3,202 research outputs found

    Measurement-induced quantum operations on multiphoton states

    Full text link
    We investigate how multiphoton quantum states obtained through optical parametric amplification can be manipulated by performing a measurement on a small portion of the output light field. We study in detail how the macroqubit features are modified by varying the amount of extracted information and the strategy adopted at the final measurement stage. At last the obtained results are employed to investigate the possibility of performing a microscopic-macroscopic non-locality test free from auxiliary assumptions.Comment: 13 pages, 13 figure

    Quantum to classical transition via fuzzy measurements on high gain spontaneous parametric down-conversion

    Full text link
    We consider the high gain spontaneous parametric down-conversion in a non collinear geometry as a paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that is, the average number of generated photons. The possibility of observing quantum correlations in such macroscopic quantum system through dichotomic measurement will be analyzed by addressing two different measurement schemes, based on different dichotomization processes. More specifically, we will investigate the persistence of non-locality in an increasing size n/2-spin singlet state by studying the change in the correlations form as nn increases, both in the ideal case and in presence of losses. We observe a fast decrease in the amount of Bell's inequality violation for increasing system size. This theoretical analysis is supported by the experimental observation of macro-macro correlations with an average number of photons of about 10^3. Our results enlighten the practical extreme difficulty of observing non-locality by performing such a dichotomic fuzzy measurement.Comment: 15 pages, 18 figure

    Multiphoton Effects Enhanced Due to Ultrafast Photon-Number Fluctuations

    Full text link
    Multi-photon processes are the essence of nonlinear optics. Optical harmonics generation and multi-photon absorption, ionization, polymerization or spectroscopy are widely used in practical applications. Generally, the rate of an n-photon effect scales as the n-th order autocorrelation function of the incident light, which is high for light with strong photon-number fluctuations. Therefore `noisy' light sources are much more efficient for multi-photon effects than coherent sources with the same mean power, pulse duration and repetition rate. Here we generate optical harmonics of order 2-4 from bright squeezed vacuum (BSV), a state of light consisting of only quantum noise with no coherent component. We observe up to two orders of magnitude enhancement in the generation of optical harmonics due to ultrafast photon-number fluctuations. This feature is especially important for the nonlinear optics of fragile structures where the use of a `noisy' pump can considerably increase the effect without overcoming the damage threshold

    Purification of photon subtraction from continuous squeezed light by filtering

    Full text link
    Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schr\"odinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wavepackets, even in the ideal case of no optical losses. Here we theoretically discuss this impurity, by introducing mode-match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.Comment: 10 pages, 6 figure

    High-visibility nonclassical interference of photon pairs generated in a multimode nonlinear waveguide

    Full text link
    We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate waveguide. We have used the recently demonstrated technique of controlling the spatial characteristics of the down-conversion process via intermodal dispersion to generate photon pairs in fundamental transverse modes, thus ensuring their spatial indistinguishability. Good spatial overlap of photon modes within pairs has been verified using the Hong-Ou-Mandel interferometer and the preparation of polarization entanglement in the Shih-Alley configuration, yielding visibilities consistently above 90%.Comment: 9 pages, 6 figure

    High coherence photon pair source for quantum communication

    Full text link
    This paper reports a novel single mode source of narrow-band entangled photon pairs at telecom wavelengths under continuous wave excitation, based on parametric down conversion. For only 7 mW of pump power it has a created spectral radiance of 0.08 pairs per coherence length and a bandwidth of 10 pm (1.2 GHz). The effectively emitted spectral brightness reaches 3.9*10^5 pairs /(s pm). Furthermore, when combined with low jitter single photon detectors, such sources allow for the implementation of quantum communication protocols without any active synchronization or path length stabilization. A HOM-Dip with photons from two autonomous CW sources has been realized demonstrating the setup's stability and performance.Comment: 12 pages, 4 figure
    • …
    corecore