1,444 research outputs found

    Maximum of N Independent Brownian Walkers till the First Exit From the Half Space

    Full text link
    We consider the one-dimensional target search process that involves an immobile target located at the origin and NN searchers performing independent Brownian motions starting at the initial positions x⃗=(x1,x2,...,xN)\vec x = (x_1,x_2,..., x_N) all on the positive half space. The process stops when the target is first found by one of the searchers. We compute the probability distribution of the maximum distance mm visited by the searchers till the stopping time and show that it has a power law tail: PN(m∣x⃗)∼BN(x1x2...xN)/mN+1P_N(m|\vec x)\sim B_N (x_1x_2... x_N)/m^{N+1} for large mm. Thus all moments of mm up to the order (N−1)(N-1) are finite, while the higher moments diverge. The prefactor BNB_N increases with NN faster than exponentially. Our solution gives the exit probability of a set of NN particles from a box [0,L][0,L] through the left boundary. Incidentally, it also provides an exact solution of the Laplace's equation in an NN-dimensional hypercube with some prescribed boundary conditions. The analytical results are in excellent agreement with Monte Carlo simulations.Comment: 18 pages, 9 figure

    Metropolis Integration Schemes for Self-Adjoint Diffusions

    Full text link
    We present explicit methods for simulating diffusions whose generator is self-adjoint with respect to a known (but possibly not normalizable) density. These methods exploit this property and combine an optimized Runge-Kutta algorithm with a Metropolis-Hastings Monte-Carlo scheme. The resulting numerical integration scheme is shown to be weakly accurate at finite noise and to gain higher order accuracy in the small noise limit. It also permits to avoid computing explicitly certain terms in the equation, such as the divergence of the mobility tensor, which can be tedious to calculate. Finally, the scheme is shown to be ergodic with respect to the exact equilibrium probability distribution of the diffusion when it exists. These results are illustrated on several examples including a Brownian dynamics simulation of DNA in a solvent. In this example, the proposed scheme is able to accurately compute dynamics at time step sizes that are an order of magnitude (or more) larger than those permitted with commonly used explicit predictor-corrector schemes.Comment: 54 pages, 8 figures, To appear in MM

    From the area under the Bessel excursion to anomalous diffusion of cold atoms

    Full text link
    Levy flights are random walks in which the probability distribution of the step sizes is fat-tailed. Levy spatial diffusion has been observed for a collection of ultra-cold Rb atoms and single Mg+ ions in an optical lattice. Using the semiclassical theory of Sisyphus cooling, we treat the problem as a coupled Levy walk, with correlations between the length and duration of the excursions. The problem is related to the area under Bessel excursions, overdamped Langevin motions that start and end at the origin, constrained to remain positive, in the presence of an external logarithmic potential. In the limit of a weak potential, the Airy distribution describing the areal distribution of the Brownian excursion is found. Three distinct phases of the dynamics are studied: normal diffusion, Levy diffusion and, below a certain critical depth of the optical potential, x~ t^{3/2} scaling. The focus of the paper is the analytical calculation of the joint probability density function from a newly developed theory of the area under the Bessel excursion. The latter describes the spatiotemporal correlations in the problem and is the microscopic input needed to characterize the spatial diffusion of the atomic cloud. A modified Montroll-Weiss (MW) equation for the density is obtained, which depends on the statistics of velocity excursions and meanders. The meander, a random walk in velocity space which starts at the origin and does not cross it, describes the last jump event in the sequence. In the anomalous phases, the statistics of meanders and excursions are essential for the calculation of the mean square displacement, showing that our correction to the MW equation is crucial, and points to the sensitivity of the transport on a single jump event. Our work provides relations between the statistics of velocity excursions and meanders and that of the diffusivity.Comment: Supersedes arXiv: 1305.008

    Theory and Simulation of Rare Events in Stochastic Systems

    Get PDF
    Activated processes driven by rare fluctuations are discussed in this thesis. Understanding the dynamics of these activated processes is important for understanding chemical and biological reactions, drug design and many other important applications. First, theoretical tools including the Langevin equation, the Fokker-Planck equation and the path integral technique are reviewed. Based on these theories, simulation methods have been developed to sample the activated processes by a number of investigators. Several of the most important path sampling and path generating approaches are introduced. A combination of analytic and numerical techniques are applied to study the distribution of the durations of transition events over a barrier in a one-dimensional system undergoing over-damped Langevin dynamics. Then we employ the ``weighted ensemble' path sampling method to generate an unbiased ensemble of paths for a conformational transition in a 210-dimensional model of the protein calmodulin, and also find the reaction rate. The results show that the weighted ensemble approach is a remarkably straightforward and successful method. At last, systems with multiple channels are studied by the weighted ensemble approach and the more common transition path sampling approach. The weighted ensemble method is distinguished by its ability to perform complete path sampling for systems with multiplechannels at reasonable cost
    • …
    corecore