(1κ);
Parse Λ as (D̄, Π̄); Q ← ∅;
D ← CompMem(ω, D̄), D′ ← D;
Π← CompNext(ω, Π̄);
b←

(
A(ω) � doNext((D′,Π), ·),Otamp(·)

)
;

Return (b,Q).

Experiment IdealExecS,Λ(κ):

Q ← ∅;
b←

(
S(1κ) � Execute(Λ, ·),Add(·)

)
;

Return (b,Q).

Oracle Add(x):

Q ← Q∪ {x};

Oracle Otamp:

Upon (TampMem, f):
If f ∈ Fmem, then set D ← f(D).

Upon (TampBus, f):
If f ∈ Fbus, then set D′ ← f(D).

Oracle doNext((D,Π), x):

If state = (start, ?)
inp← x; Q ← Q∪ {x}

(I, state′)← Π(state, inp)
If I = (read, v)

inp← D[v]; state := state′

If I = (stop, z), then state← (start, ?)
Else, state := state′

Output I.

Oracle Execute((D,Π), x):

state← (start, ?), I ← ∅;
repeat I′ ← doNext((D,Π), x); I ← I‖I′;
until I′ = (stop, v);
Output I

Figure 8: Experiments defining security of a RAM compiler.

6.2.1 Tampering on the Bus

Roughly, our RAM compiler encodes a randomly generated secret key k of an authenticated
encryption scheme using a R-CNMC, creating a codeword (K0,K1). Next, it encrypts each
data block in the memory under the key k. Let E be the encrypted blocks. The compiled
database consists of two parts (K0, E) and (K1, E). A fundamental twist w.r.t. to previous work
is that we include the encrypted database in both the parts. This feature allows us to prove
security in the split-state model, at the price of requiring the following additional property for
the underlying R-CNMC.

Definition 17 (Codeword correlation). A split-state code CS = (Init,Encode,Decode) has α-
correlated codewords if for all ω output by Init, any messageM ∈M, and (C0, C1)← Enc(ω,M),
the following holds for all β ∈ {0, 1}: H̃∞(Cβ|C1−β) ≥ H∞(Cβ)− α.

It is easy to verify that the code from Section 4 has α-correlated codewords for α :=
max{δ(κ), µ(κ)} (where δ := log |M| and δ := log |PK|).

Let SKE = (KGen,Enc,Dec) be a secret-key encryption scheme. Let CS = (Init,Encode,
Decode) be a R-CNMC. Our tamper-resilient read-only RAM compiler Σ = (Setup,CompMem,
CompNext) works as follows.

• Setup(1κ): Run ω ← Init(1κ) and output ω.

• CompMem(ω,D): Run k ← KGen(1κ) and (K0,K1) ← Encode(ω, k). For each di in D =
(d1, . . . , dn) do ci ← Enc(k, di‖i) and let E = (c1, . . . , cn). Output (D0,D1), where D0 =
(K0, E) and D1 = (K1, E)), and let the initial internal state be state = ((start, ?)‖0κ‖0logn).

• CompNext(ω,Π): The compiled next instruction function Π̂ does the following: Upon input
(state, inp), parse state = (stateRAM‖klast‖Ilast). Hence:
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– If stateRAM = (start, ?)

1. (I, state′RAM)← Π(stateRAM, inp);

2. Read from D0 the value K0 and from D1 the value K1;

3. Compute k ← Decode(ω, (K0,K1));

4. Set state← (state′RAM‖k‖I);
5. Output (I, state).

– If stateRAM 6= (start, ?)

1. Parse Ilast as (read, v);

2. Read cv from D0 and read c′v from D1;

3. Compute d′‖i′ ← Dec(klast, cv);

4. If (cv 6= c′v) or d′‖i′ = ⊥ or i′ 6= v, then signal D0 and D1 to refresh, set
state← ((start, ?)‖0κ‖0logn) and output ⊥.

5. Else inp← d′, compute (I, state′RAM)← Π(stateRAM, inp);

6. If I = (stop, z), then set state← ((start, ?)‖0κ‖0logn) and output (I, state);

7. Else set state← (state′RAM‖klast‖I) and output (I, state).

Theorem 5. Assume that SKE is an authenticated encryption scheme with ciphertexts size
bounded by q(κ, n) ∈ poly(κ), and that CS is a (q + α+O(log κ))-leakage-resilient and contin-
uously non-malleable code with split-state refresh, that additionally has α-correlated codewords.
Then, the above construction defines a tamper-resilient RAM compiler w.r.t. (Fbus, ∅), where
Fbus is the class of split-state tampering functions applied on the bus.

Proof. Let CE ⊂ {0, 1}q(κ,n) and C0 × C1 be, respectively, the ciphertext space of SKE and
the codeword space of COM. Without loss of generality, we can parse a function g ∈ Fbus as
(g
∣∣
key
, g
∣∣
mem

) where, in turn, g
∣∣
key

:= (T 0, T 1) and g
∣∣
mem

:= (M0,M1). Here:

• The function T 0 has domain C0 × CnE and co-domain {0, 1}p(κ);

• The function T 1 has domain C1 × CnE and co-domain {0, 1}p(κ);

• The function M0 has domain C0 × CnE and co-domain {0, 1}q(κ,n).

• The function M1 has domain C1 × CnE and co-domain {0, 1}q(κ,n).

Informally, g
∣∣
key

acts over the codeword of the NMC and g
∣∣
mem

acts over the n ciphertexts. To

prove security of our construction we need to construct a simulator S. Let Li,jcptx be the leakage

function that upon input Kj first computes Ẽ ← M j(Kj , E), and then outputs Ẽ [i]. Namely,

Li,jcptx is the function that leaks the i-th ciphertext from the tampered database. Let (S0,S1)
denote the simulator for CS.

Simulator S:

1. Generate ω ← S0(1κ), let k ← KGen(1κ) a key for the authenticated encryption, create
an encrypted dummy database D, where each entry is an encryption of 0κ, i.e. D =
(c1, . . . , cn) where ci = Enc(k, 0κ‖i). Run the simulator S1. Run the real world adversary
A with input ω. Let flgkey be the flag that indicates the current state of the key. Initially
the flag is set to OK. Let flgstart be the flag that indicates the current state of the
execution. Initially the flag is set to False.
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2. Upon receiving a query from the adversary A proceed as follows:

If the query is for Otamp and it is of the kind (TampBus, g) and g ∈ Fbus then set g as the
current tampering function.

If the query is for doNext with input x, in case flgstart = False then set g′ := (T 0((·,D), T 1(·,
D)) where (T 0, T 1) is g

∣∣
key

and g is the current tampering query, forward g′ to S1, and do
the following:

(a) If the simulator outputs �, we set flgkey ← OK.

(b) If the simulator outputs ⊥, we set flgkey ← broken.

(c) The last option for the simulator is to output a valid, but unrelated, key k∗; in this
case, we set flgkey ← unrelated.

Finally, set the flag flgstart to True. Afterwards, do the following depending on flgkey:

(a’) If flgkey = broken, then send the query x to Add(·) and answer with ⊥.

(b’) If flgkey = unrelated then if cnt = 0 send the query x to Add(·); compute locally:

- If stateRAM = (start, ?) set inp← x and execute (I, state′RAM)← Π(stateRAM, inp),
set state← (state′RAM‖k∗‖I), increment cnt and return I;

- If Ilast = (read, v) send the leakage oracle queries (Leak, (0, Lv,0cptx)) and (Leak, (1,

Lv,1cptx)) to the simulator S1. Let c̃v and c̃′v be the respective answers. Decrypt
(d′‖i′) ← Dec(k∗, c̃v). If c̃v 6= c̃′v or (d′‖i′) = ⊥ or i′ 6= v then output ⊥.
Otherwise, set inp← d′ and compute locally (I, state′RAM)← Π(stateRAM, inp) set
state← (state′RAM‖k∗‖I) increment cnt and return I.

- If Ilast = (stop, v) output I, set state← ((start, ?), ‖0κ‖0logn) and reset cnt to 0
and return I.

(c’) If flgkey = OK then if cnt = 0 forward the query x to Execute(Λ, ·), let I the answer,
else if cnt > 0 retrieve I. Parse I = (I1, . . . , Ip) for p ∈ N. If Icnt is of the form

(read, v) then send the leakage oracle queries (Leak, (0, Lv,0cptx)) and (Leak, (1, Lv,1cptx))
to the simulator S1. Let c̃v and c̃′v be the respective answers. If c̃v = E [v] = c̃′v then
output Icnt and increment the counter else output ⊥.

3. In all of the above cases, whenever return ⊥ to the adversary, force13 the simulator S1 to
refresh and reset the flag flgkey to OK and the flag flgstart to False.

We prove the indistinguishability in 3 steps. Let Hi be the i-th hybrid adversary, such adversary
takes as input 1κ and the original database D and interacts with doNext. The latter defines
the hybrid experiment Hi, specifically Hi(κ) := D (Hi(1

κ,D) � Execute(Λ, ·),Add(·)) where
Λ = (Π,D). Let the hybrid adversaries be defined as follows:

Hybrid adversary H1. It takes as input the database D and executes the same code of the
simulator S, but it honestly encrypts the database D. Namely, E = (c1, . . . , cn) where
ci ← Enc(k, (di‖i)) for all 1 ≤ i ≤ n.

Hybrid adversary H2. It takes as input the database D and executes the same code of the
hybrid adversary H1, but in point 2.(c’) it does not check that c̃v = E [v] = c̃′v (where

13This can be done by sending a tampering query that overwrites the target encoding with an invalid codeword,
thus triggering a decoding error.
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c̃v := Lv,0cptx(K0) and c̃′v := Lv,1cptx(K1)). Instead it decrypts (d′‖i′) = Dec(k∗, c̃v) and if
c̃v 6= c̃′v or (d′‖i′) = ⊥ or i′ 6= v then outputs ⊥ and refreshes K0,K1. (Namely, it executes
the same code the compiler CompNext would execute.)

Hybrid adversary H3. It takes as input the database D and executes the same code of the
hybrid adversary H2, but instead of running the simulator S1 of the R-CNMC, it samples
(K0,K1) ← Encode(ω, k), computes the decoding, the leakage function Lcptx and the
refreshing algorithm directly on K0,K1. In particular, whenever it computes a decoding it
does the following checks. If the decoded key k∗ is⊥, then set the flag flgkey ← broken, else
if k∗ is equal to the original key k, then set flgkey ← OK, and else set flgkey ← unrelated.

Lemma 21. For any read-only RAM Λ = (Π,D) there exists a negligible function ν : N→ [0, 1]
such that |P [H1(κ) = 1]− P [IdealExecS,Λ(κ) = 1]| ≤ ν(κ).

Proof sketch. We reduce to the security of the authenticated encryption via a hybrid argument.
Let Hi

1 be the hybrid adversary that executes the same code of H1 but encrypts to D only the
first i locations and the remaining are encrypted to 0. We prove that for any index i ∈ [n− 1]
there exists a negligible function ν ′ such that∣∣P [Hi

1(1κ) = 1
]
− P

[
Hi+1

1 (1κ) = 1
]∣∣ ≤ ν ′(κ),

where Hi
1(1κ) := D(Hi

1(1κ,D) � Execute(Λ, ·),Add(·)).
Let B the adversary that upon input 1κ and oracle access to Dec(k, ·) executes the same

code of the hybrid adversary Hi
1 but queries its own oracle for the encryption of (D[i]‖j) for

0 ≤ j ≤ i. The adversary B outputs (D[i]‖i, 0) as challenge messages and gets c as challenge
ciphertext. It is easy to see that B fully simulates Hi

1 if the challenge bit is 0 and Hi+1
1 if the

challenge bit is 1 which implies a distinguisher against the semantic security of SKE .

Lemma 22. For any read-only RAM Λ = (Π,D) there exists a negligible function ν : N→ [0, 1]
such that |P [H1(κ) = 1]− P [H2(κ) = 1]| ≤ ν(κ).

Proof sketch. The lemma follows from the authenticity of SKE . In particular, let Forge be the
event that c̃v 6= E [v] 6= c̃′v but c̃v = c̃′v and (d′‖i′) 6= ⊥ and i′ = v happens in H2. The event Forge
allows to distinguish between H2 and H3, therefore |P [H2(κ) = 1]− P [H3(κ) = 1]| ≤ P [Forge].
We prove that if P [Forge] ≥ 1/p(κ) for a polynomial p, then we can break authenticity of SKE
with the same probability. Notice that since c̃v 6= E [v] and i′ = v then for any i ∈ [n] we have
that c̃v 6= E [v]; this is because the other ciphertexts encrypt a different index. This means that
c̃v is fresh and moreover it decrypts correctly under the key k (since d′‖i′ 6= ⊥). The reduction
is straightforward and therefore the details are omitted.

Lemma 23. For any read-only RAM Λ = (Π,D) there exists a negligible function ν : N→ [0, 1]
such that |P [H2(κ) = 1]− P [H3(κ) = 1]| ≤ ν(κ).

Proof sketch. The lemma follows from the security of the R-CNMC. There are two things to
notice. First, the function g

∣∣
key

for any assignment of the encrypted database c1, . . . , cn is a valid
split-state tampering function. Second, by continuously tampering with the encrypted split-
state database, for each round, the adversary can leak information on K0,K1. In particular,
both hybrid adversaries compute a sequence of leakage functions on K0,K1 from the set L
defined14 below:

L :=
{

(Li,0cptx, L
i,1
cptx) : i ∈ N

}
.

14Notice that the leakage functions depends on g
∣∣
mem

which can change during the execution of one round. For
simplicity we hide this extra parameter.
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We show that, for every round, the sequence of leakage functions applied during that round is
below the leakage bound of CS. Fix a round and let L := ((L0

1, L
1
1), (L0

2, L
1
2), . . . , (L0

p, L
1
p)) be

such a sequence, where p(κ) ∈ poly(κ) is a polynomial.

H̃∞(Kj |L(K0,K1))

≥ H̃∞(Kj |Lj1(Kj), . . . , L
j
p(Kj), K1−j)

≥ H̃∞(Kj |L1−j
1 (K1−j), . . . , L

1−j
p−1(K1−j), L

j
p(Kj), K1−j)

≥ H̃∞(Kj |L1−j
1 (K1−j), . . . , L

1−j
p−1(K1−j), L

j
p(Kj), K1−j)

≥ H̃∞(Kj |p, Ljp(Kj), K1−j)

≥ H∞(Kj)−O(log κ)− q(κ, n)− α(κ).

Where the first equation follows by the fact that, for any i, the value L1−j
i (K1−j) is a function

of K1−j , the second equation follows by the fact that for any i < p, by definition of H1 and H2,

L1−j
i (K1−j) = Lji (Kj) holds, and in the forth equation we applied the α-correlated-codeword

property of CS and the bound on the size of a ciphertext for SKE .

Lemma 24. P [H3(κ) = 1] = P
[
D(TamperExecFbus,∅

A,Σ,Λ(κ)) = 1
]
.

Proof sketch. For each query to doNext with input x, the hybrid experiment checks the flag
flgkey. In particular:

• If the flag is set to broken, then it means that Decode(K̃0, K̃1) is ⊥ (by inspection),
therefore in this case the real experiment would run, add x to the set of queries and
output ⊥; the hybrid H3 does the same using its interface Add.

• If the flag is set to unrelated, then it means that Decode(K̃0, K̃1) = k∗ 6= k (by inspection).
In this case the hybrid experiment simulates perfectly the real experiment, by computing
locally as would happen in the real experiment, moreover the hybrid add the query to Q
using its interface Add.

• If the flag is set to OK, then it means that Decode(K̃0, K̃1) = k. In this case the hybrid
experiment uses its interface Execute, but before it outputs the transcript it processes
it by finding the point where the real experiment would output ⊥ (if the latter, indeed,
outputs ⊥).

6.2.2 Tampering on both the Bus and the Memory

The first compiler is not secure against adversaries that can tamper persistently15 with the
memory (in the split-state model) if we do not assume self-destruct. The reason is that only
part of the memory is refreshed: the adversary can use the remaining part to backup the old
encoding and then rewind the refreshing procedure. (See also the discussion in Section 1.3.) To
partially overcome this problem we assume that, once a decoding error is triggered, the system
can switch into a safe mode where the communication between the CPU and the memory is
tamper free. While in safe mode, the system will perform a consistency check. To minimize the

15Note that tampering on the bus constitutes a form of non-persistent tampering.
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dependency on the assumption we constraint the consistency check to be succinct, meaning that
its complexity depends only on the security parameter and not on the size of the RAM program.
Finally, if the consistency check passes, the refresh procedure will be executed otherwise a self-
destruct is triggered.

The compiler. Let SKE = (KGen,Enc,Dec) be a secret-key encryption scheme. Let CS =
(Init,Encode,Decode) be a R-CNMC. Our tamper-resilient read-only RAM compiler Σ =
(Setup,CompMem,CompNext) works as follows.

• Setup(1κ): Run ω ← Init(1κ) and output ω.

• CompMem(ω,D): Run k ← KGen(1κ) and (K0,K1) ← Encode(ω, k). For each di in
D = (d1, . . . , dn) do ci ← Enc(k, di‖i) and let E , E0, E1 = (c1, . . . , cn). Output (D0,D1),
where D0 = (K0, E0) and D1 = (K1, E1)), and let the initial internal state be state =
((start, ?)‖0κ‖0logn).

• CompNext(ω,Π): The compiled next instruction function Π̂ does the following. Upon input
(state, inp), parse state = (stateRAM‖klast‖Ilast).

– If stateRAM = (start, ?)

1. (I, state′RAM )← Π(stateRAM , inp);

2. Read from D0 the value K0 and from D1 the value K1;

3. Compute k ← Decode(ω, (K0,K1));

4. If k = ⊥ switch to safe mode and perform the consistency check:

(a) Retrieve K0,K1 from memory and if Decode(ω,K0,K1) = ⊥ then self-
destruct;

(b) Sample i1, . . . , iζ ← [n] and for l ∈ [ζ] check if E0[il] 6= E1[il] then self-
destruct else continue.

Switch back to normal mode, refresh, and signal D0 and D1 to refresh. Set
state← ((start, ?)‖0κ‖0logn) and output ⊥.

5. Else set state← (state′RAM‖k‖I);
6. Output (I, state).

– If stateRAM 6= (start, ?)

1. Parse Ilast as (read, v);

2. Read cv from D0 and read c′v from D1;

3. Compute d′‖i′ ← Dec(klast, cv);

4. If (cv 6= c′v) or d′‖i′ = ⊥ or i′ 6= v, then switch to safe mode, perform the con-
sistency check, switch back to normal mode and signal D0 and D1 to refresh,
set state← ((start, ?)‖0κ‖0logn) and output ⊥.

5. Else inp← d′, compute (I, state′RAM )← Π(stateRAM , inp);

6. If I = (stop, z), then set state← ((start, ?)‖0κ‖0logn) and output (I, state);

7. Else set state← (state′RAM‖klast‖I) and output (I, state).

Theorem 6. Assume that SKE is an authenticated encryption scheme with ciphertexts size
bounded by q(κ, n) ∈ poly(κ), and that CS is a (3q + n + α + O(log κ))-leakage-resilient and
continuously non-malleable code with split-state refresh, that additionally has α-correlated code-
words. Then, assuming the system can switch to safe mode for poly(κ) times and self-destruct
afterwards, the above construction defines a tamper-resilient RAM compiler w.r.t. (Fbus,Fmem),
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where Fbus and Fmem are, respectively, the class of split-state tampering functions applied on
the bus and on the memory.

Proof. The proof proceeds similarly to the proof of Theorem 5. Let Li,j,fcptx be the leakage function

that upon input Kj first computes Ẽ ← f
∣∣j
mem

(Kj , E), and then outputs Ẽ [i]. Let (S0, S1) denote
the simulator for CS.

Simulator S:

1. Generate ω ← S0(1κ), let k ← KGen(1κ) a key for the authenticated encryption, create an
encrypted dummy database E0, E1, where each entry is an encryption of 0κ, i.e. E0, E1 =
(c1, . . . , cn) where ci = Enc(k, 0κ‖i). Run the simulator S1. Run the real world adversary
A with input ω. Let flgkey be the flag that indicates the current state of the key. Initially
the flag is set to OK. Let flgstart be the flag that indicates the current state of the
execution. Initially the flag is set to False. Set h to be the identity function.

2. Upon receiving a query from the adversary A do the following:

If the query is for Otamp and it is of the kind (TampMem, f), and f ∈ Fmem, then set

h← h ◦ f (where (h ◦ f)(x) = f(h(x))). Call h the history tampering function.

If the query is for Otamp and it is of the kind (TampBus, f), and f ∈ Fbus, then set g ←
(h ◦ f). Call g the current tampering function.

If the query is for doNext with input x, in case flgstart = False then let g be the cur-

rent tampering function as defined above, and send the query (Tamp, g
∣∣
key

((·, E0), (·, E1))).

(Namely, the restriction of g to the encoding with the second part of the first (resp. second)
input set to E0 (resp. E1).) Do the following depending on the output of the simulator:

(a) If the simulator outputs �, we set flgkey ← OK.

(b) If the simulator outputs ⊥, we set flgkey ← broken.

(c) The last option for the simulator is to output a valid, but unrelated, key k∗. In this
case, we set flgkey ← unrelated.

Finally, set the flag flgstart to True, and proceed as follows depending on flgkey:

(a’) If flgkey = broken, then send the query x to Add(·) and answer with ⊥.

(b’) If flgkey = unrelated then if cnt = 0 send the query x to Add(·); compute locally:

- If stateRAM = (start, ?) set inp← x and execute (I, state′RAM )← Π(stateRAM , inp),
set state← (state′RAM‖k∗‖I), increment cnt and return I;

- If Ilast = (read, v) send the leakage oracle queries (Leak, (0, Lv,0cptx)) and (Leak, (1,

Lv,1cptx)) to the simulator S1. Let c̃v and c̃′v be the respective answers. Decrypt
(d′‖i′) ← Dec(k∗, c̃v). If c̃v 6= c̃′v or (d′‖i′) = ⊥ or i′ 6= v then output ⊥.
Otherwise, set inp ← d′ and compute locally (I, state′RAM ) ← Π(stateRAM , inp)
set state← (state′RAM‖k∗‖I) increment cnt and return I.

- If Ilast = (stop, v) output I, set state← ((start, ?), ‖0κ‖0logn) and reset cnt to 0
and return I.

(c’) If flgkey = OK then, if cnt = 0, forward the query x to Execute(Λ, ·) and let I be
the answer. Else, if cnt > 0, retrieve I. Parse I = (I1, . . . , Ip) for p ∈ N. If Icnt
is of the form (read, v) then send the leakage oracle queries (Leak, (0, Lv,0,gcptx )) and

(Leak, (1, Lv,1,gcptx )) to the simulator S1. Let c̃v and c̃′v be the respective answers. If
c̃v = E [v] = c̃′v then output Icnt and increment the counter, else output ⊥.
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In all of the above cases, whenever the value ⊥ is returned to the adversary reset the flag
flgkey to OK and the flag flgstart to False and set cnt to 0 and run the following simulated
consistency check :

(a) Let h be the history tampering function, and set ζ = q(κ, n) · ω(log κ). Send the
query (Final, h

∣∣
key

((·, E0), (·, E1)) to the simulator.

(b) If the simulator outputs ⊥, then self-destruct.

(c) Else (namely, unrelated and same) Sample i1, . . . , iζ ← [n] and for l ∈ [ζ] send the

leakage query (Leak, (0, Lil,0,hcptx )) and (Leak, (1, Lil,1,hcptx )) check if the returned values
are different then self-destruct else continue.

(d) Leak the full containment of the encrypted databases. Specifically for i ∈ [n] send the

leakage query (Leak, (0, Lil,0,hcptx )) and (Leak, (1, Lil,1,hcptx )). Let c̃0
i and c̃1

i be the answers.
Set E0 ← (c0

1, . . . , c
0
n) and E1 ← (c1

1, . . . , c
1
n).

(e) If the simulator of CS outputs K̃0, K̃1 then the simulation can continue by executing
the code of TamperExec on the database (K̃0, E0), (K̃1, E1).

We prove the indistinguishability in 3 steps. Let Hi be the i-th hybrid adversary, such adversary
takes as input 1κ and the original database D and interact with doNext. The latter defines
the hybrid experiment Hi, specifically Hi(κ) := D (Hi(1

κ,D) � Execute(Λ, ·),Add(·)) where
Λ = (Π,D). Let the hybrid adversaries be defined as follow:

Hybrid Adversary H1. It takes as input the database D and executes the same code of the
simulator S, but it honestly encrypts the database D. Namely, E = (c1, . . . , cn) where
ci ← Enc(k, (di‖i)) for all 1 ≤ i ≤ n.

Hybrid Adversary H2. It takes as input the database D and executes the same code of the
hybrid adversary H1, but in point 2.(c’) it does not check that c̃v = E [v] = c̃′v (where
c̃v := Lv,0,gcptx (K0) and c̃′v := Lv,1,gcptx (K1)). Instead it decrypts (d′‖i′) = Dec(k, c̃v), and if
c̃v 6= c̃′v or (d′‖i′) = ⊥ or i′ 6= v then outputs ⊥ and refreshes K0,K1. (Namely, it executes
the same code the compiler CompNext would execute.)

Hybrid Adversary H3. It takes as input the database D and executes the same code of the
hybrid adversary H2, but instead of running the simulator S1 of the R-CNMC, it samples
(K0,K1) ← Encode(ω, k), computes the decoding, the leakage function Lcptx and the
refreshing algorithm directly on K0,K1. In particular, whenever it computes a decoding
it does the following checks. If the decoded key k∗ is ⊥ then set the flag flgkey ← broken,
else if k∗ is equal to the original key k then set flgkey ← OK, else set flgkey ← unrelated.

Lemma 25. For any read-only RAM Λ = (Π,D) there exists a negligible function ν : N→ [0, 1]
such that |P [H1(κ) = 1]− P [IdealExecS,Λ(κ) = 1]| ≤ ν(κ).

The proof of the lemma is identical to that of Lemma 21, and is therefore the proof is omitted.

Lemma 26. For any read-only RAM Λ = (Π,D) there exists a negligible function ν : N→ [0, 1]
such that |P [H1(κ) = 1]− P [H2(κ) = 1]| ≤ ν(κ).

The proof of the lemma is identical to that of Lemma 22, and is therefore omitted.

Lemma 27. For any read-only RAM Λ = (Π,D) there exists a negligible function ν : N→ [0, 1]
such that |P [H2(κ) = 1]− P [H3(κ) = 1]| ≤ ν(κ).
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Proof sketch. Here, we use the security of the R-CNMC. There are two things to notice. First,
the function g

∣∣
key

for any assignment of the encrypted databases E0, E1 is a valid split-state
tampering function. Second, by continuously tampering with the encrypted split-state database,
for each round, the adversary can leak information on K0,K1. In particular, both hybrid
adversaries computes a sequence of leakage functions on K0,K1 from the set L defined16 below:

L :=
{

(Li,0,fcptx , L
i,1,f
cptx ) : i ∈ N, f ∈ {g, h}

}
.

We show that, for every round, the sequence of leakage functions applied during that round
is below the leakage bound of CS. Fix a round, let L := ((L0

1, L
1
1), (L0

2, L
1
2), . . . , (L0

p, L
1
p)) be

the sequence of leakage functions sent by the simulator before ⊥ is triggered (p = κc is a
polynomial). Let Lcheck(K0,K1) be the list of leakage functions that the simulator does during
the simulated consistency check. Specifically:

Lcheck(K0,K1):

• Samples i1, . . . , iζ ← [n];

• For l ∈ [ζ] and j ∈ {0, 1} it computes Cjl := Lil,0,hcptx (Kk), if C0
l 6= C1

l the it stops
the cycle and outputs the list {(C0

1 , C
1
1 ), . . . , (C0

l , C
1
l )}.

• Outputs the list {(Li,0,hcptx (K0), Li,0,hcptx (K0)) : i ∈ [n]}.

We bound the average conditional min-entropy of Kj , where j ∈ {0, 1}, given the view of the
simulator.

H̃∞(Kj |L(K0,K1), Lcheck(K0,K1))

≥H̃∞(Kj |Lj1(Kj), . . . , L
j
p(Kj), K1−j , Lcheck(K0,K1))

≥H̃∞(Kj |L1−j
1 (K1−j), . . . , L

1−j
p−1(K1−j), L

j
p(Kj), K1−j , Lcheck(K0,K1))

≥H̃∞(Kj |L1−j
1 (K1−j), . . . , L

1−j
p−1(K1−j), L

j
p(Kj), K1−j , Lcheck(K0,K1))

≥H̃∞(Kj |p, Ljp(Kj), K1−j , Lcheck(K0,K1))

≥H̃∞(Kj |K1−j , Lcheck(K0,K1))−O(log κ)− q(κ, n).

In the above computation, the first equation follows by the fact that, for any i, the value
L1−j
i (K1−j) is a function of K1−j , the second equation follows by the fact that for any i < p,

by definition of H1 and H2, L1−j
i (K1−j) = Lji (Kj) holds, and in the forth equation we applied

the bound on the size of a ciphertext for SKE .
It is left to give a bound on H̃∞(Kj |K1−j , Lcheck(K0,K1)). Let (L′01 , L

′1
1 ), , . . . , (L′0p′ , L

′1
p′)

where p′ ≤ n be the output of Lcheck. Let X be a random variable that counts the number of
indexes i′ such that L′0i′ 6= L′1i′ . By following the same reasoning as before, it can be shown that:

H̃∞(Kj |K1−j , Lcheck(K0,K1)) ≥ H̃∞(Kj |K1−j)− E [X ] q(k + log n).

Let Abort be the indicator random variable for the check C0
l 6= C1

l in the computation of Lcheck.
Let B := n/q(κ, n), since X ∈ N we have that

E [X ] =
∑
i

iP [X = i]

=
∑
i

iP [X = i ∧ Abort = 0] +
∑
i

iP [X = i ∧ Abort = 1]

≤ (nP [X > B ∧ Abort = 0] +B) + 1,

16Notice that the leakage functions depends on g
∣∣
mem

which can change during the execution of one round. For
simplicity we hide this extra parameter.
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where in the last equation we used that when Abort = 1 then X = 1, and that X ≤ n. We
show that the probability that X > B and Abort = 0 is negligible. Let Z be equal to the sum
of ζ independent identically distributed Bernoulli random variables with parameter B/n. It is
easy to see that

P [X > B ∧ Abort = 0] ≤ P [Abort = 0|X > B] ≤ P [Z = 0] = (1−B/n)ζ .

The latter, by our choice of the parameter ζ = q(κ, n) · ω(log κ), is negligible. Therefore we
have that E [X ] ≤ n/q(κ, n) + 2. Summing up together the amount of leakage performed by the
simulator, we get O(log κ) + 3q(κ, n) + n+ α as required in the statement of the theorem.

Lemma 28. P [H3(κ) = 1] = P
[
D(TamperExecFbus,Fmem

A,Σ,Λ (κ)) = 1
]
.

Proof sketch. For each query to doNext with input x, the hybrid experiment checks the flag
flgkey. In particular:

• If the flag is set to broken then it means that Decode(K̃0, K̃1) is ⊥ (by inspection), therefore
in this case the real experiment would run, add x to the set of queries and output ⊥; the
hybrid H3 does the same using its interface Add.

• If the flag is set to unrelated then it means that Decode(K̃0, K̃1) = k∗ 6= k (by inspection).
In this case the hybrid experiment simulates perfectly the real experiment by computing
locally as would happen in the real experiment, moreover the hybrid adds the query to Q
using its interface Add.

• If the flag is set to OK then it means that Decode(K̃0, K̃1) = k. In this case the hybrid
experiment uses its interface Execute, but before outputting the transcript it processes
it by finding the point where the real experiment would output ⊥ (if the latter, indeed,
outputs ⊥).

Further, notice that, for each round, in H3 the tampered database is computed by applying
the function h

∣∣
mem

where h is a function of the current codeword and the current tampered
database. Also, h is the concatenation of all the persistent tampering functions in the current
round. In particular, to build the tampered database for the next round, the hybrid experiment
computes it exactly as mentioned above. Therefore, by induction on the number of rounds, the
tampered database, as a random variable, is distributed exactly as in the real experiment.

7 Conclusion

We have studied a generalization of the concept of continuously non-malleable codes, for the
split-state model, where after a decoding error happens the original codeword gets refreshed
instead of triggering a self-destruct. Importantly, the refreshing happens locally on each share of
the codeword, without requiring any communication between the two parts. As we have shown,
this extra feature allows to avoid self-destruct in some of the applications of non-malleable
codes. It also allows naturally to obtain security against continual leakage attacks.

Open problems include whether stronger forms of non-malleability in the split-state model
can be achieved, while at the same time allowing for split-state refreshing, and whether refresh-
able continuously non-malleable codes in the split-state model can be achieved without relying
on setup assumptions.
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