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THEORY AND SIMULATION OF RARE EVENTS IN STOCHASTIC

SYSTEMS

Bin W. Zhang, PhD

University of Pittsburgh, 2008

Activated processes driven by rare fluctuations are discussed in this thesis. Understand-

ing the dynamics of these activated processes is important for understanding chemical and

biological reactions, drug design and many other important applications. First, theoreti-

cal tools including the Langevin equation, the Fokker-Planck equation and the path integral

technique are reviewed. Based on these theories, simulation methods have been developed to

sample the activated processes by a number of investigators. Several of the most important

path sampling and path generating approaches are introduced. A combination of analytic

and numerical techniques are applied to study the distribution of the durations of transi-

tion events over a barrier in a one-dimensional system undergoing over-damped Langevin

dynamics. Then we employ the “weighted ensemble” path sampling method to generate an

unbiased ensemble of paths for a conformational transition in a 210-dimensional model of

the protein calmodulin, and also find the reaction rate. The results show that the weighted

ensemble approach is a remarkably straightforward and successful method. At last, systems

with multiple channels are studied by the weighted ensemble approach and the more common

transition path sampling approach. The weighted ensemble method is distinguished by its

ability to perform complete path sampling for systems with multiple channels at reasonable

cost.
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I. INTRODUCTION

A. RARE EVENTS

Driven by a rare fluctuation, a system can climb over an energy barrier, and finish the tran-

sition from one state to the other. It is an activated process. It is also called a “rare event”

because it involves a waiting time before these events happen. Lots of important dynamical

phenomena are activated processes. Examples include chemical reactions, protein confor-

mational changes and nucleation, etc [1]. Understanding the dynamics of these activated

processes is important for chemical and biological reaction control, drug design and many

other important applications. [1]. The theory of rare events has been studied for a long time

by physicists and chemists [2]. Besides theoretical formulation, computer sampling becomes

also important for this topic because of the difficulty of obtaining analytical solutions and

the increase of computational power.

B. EXAMPLES

We will use two examples to explain the concept of rare events more explicitly.

1. Brownian particle in double well potential

The first example is a Brownian particle moving in a double well potential, an important
model that will be used many times in this thesis.
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Figure 1: The left panel shows a Brownian particle moving in a double well potential. The

right panel shows its trajectory and the time is in units of computational steps. In the right

panel, the first rectangle indicates the waiting period before the rare event and the second

rectangle indicates one transition-event.

The right picture in Fig. 1 shows the trajectory x(t) of this Brownian particle 1. One can

find two stable states and several transition-events from its trajectory. One transition-event

is indicated by the second rectangle. All these transitions are the rare events which we are

interested in. Because these transitions are driven by thermal fluctuations, some degree of

variability among events must be expected. Therefore, the study will maintain a statistical

viewpoint and the transition-events will be treated as an ensemble. The first rectangle shows

one waiting period before the rare events; and an appropriate average tells how frequently

these rare events will happen. Its evaluation is a very important topic [2]. The timescale of

waiting is much longer than the timescale of rare events, which is obvious in Fig. 1. When

1 The trajectory was obtained by the simulation based on the over-damped Langevin equation

dx

dt
=

F

γ
+ R(t) , (I.1)

where γ is the friction constant, F is the physical force and R is the Gaussian white noise with zero mean
and correlation

〈R(t)R(t′)〉 =
(

2kBT

γ

)
δ(t− t′) = 2Dδ(t− t′) . (I.2)

The Langevin equation will be discussed later in Sec.(II.B). Eq.(I.2) shows that the fluctuations will increase
as the temperature T increases. So in higher temperature the Brownian particle will become more active
and the transition-events will happen more frequently.

2



the energy barrier is high (& 10kBT ), the timescale of waiting time will be beyond the ability

of our computational power. So how to avoid waiting time and focus computer time on rare

events is an appreciated challenge in computer simulation.

In higher dimensional space, sometimes transition paths go through different channels.

One example in two-dimensional space is shown in Fig. 2. Finding multiple channels of paths

will be discussed later in this thesis.

Figure 2: A Brownian particle moving in a two-dimensional toy potential. The red arrows

show the multiple channels of paths connecting two stable states. The potential energy is in

unit kBT .

2. Calmodulin

The second example is the conformational change of a protein called calmodulin. Proteins

are polymers of amino acids, they are most of the dry mass of a cell, and they also execute

nearly all cell functions. For example, in a cell enzymes provide the intricate molecular

surfaces, which promotes its chemical reactions. [3]. A protein’s physical interaction with

other molecules decides its biological properties. Every protein can stick or bind to other

molecules [3]. When there is an interaction, the conformation of the protein will generally

change. It has long been appreciated that conformational changes in proteins are critical

3



to biological function. Examples including allosteric proteins like hemoglobin, enzymes like

adenylate kinase, signaling proteins like calmodulin, and motor proteins like myosin are only

the most famous textbook cases [4].

Calcium (as Ca2+) plays an important role for numerous functions of eukaryotes. The

extracellular concentration of Ca2+ (∼ 10−3mol/L) is about 10, 000 times higher than in-

tracellular one (∼ 10−7mol/L) because a cell continually pumps the calcium ion out of the

cytosol (the internal fluid of the cell). The big difference of concentration makes the cell

ready to import the calcium ion, which acts as a messenger, through its calcium channels

[3, 5].

Figure 3: Calmodulin (CaM). The left is the Apo structure (1CFD), which is calcium-free.

The right is the Holo structure (1CLL), which is calcium-bound. The purple spheres are

bound calcium ions. CaM will undergo a large-scale structure change when it binds calcium

To detect the change of concentration of calcium ions, a cell must have a calcium sensor.

Calmodulin is a protein that can bind calcium ions, which, as noted, are found in the cytosol

4



of all eukaryotic cells [3]. There are four binding sites in Calmodulin, each one can sense

an intracellular change of concentration of Ca2+ as low as 1µM [6]. The binding of Ca2+

causes a significant conformational change of Calmodulin, as shown in Fig. 3.

In Fig. 4, a sample trajectory from the simulation of the N-terminal domain of calmodulin

is shown. The vertical axis is the distance-RMSD 2 (DRMSD), which quantifies molecular

structural difference from one conformation to another. We will explain DRMSD later in

Chapter V. In Fig. 4, the stable state with small DRMSD is the structures close to the

Holo structure, and the other one with large DRMSD is close to the Apo structure. By

comparing Fig. 4 and the right picture in Fig. 1, although the conformational change of

CaM is a problem with hundreds or thousands of degrees of freedom, it exhibits familiar

properties of rare events in one-dimensional space.

Figure 4: A sample trajectory from the simulation of the N-terminal domain of calmodulin

by using a simple potential model. The trajectory exhibits several transition-events and two

stable states.

2RMSD: root mean square deviation, the measure of the average distance between the structures of
superimposed proteins.
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C. BASIC PHYSICAL IDEAS

For a single Brownian particle, its trajectory x(t) is the basic physical object of interest.

Dividing the total force acting on the Brownian particle into the systematic part (or friction)

and the fluctuation (or noise), the Langevin equation provides the equation of motion for the

Brownian particle [7–11]. The Langevin equation is one basic tool to study the rare events

in stochastic process. One can follow Langevin dynamics to run “brute-force” simulations

easily. But brute-force simulation cannot avoid the long waiting times before the rare events

happen, so usually it is not the best choice. We did brute-force simulation for several low

barrier cases, i.e., a low-dimensional toy model, small molecules and simplified models of

proteins at high temperature.

For stochastic processes, the information on one single random case is not enough; an en-

semble average is the final goal. The Fokker-Planck equation describes the average behavior

of a statistical ensemble of Brownian particles, and is another basic equation for stochastic

process [7–11]. The Fokker-Planck equation gives the time evolution of probability density

function P (x, t), where P (x, t)dx is the probability that one finds the Brownian particle

between x and x + dx at time t. The Fokker-Planck equation is a mathematically equiva-

lent formulation to the Langevin equation under certain conditions. One can run multiple

brute-force simulations, as a statistical ensemble, to get the approximate solution of P (x, t).

The “weighted ensemble” approach, an advanced sampling method, is based on this. The

weighted ensemble approach is much more efficient than the brute force simulation, espe-

cially for high barrier problems. We will discuss this method carefully in this thesis later and

apply it to a low-dimensional toy model, small molecules and simplified models of proteins.

As we just mentioned, if one can sample the possible trajectories of Brownian particles

enough times, one finds P (x, t) eventually. This job is formally accomplished by a path inte-

gral technique. Calculating the weights of all possible trajectories of Brownian particles, path

integral techniques can give the “propagator” which is equivalent to Green’s function solution

of the associated Fokker-Planck equation [12, 13]. Path integral methods provide another

useful tool and a different perspective for the study of Brownian motion. A trajectory in

a path integral is analogous to a configuration in equilibrium statistical mechanics, and the

6



path integral is the analog of the partition function. Several advanced simulation approaches

for studying rare events take root in the idea of path integral methods, i.e., “transition path

sampling”, “dynamic importance sampling” and Langevin dynamics in path space. These

methods all sample the paths of rare events by evaluating their relative weights and concen-

trate the computer time on the rare events. Although these methods study nonequilibrium

systems, they treat the transition paths as an equilibrium ensemble and borrow sampling

ideas from previous experience in the study of equilibrium system. Transition path sampling,

maybe the most popular path sampling method, will be used for low-dimensional toy model

and small molecules below.

Figure 5: Basic physical ideas

In my research, simulations provide numerical confirmation of analytic results. On the

other hand, based on the understanding of theory, we develop more efficient simulation

7



approaches to study the activated processes.

D. OUTLINE OF THESIS

This thesis is set up as follows. In Chapter II, we will review the basic theoretical methods of

Brownian motion, including the Langevin equation, the Fokker-Planck equation and the path

integral technique. In Chapter III, several path sampling and path generating simulation

approaches will be introduced. Then we will study the statistics of the duration of transition-

events in a class of one-dimensional systems in detail, and also discuss implications for more

complex systems in Chapter IV. In Chapter V, we will employ the weighted ensemble method

for a model of the protein calmodulin. In Chapter VI we will apply the weighted ensemble

method and the transition path sampling method to test system with multiple channels of

paths. Summary and discussion of open questions is included in the final Chapter.
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II. THEORY OF BROWNIAN MOTION

A. INTRODUCTION

1. Historical background of Brownian motion

Figure 6: A schematic illustration of Brownian motion.
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In 1827, Robert Brown, a botanist, was investigating the behavior of pollen during

impregnation. He put granules of the pollen of a wildflower under a microscope and tried

to observe their orientation. It is at that time when Brown noticed the incessant motion of

these small particles suspended in fluid, which is called Brownian motion nowadays. Later

Brown showed that this is a phenomenon of physical, rather than biological origin [10].

There had been no important research results on Brownian motion until 1905 when

Einstein published his famous four papers [10]. Compared with the two papers on relativity

theory, one paper on the photon hypothesis (ultimately worthy of a Nobel Prize), the paper

on Brownian motion is probably the least well known [14]. Nonetheless one sees the brilliance

of Einstein’s analysis, which has been explained carefully in Gardiner’s book [7].

Einstein pointed out that Brownian motion is caused by the impacts on the particle

(pollen grain) of the molecules of the liquid, and the motion of the molecules is so complicated

that its effect can only be described probabilistically. Then he introduced a separation of

time scales, a time interval τ , which is much shorter than the observable macroscopic time

interval, but long enough that in two successive intervals of duration τ , the motions of the

particle are independent.

Einstein assumed that for a distribution of free Brownian particles in one-dimensional

space, the respective positions will change by ∆ during time interval τ . The displacement

∆ is different for each particle. The assumption is that there exists a probability density

function Φ(∆), which satisfies ∫ ∞

−∞
Φ(∆)d∆ = 1 (II.1)

and

Φ(∆) = Φ(−∆) . (II.2)

Let n(x, t)dx be the number of particles in the interval dx. Because of the independence of

∆ in the interval τ of its previous history, one obtains

n(x, t+ τ)dx =

(∫ ∞

−∞
n(x−∆, t)Φ(∆)d∆

)
dx

=

(∫ ∞

−∞
n(x+ ∆, t)Φ(∆)d∆

)
dx . (II.3)
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For τ and ∆ both small and with n(x, t) slowly varying on the macroscopic scale, we can

expand n(x, t+ τ) and n(x+ ∆, t) in Taylor series, which yield

n(x, t+ τ) = n(x, t) + τ
∂n

∂τ
+ · · · , (II.4)

n(x+ ∆, t) = n(x, t) + ∆
∂n

∂x
+

∆2

2!

∂2n

∂x2
+ · · · . (II.5)

Then Eq.(II.3) becomes

n+
∂n

∂t
τ = n

∫ ∞

−∞
Φ(∆)d∆ +

∂n

∂x

∫ ∞

−∞
∆Φ(∆)d∆

+
∂2n

∂x2

∫ ∞

−∞

∆2

2!
Φ(∆)d∆ + · · · . (II.6)

Because of the reasonably assumed Φ(∆) = Φ(−∆), the second term on the right side

vanishes. If we define the diffusion coefficient

D =
1

τ

∫ ∞

−∞

∆2

2!
Φ(∆)d∆ , (II.7)

Eq.(II.6) becomes
∂n

∂t
= D

∂2n

∂x2
+O(∆3) , (II.8)

which is recognized as the differential equation of free diffusion. With open boundary con-

dition its solution is well known as

n(x, t) =
N√
4πDt

exp

(
− x2

4Dt

)
, (II.9)

where N is the total number of particles. With the help of Eq.(II.9), we can calculate the

mean of the square of the displacement in time t; it is

x2 =

∫ ∞

−∞
x2

[
1√

4πDt
exp

(
− x2

4Dt

)]
dx

= 2Dt , (II.10)

which is probably the best known feature of random walks and Brownian motion, namely

that the root-mean-square displacement grows at
√
t. This result is easily seen to hold in

d-dimensional space.
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There are several important concepts in Einstein’s derivation. In fact Eq.(II.3) later

became known as the Chapman-Kolmogorov equation, which contains a basic idea of Markov

processes. As we will see Eq.(II.8) is the Fokker-Planck equation for free diffusion. At the

time of Einstein’s analysis none of these equations and concepts had been derived by the

authors for whom they are named [7, 10].

In 1906, Smoluchowski published his results on Brownian motion after Einstein’s paper

[15]. The time scale τ in Einstein’s work is mesoscopic, but Smoluchowski’s theory is mi-

croscopic. Smoluchowski used a more refined model. By beginning with the collision of two

hard spheres and the free path kinetic theory of gases, he obtained results that differed from

Einstein’s (Eq.(II.10)) only by a numerical factor. (The discrepancy arose because of the

approximations made in his theory. And Smoluchowski admitted later that Einstein’s nu-

merical factor was correct [10].) Compared with Einstein’s theory, which is totally based on

statistical assumptions, Smoluchowski’s work yields more insight on microscopic dynamics.

The details can be found in Mazo’s book [10].

2. Application of Brownian motion

The best known case of Brownian motion is for particles suspended in a fluid; however, there

are more exotic Brownian motions, i.e., an electron immersed in a black body radiation field,

which is a gas of photons [10]. Brownian motion is also important in biology [16]. Besides

ubiquitous cases in the real world, Brownian motion is also a useful mathematical model used

to describe such random movements. For example, in Zwanzig’s book on nonequilibrium [11],

his first sentence is “The theory of Brownian motion is perhaps the simplest approximate

way to treat the dynamics of nonequilibrium systems.” A chemical or biological macroscopic

system in the lab can often be treated as a Brownian particle moving in some abstract space

described by a “reaction coordinate”. Based on this idea, one famous result is Kramers’

law [2], for the passage of particles over a potential barrier, which finds wide application in

chemical kinetics and other areas [10]. We will discuss Kramers’ work and related analysis

in Sec.(II.E.1).
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Brownian motion can also serve as a model for stock market fluctuations, and it is not

surprising to find the theory of Brownian motion in the books about stochastic calculus for

finance [17, 18].

B. LANGEVIN EQUATION

In 1908, Langevin provided an approach to Brownian motion which he said was “infinitely

more simple” than Einstein’s. [19, 20].

In this approach, for a Brownian particle suspended in the liquid, there are two forces

on it. One is systematically caused by viscosity of the fluid, and the other is a fluctuating

force X, presumably originating with rapid molecular motions. The equation of motion in

the direction of x is

m
d2x

dt2
= −γ dx

dt
+X , (II.11)

where γ is the friction constant, proportional to the viscosity of the fluid.

1. Diffusion coefficient

Eq.(II.11) is known as the Langevin equation for a free Brownian particle moving in x

direction. We can get the coefficient of diffusion from this equation following [7]. Multiply

both sides of Eq.(II.11) by x, obtaining

m

2

d2

dt2
(x2)−mv2 = −γ

2

d(x2)

dt
+Xx , (II.12)

where v = dx/dt. For a Brownian particle, its mean kinetic energy (averaged over a large

number of particles) in equilibrium is

〈
1

2
mv2

〉
=

1

2
kBT . (II.13)
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where kB is Boltzmann’s constant, and T is the temperature. Averaging Eq.(II.12) in equi-

librium yields an equation for 〈x2〉:

m

2

d2〈x2〉
dt2

+
γ

2

d〈x2〉
dt

= kBT , (II.14)

where we set 〈xX〉 = 0 assuming X is not correlated with the position x. Then the solution

for d〈x2〉
dt

from Eq.(II.14) is

d〈x2〉
dt

=
2kBT

γ
+ c exp

(
−γt
m

)
, (II.15)

where c is a constant specified by 〈dx
dt
x〉 at t = 0.

The decay time of the second term in Eq.(II.15) is much shorter than any practical

observation, usually m/γ is at the order of 10−7s for typical situations. [7, 10], so we ignore

it and integrate Eq.(II.15) once more to get

〈x2〉 − 〈x2
0〉 =

2kBT

γ
t . (II.16)

Comparison with Eq.(II.10), Eq.(II.16) provides the diffusion coefficient:

D =
kBT

γ
. (II.17)

Eq.(II.17) is known as the Einstein relation.
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2. Over-Damped Langevin equation

If a Brownian particle moves in a one-dimensional potential field U(x), another force term

will appear in Langevin equation, which becomes

m
d2x

dt2
= −∂U

∂x
− γ

dx

dt
+X . (II.18)

If the viscosity of the medium is so large that the Brownian particle will arrive at a con-

stant velocity immediately (which means the accelerating period m/γ is much shorter than

timescale τ mentioned in Sec.II.A.1), the left side of Eq.(II.18) can be set to equal zero.

Then the Langevin equation becomes

0 = −∂U
∂x

− γ
dx

dt
+X , (II.19)

The velocity in this short timescale τ becomes

dx

dt
=
F

γ
+R(t) , (II.20)

where

F = −∂U(x)

∂x
. (II.21)

is the physical force in x direction based on the potential energy U(x), and R(t) = X/γ is

the contribution from noise. In this thesis we will only study Gaussian white noise with zero

mean and correlation

〈R(t)R(t′)〉 =

(
2kBT

γ

)
δ(t− t′) = 2Dδ(t− t′) . (II.22)

The constant before the delta function is determined so that Eq.(II.13) is satisfied [8].

Eq.(II.20) is known as the over-damped Langevin equation. Individual realizations of the

noise in Eq.(II.20) generate stochastic trajectories x(t), which are routinely simulated nu-

merically as described in Section III.B.
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C. FOKKER-PLANCK EQUATION

1. Derivation of Fokker-Planck equation

In this section, we will derive the Fokker-Planck equation from the over-damped Langevin

equation in one dimension (II.20) following Zwanzig’s book [11]. The Fokker-Planck equation

gives the time evolution of the probability density function for the system. A more com-

plete discussion of the Fokker-Planck equation corresponding to the over-damped Langevin

equation and related applications appears in [7].

At the beginning, we need to assume that the noise is white and has a Gaussian distri-

bution, which has zero mean and satisfies

〈R(t)R(t′)〉 = 2Dδ(t− t′) . (II.23)

One defines P (x, t) as the probability distribution of x at time t. P (x, t) must satisfy the

conservation law
∂P (x, t)

∂t
+

∂

∂x
[v(x, t)P (x, t)] = 0 , (II.24)

which means the time derivative of P (x, t) is balanced by the divergence of the flux. After

replacing the velocity v(x, t) by the right side of Eq.(II.20), we get

∂P (x, t)

∂t
+

∂

∂x

[
F (x)

γ
P (x, t) +R(t)P (x, t)

]
= 0 . (II.25)

Following [11], we now define an operator L, whose action on any function Φ(x, t) is

LΦ(x, t) ≡ ∂

∂x

[
F (x)

γ
Φ(x, t)

]
. (II.26)

For a noise-free fully deterministic case, we take P = P0 satisfying

∂P0(x, t)

∂t
= −LP0(x, t) , (II.27)

the formal solution of Eq.(II.27) is

P0(x, t) = e−tLP0(x, 0) , (II.28)
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where P0(x, 0) is the initial value of P0(x, t) at t = 0.

Now we add back the noise term for Eq.(II.27), and it becomes

∂P (x, t)

∂t
= −LP (x, t)− ∂

∂x
[R(t)P (x, t)] . (II.29)

The formal solution of Eq.(II.29) is

P (x, t) = P0(x, t)− P ′(x, t) = e−tLP0(x, 0)−
∫ t

0

dse−(t−s)L ∂
∂x
R(s)P (x, s) . (II.30)

Let’s check it briefly. One finds explicitly

∂P ′(x, t)
∂t

=
∂

∂t

[
e−tL

∫ t

0

dsesL ∂
∂x
R(s)P (x, s)

]

= −L
[
e−tL

∫ t

0

dsesL ∂
∂x
R(s)P (x, s)

]
+

∂

∂x
R(t)P (x, t)

= −LP ′ + ∂

∂x
R(t)P (x, t) , (II.31)

so that

∂P (x, t)

∂t
=

∂P0(x, t)

∂t
− ∂P ′(x, t)

∂t

= −LP0(x, t) + LP ′ − ∂

∂x
R(t)P (x, t)

= −LP (x, t)− ∂

∂x
R(t)P (x, t) , (II.32)

confirming that a particular solution has been found.

By replacing P (x, t) in the second term of Eq.(II.29) with this symbolic solution, it

becomes

∂P (x, t)

∂t
= −LP (x, t)− ∂

∂x
[R(t)e−tLP0(x, 0)]

+
∂

∂x

[
R(t)

∫ t

0

dse−(t−s)L ∂
∂x
R(s)P (x, s)

]
. (II.33)

Before we take the noise average of Eq.(II.33), a lemma about Gaussian random variables

is required. Let’s consider a set of Gaussian random variables ~R = [R1, R2, R3 . . . Rn]. For

simplicity , all these random variables have zero mean. The density distribution function is

ρ(~R) =
1√

det(2πM)
exp

(
−1

2

∑
j

∑

k

Rj(M
−1)jkRk

)
, (II.34)
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where Mjk is their mean squared fluctuations

Mjk =

∫
d~RRjRkρ(~R) . (II.35)

In fact we will only require Gaussian random variables without correlations in this thesis,

but let’s keep the general format now. Using Eq.(II.34) and the symmetry of M , one finds

−
∑

k

Mjk
∂

∂Rk

ρ(~R) = −
∑

k

Mjkρ(~R)

(
−

∑

j′
(M−1)j′kRj′

)

=
∑

k

∑

j′
(M−1)j′kMkjRj′ρ(~R)

= Rjρ(~R) . (II.36)

Then the average of RjF(~R) over noise, where F(~R) is an arbitrary function of ~R, is

〈RjF(~R)〉 =

∫
[RjF(~R)]ρ(~R)d~R

= −
∫
d~R

∑

k

MjkF(~R)
∂

∂Rk

ρ(~R)

=

∫
d~Rρ(~R)

∂

∂Rk

[∑

k

MjkF(~R)

]

=
∑

k

Mjk

〈
∂

∂Rk

F(~R)

〉
. (II.37)

Eq.(II.37) will help us to calculate the noise average for the last right term in Eq.(II.33).

In the integral over time from 0 to t, the noises in different time intervals ds, can be treated

as a set of Gaussian random variables, thus

〈
∂

∂x

[
R(t)

∫ t

0

dse−(t−s)L ∂
∂x
R(s)P (x, s)

]〉

=
∂

∂x

[∫ t

0

dse−(t−s)L
〈
R(t)

∂

∂x
R(s)P (x, s)

〉]

=
∂

∂x

{∫ t

0

dse−(t−s)L
[∑

s′
Mts′

〈
∂

∂R(s′)

(
∂

∂x
R(s)P (x, s)

)〉]}
. (II.38)
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Now let’s check the part in the square brackets. There are noise factors R(s′) implicit in

P (x, s), but their time points are previous to s, so s′ ≤ s; otherwise the derivative with

respect to R(s′) is zero. Then one can divide the summation into two parts

∑

s′
Mts′

〈
∂

∂R(s′)

(
∂

∂x
R(s)P (x, s)

)〉

=
∑

s′<s

Mts′

〈
∂

∂R(s′)

(
∂

∂x
R(s)P (x, s)

)〉
+Mts

〈
∂

∂R(s)

(
∂

∂x
R(s)P (x, s)

)〉
(II.39)

Eq.(II.23) shows the assumption that the noise is delta-function correlated, so

Mts = 2Dδ(s− t) , (II.40)

which means the summation part in the second line of Eq.(II.39) will always vanish because

s′ < s ≤ t. Continuing the calculation of Eq.(II.38)

∂

∂x

{∫ t

0

dse−(t−s)L
[∑

s′
Mts′

〈
∂

∂R(s′)

(
∂

∂x
R(s)P (x, s)

)〉]}

=
∂

∂x

{∫ t

0

dse−(t−s)LMts

〈
∂

∂R(s)

(
∂

∂x
R(s)P (x, s)

)〉}

=
∂

∂x

[∫ t

0

ds(2D)δ(s− t)e−(t−s)L
〈
∂

∂x
P (x, s)

〉]

= D
∂2

∂x2
〈P (x, t)〉 . (II.41)

For the other term containing R(t) in Eq.(II.33), e−tLP0(x, 0) = P0(x, t) is uncorrelated

with R(t), so the average over noise becomes

〈
∂

∂x
[R(t)e−tLP0(x, 0)]

〉
= 0 , (II.42)

using 〈R(t)〉 = 0.

Finally, the noise average of Eq.(II.33) is

∂

∂t
〈P (x, t)〉 = − ∂

∂x

[
F (x)

γ
〈P (x, t)〉

]
+D

∂2

∂x2
〈P (x, t)〉 (II.43)

We can omit the angular brackets because we will only deal with the average distribution.

The Fokker-Planck equation for over-damped Brownian motion is then

∂P (x, t)

∂t
= − ∂

∂x

{
−D

[
dU?(x)

dx
+

∂

∂x

]
P (x, t)

}
, (II.44)
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where U?(x) = U(x)/kBT is the dimensionless physical potential.

The Fokker-Planck equation can be derived from the master equation, readers who are

interested can find it in van Kampen’s books [9].

2. Discussion of Fokker-Planck equation

In this section we introduce some properties and operations that will be useful in what

follows.

a. Current

In Sec.(II.C.1), the Fokker-Planck equation was derived from the over-damped Langevin

equation, and the conservation law

∂P (x, t)

∂t
= −∂J(x, t)

∂x
, (II.45)

where J(x, t) is the current. We compare Eq.(II.45) with Eq.(II.44) and identify

J(x, t) = −D
[
dU?(x)

dx
+

∂

∂x

]
P (x, t) , (II.46)

where the first term represents the systematic drift contribution while the second term

represents the diffusion contribution.

b. Boundary conditions

To get the time evolution of the probability density function for the system, one needs to

solve the Fokker-Planck equation with appropriate initial and boundary conditions. Here

several simple boundary conditions are considered [8].

• Reflecting barrier (R)

If the Brownian particle cannot leave a region, at the boundary a it will be reflected.

Because the net flow across the boundary is zero, the current satisfies

J(a, t) = 0 . (II.47)
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• Absorbing barrier (A)

If the Brownian particle reaches this type boundary a, it will be removed from the system

immediately. The boundary acts as an absorbing wall and the probability satisfies

P (a, t) = 0 . (II.48)

• Natural boundary condition (N)

If we have reflecting walls at x → −∞ and x → ∞, the probability currents will van-

ish there. The total probability is conserved with
∫∞
−∞ P (x, t)dx = 1. This boundary

condition is called natural boundary condition, which is represented by

J(−∞, t) = J(∞, t) = 0 . (II.49)

• Periodic boundary condition (P)

If the process takes place in an interval [a, b] whose two ends are identified with each

other (as if the interval is wrapped in a ring), the current and probability will satisfy

lim
x→b−

P (x, t) = lim
x→a+

P (x, t)

lim
x→b−

J(x, t) = lim
x→a+

J(x, t) . (II.50)

c. Construction of a Hermitian operator [8]

It will prove useful to convert the operator LFP to Hermitian form. Let us consider again

the Fokker-Planck operator

LFP = D
∂

∂x

(
dU?

dx
+

∂

∂x

)

= D
∂

∂x
exp(−U?)

∂

∂x
exp(U?) , (II.51)

which is not a Hermitian operator. If there are two functions P1 and P2, both satisfying

the same boundary condition, which can be the natural boundary condition (N), or periodic
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boundary condition (P), or any combination of reflecting (R) and absorbing (A) boundary

conditions, we have

∫ b

a

P1 exp(U?)LFPP2dx

=

∫ b

a

P1 exp(U?)D
∂

∂x
exp(−U?)

∂

∂x
exp(U?)P2dx

= P1 exp(U?) exp(−U?)D
∂

∂x
exp(U?)P2

∣∣∣∣
b

a

−
∫ b

a

[
∂

∂x
(P1 exp(U?))

]
D exp(−U?)

[
∂

∂x
(exp(U?)P2)

]
dx

= −P1 exp(U?)J2|ba − P2 exp(U?) exp(−U?)D
∂

∂x
exp(U?)P1

∣∣∣∣
b

a

+

∫ b

a

P2 exp(U?)D
∂

∂x
exp(−U?)

∂

∂x
exp(U?)P1dx

= −P1 exp(U?)J2|ba + P2 exp(U?)J1|ba
+

∫ b

a

P2 exp(U?)D
∂

∂x
exp(−U?)

∂

∂x
exp(U?)P1dx . (II.52)

In deriving Eq.(II.52), we have used

D
∂

∂x
exp(U?(x))P (x, t) = − exp(U?)J(x, t) , (II.53)

where J(x, t) is the probability current. Because of the boundary conditions, we have

P1 exp(U?)J2|ba = P2 exp(U?)J1|ba = 0 . (II.54)

Then from Eq.(II.52) the operator exp(U?)LFP is a Hermitian operator, which satisfies

∫ b

a

P1 exp(U?)LFPP2dx =

∫ b

a

P2 exp(U?)LFPP1dx . (II.55)
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d. Construction of a Schrödinger-like operator [8]

We have already shown that exp(U?)LFP is a Hermitian operator; then

Ls ≡ exp(−U?/2) exp(U?)LFP exp(−U?/2)

= exp(U?/2)LFP exp(−U?/2) (II.56)

is also a Hermitian operator. Expanding Ls, one finds

Ls = exp(U?/2)LFP exp(−U?/2)

= exp(U?/2)D
∂

∂x

(
dU?

dx
+

∂

∂x

)
exp(−U?/2)

= D exp(U?/2)
∂

∂x

[
dU?

dx
exp(−U?/2)

]
+D exp(U?/2)

∂2

∂x2
exp(−U?/2)

= D
∂2

∂x2
+
D

2

d2U?

dx2
− D

4

(
dU?

dx

)2

= D
∂2

∂x2
− VS(x) , (II.57)

where

Vs = −D
2

d2U?

dx2
+
D

4

(
dU?

dx

)2

. (II.58)

Hence we have changed the Fokker-Planck operator LFP into a Schrödinger-like operator Ls.

In brief, if we define PS ≡ exp(U?/2)P , PS will obey a Schrödinger-like equation

−dPS

dt
=

[
−D ∂2

∂x2
+ VS(x)

]
PS , (II.59)

where VS is given by Eq.(II.58). The Schrödinger equation must be one of the most studied

partial differential equations in physics, so now techniques developed for the Schrödinger

equation can be borrowed for application to Fokker-Planck equation [8].
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e. Solution of the Fokker-Planck equation expressed as an eigenfunction expan-

sion [8]

A separation ansatz for P (x, t)

P (x, t) = φ(x) exp(−λt) , (II.60)

will give us

LFPφ = −λφ , (II.61)

where φ(x) and λ are the eigenfunction and eigenvalue respectively of the Fokker-Planck

equation. Let ψ(x) = exp(U?(x)/2)φ(x); then

Lsψ = −λψ , (II.62)

where Ls has been defined by Eq.(II.56). Ls is a Schrödinger-like operator, so following the

standard derivation in quantum mechanics, we can get the orthogonality and completeness

of the eigenfunctions ψn. For discrete eigenvalues,

∫ b

a

ψnψmdx =

∫ b

a

exp(U?)φnφmdx = δm,n ,

δ(x− x′) =
∑

n

ψn(x)ψ(x′)

= exp

[
1

2
(U?(x) + U?(x′))

] ∑
n

φn(x)φ(x′) . (II.63)

Because Ls is a Hermitian operator, the eigenvalues λn are real. We also can prove that they

will be non-negative when the boundary condition is of the type (R), (A), (N), (P), or any

combination of (R) and (A),

λn = −
∫ b

a

ψnLψndx

= −
∫ b

a

φn exp(U?)LFPφndx

= −
∫ b

a

φn exp(U?)D
∂

∂x
exp(−U?)

∂

∂x
exp(U?)φndx

= −Dφn
∂

∂x
exp(U?)φn

∣∣∣∣
b

a

+

∫ b

a

D exp(−U?)

[
∂

∂x
(exp(U?)φn)

]2

dx

=

∫ b

a

D exp(−U?)

[
∂

∂x
(exp(U?)φn)

]2

dx ≥ 0 . (II.64)
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If the boundary conditions and potential admit a solution with λ0 = 0, then P (x, t) = ψ0,

represents a stationary solution.

D. PATH INTEGRAL REPRESENTATION

Path integral methods provide a useful tool and a different perspective for the study of

Brownian motion [12, 13, 21]. In this section, we will following Wiegel’s book [12] to derive

the path integral approach to Brownian motion and its approximation.

1. A simple illustration

Figure 7: A simple illustration for the basic idea of path integral.

Before we jump into tons of equations, for readers who are not familiar with the basic idea of

path integral, let’s study a simple illustration first. In Fig. 7, there is a particle at point A at

time t0. Let P (x, t) represent the probability that the particle will be found at position x at
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time t, then P (A, t0) = δ(x−A) is our initial condition. How can we calculate an arbitrary

P (x, t) using path integral techniques?

In Fig. 7, we show two final points B and C at time t. After careful search, suppose there

are only three paths found connecting points A and B during this time interval, their prob-

abilities are pB1, pB2 and pB3. For point C, suppose there are two paths with probabilities

pC1 and pC2. Then we will come to conclusion that

P (B, t)

P (C, t)
=
pB1 + pB2 + pB3

pC1 + pC2

. (II.65)

Roughly, this is the basic idea of path integral. But for a real case, it will be much more

difficult, since usually there are an infinite numbers of paths in phase space connecting the

initial and final states, and even for one particular trajectory, the system can walk through

it with infinitely diverse velocity histories. To study the Brownian motion, formal path

integral methods will take care all the possible paths and provide a formal solution of the

Fokker-Planck equation.

2. Path integral formulation for free Brownian motion

First let’s consider the free Brownian motion (i.e., U? = 0), which is described by the

equation and initial condition

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2

P (x, t0) = δ(x− x0) . (II.66)

The solution is well known as (see, e.g. [7])

P (x, t) = [4πD(t− t0)]
−1/2 exp

[
− (x− x0)

2

4D(t− t0)

]
, (t > t0) . (II.67)

Eq.(II.67) is variously called the Green function for the free diffusion equation or the prop-

agator of the free Brownian particle.

Path integrals will calculate the total probability of paths connecting x0 at time t0 and x

at time t. If we cut the time interval (t0, t) into (N+1) equal intervals ε, the question reduces
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to finding the probability a particle is at the sequence of coordinates (x0, x1, x2 . . . xN , x) at

corresponding times (t0, t1, t2 . . . tN , t) within ranges (0, dx1, dx2 . . . dxN , 0). It is obvious that

this probability would equal the product of successive propagators

(4πDε)−(N+1)/2 exp

[
− 1

4Dε

j=N∑
j=0

(xj+1 − xj)
2

]
j=N∏
j=1

dxj , (II.68)

where xN+1 equals x. While taking the limit ε → 0, N → ∞ and (N + 1)ε = (t − t0), the

exponential part can be written as

exp

[
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ

]
. (II.69)

Figure 8: A path goes through the sequence of coordinates (x0, x1, x2 . . . xN , x) at corre-

sponding times (t0, t1, t2 . . . tN , t) within ranges (0, dx1, dx2 . . . dxN , 0).

Then the propagator of a free Brownian particle can be symbolically written

P (x, t) =

∫ x,t

x0,t0

exp

[
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ

]
d[x(τ)] , (II.70)
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where we use the path integral symbol

∫
d[x(τ)] ⇐⇒ (4πDε)−(N+1)/2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2· · ·

∫ ∞

−∞
dxN . (II.71)

Now we show the equivalence of the path integral formulation Eq.(II.70) and (II.71) with

Brownian motion free diffusion solution Eq(II.67) [12]. By using the well known formula

[22]

∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏
i=1

dxi exp

(
−

N∑
i,j=1

xiAi,jxj +
N∑

i=1

kixi

)

= πN/2(detA)−1/2 exp

(
1

4

N∑
i,j=1

ki(A
−1)i,jkj

)
, (II.72)

we can simplify Eq.(II.70). To make the calculation easier, let the Brownian particle start

from x0 = 0 at time t0 = 0. From Eq.(II.68), the only surviving ki is kN = 2x/(4Dε), and

the N ×N matrix is

A = (4Dε)−1




2 −1

−1 2 −1

−1 2 −1

. . . . . .

−1 2 −1

−1 2




(II.73)

Following [12] the determinant of A can be found as follows. First one can calculate the

determinants for small N by hand; detA1 = 2(4Dε)−1, and detA2 = 3(4Dε)−2. If detAN is

expanded in the elements of the last column, we get

(4Dε)N detAN = 2(4Dε)N−1 detAN−1 − (4Dε)N−2 detAN−2 . (II.74)

In fact when N →∞, Eq.(II.74) is the same as the differential equation

d2[(4Dε)N detAN ]

dN2
= 0 . (II.75)

This leads to detAN = (N + 1)(4Dε)−N . Furthermore,

A−1
N,N =

detAN−1

detAN

= (4Dε)
N

N + 1
. (II.76)
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Then we can explicitly take the limit

P (x, t) = (4πDε)−(N+1)/2

∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏
i=1

dxi exp

[
− 1

4Dε

j=N∑
j=0

(xj+1 − xj)
2

]

= (4πDε)−(N+1)/2πN/2(N + 1)−1/2(4Dε)N/2 exp

{
1

4Dε

[(
1

4

)
N

N + 1
(2x)2 − x2

]}

=
1√

4πDε(N + 1)
exp

[
− x2

4Dε(N + 1)

]

=
1√

4πDt
exp

(
− x2

4Dt

)
, (II.77)

which is in agreement with Eq.(II.67).

3. Path integral formulation for Brownian motion in an absorbing medium

In this section we study Brownian motion in a medium in which the particle can be an-

nihilated with a probability A(x, t). The result will help us to give the path integral for

Brownian motion in a field of force later. The Fokker-Planck equation for this problem is

[12]

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
− A(x, t)P (x, t)

P (x, t0) = δ(x− x0) . (II.78)

Let us ignore diffusion at first. In a short time interval [τ, τ + ∆τ ], the probability change

for a stationary particle is

dP (x, t) = −P (x, t)A(x, t)dt . (II.79)

If the time interval is very short so that A(x, t) will stay as a constant A(x, τ) during ∆τ ,

the solution of Eq.(II.79) is

P (x, τ + ∆τ) = P0(x, τ) exp(−A(x, τ)∆τ) , (II.80)
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where P0 is the initial probability. Then for a path of a Brownian particle, the surviving

probability is

exp

[
−

∫ t

t0

A(x(τ), τ)dτ

]
, (II.81)

and the propagator of this Brownian particle in this medium is

P (x, t) =

∫ x,t

x0,t0

exp

[
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ −
∫ t

t0

A(x(τ), τ)dτ

]
d[x(τ)] . (II.82)

This result will be the key to finding the path integral of Brownian motion in a field of force

in the next subsection.

4. Path integral formulation of Brownian motion in a field of force

Now we are ready to give the path integral formulation for Brownian motion in a field of

force. The Fokker-Planck equation is

∂P (x, t)

∂t
= − ∂

∂x

{
−D

[
dU?(x)

dx
+

∂

∂x

]
P (x, t)

}
, (II.83)

Let’s write

P (x, t) = exp(−U?/2)Ps(x, t) . (II.84)

In Sec.(II.C.2) we showed that this will change the Fokker-Planck equation into a Schrödinger-

like equation
∂Ps(x, t)

∂t
=

(
D
∂2

∂x2
− Vs(x)

)
Ps(x, t) , (II.85)

where Vs is given by Eq.(II.58). By comparing with Eq.(II.78), one knows the normalized

path integral for Ps has already been given by Eq.(II.82). From the initial condition

P (x, t0) = δ(x− x0) , (II.86)

and Eq(II.84), the initial condition for Ps(x, t) is

Ps(x, t0) = exp(U?(x0)/2)δ(x− x0) . (II.87)
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Then the path integral for Ps is

Ps(x, t) = exp(U?(x0)/2)

∫ x,t

x0,t0

exp

[
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ −
∫ t

t0

Vs(x(τ), τ)dτ

]
d[x(τ)] .

(II.88)

Substituting Eq.(II.88) into Eq.(II.84), we get the propagator for Brownian motion in a field

of force [12]

P (x, t) = exp

(
U?(x0)− U?(x)

2

) ∫ x,t

x0,t0

exp

[
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ −
∫ t

t0

Vs(x(τ), τ)dτ

]
d[x(τ)] .

(II.89)

5. Optimal path

From Eq.(II.89), one can identify the probability-density function for the Brownian particle

following a specific trajectory x(τ) is

W [x(τ)] ≡ exp

[
U?(x0)− U?(x)

2
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ −
∫ t

t0

Vsdτ

]

= exp

(
U?(x0)− U?(x)

2

)
exp

{
−

∫ t

t0

L[x(τ)]dτ

}
, (II.90)

where

L[x(τ)] =
1

4D

(
dx

dτ

)2

+ Vs . (II.91)

The extremal (optimal) path will minimize
∫ t

t0
Ldτ and will satisfy equation [23]

∂L
∂x

− d

dτ

∂L
∂ẋ

= 0 , (II.92)

where ẋ = dx
dτ

. Substituting Eq.(II.91) into Eq.(II.92), the optimal trajectory will satisfy

ẍc = 2D
dVs

dxc

. (II.93)

Note that from Eq.(II.92), in the time interval of (t − t0), the optimal path xc(t) of the

Brownian particle connecting x0 and x is identical to the trajectory of a fictitious Newtonian

particle of unit mass moving in potential −2DVs [12].
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For small values of the diffusion coefficient, one expects that the trajectories of the

Brownian particle will be very close to the optimal path. An approximate propagator is

simply given by

P (x, t) ∼= K(t) exp

{
−

∫ t

t0

L[xc(τ)]dτ

}
, (II.94)

where K(t) is the normalizing constant chosen to make P (x, t) satisfy

∫ ∞

−∞
P (x, t)dx = 1 . (II.95)

This approximation will be useful when D → 0 and the largest contribution of the path

integral Eq.(II.89) only comes from the optimal path.

6. The quadratic approximation

The next approximation to the path integral solution is generally known as the quadratic

approximation 1. Let’s consider the propagator given by Eq.(II.89)

P (x, t) = exp

(
U?(x0)− U?(x)

2

)

×
∫ x,t

x0,t0

exp

[
− 1

4D

∫ t

t0

(
dx

dτ

)2

dτ −
∫ t

t0

Vs(x(τ), τ)dτ

]
d[x(τ)] . (II.96)

Write

x(τ) = xc(τ) + δ(τ) , (II.97)

where xc(τ) is the optimal path and δ(τ) denotes the deviation from it. Hence at the start

and end points of path, δ(t0) = 0 and δ(t) = 0. Expand the exponential in Eq.(II.96) in

powers of δ, the zero order term is

exp

[
− 1

4D

∫ t

t0

(
dxc

dτ

)2

dτ −
∫ t

t0

Vs(xc(τ))dτ

]
. (II.98)

1It is also called WKB approximation in Schulman’s book [13].
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The term of first order in δ will vanish because of the definition of the optimal path. The

term of second order in δ is of the form

exp

[∫ t

t0

(
dδ

dτ

)2

dτ −
∫ t

t0

V ′′
s (xc(τ))

2
(δ(τ))2dτ

]
, (II.99)

where primes denote differentiation with respect to the argument. By throwing away terms

of higher order in δ, we arrive at the approximation for the probability

P (x, t) ≈ exp

(
U?(x0)− U?(x)

2

)
F (x, t)

× exp

[
− 1

4D

∫ t

t0

(
dxc

dτ

)2

dτ −
∫ t

t0

Vs(xc)dτ

]
(II.100)

F (x, t) = lim(4επD)−(N+1)/2

∫ ∞

−∞
dδ1

∫ ∞

−∞
dδ2· · ·

∫ ∞

−∞
dδN

exp

[
− 1

4Dε

N∑
j=0

(δj+1 − δj)
2 − 1

2
ε

N∑
j=1

V ′′
j δ

2
j

]
, (II.101)

where V ′′
j = V ′′

s (xc(τj)) and δ0 = δN+1 = 0.

To calculate F (x, t), we need to use the Gaussian integration formula Eq.(II.72) again.

The result is

F (x, t) = lim(4πεD detBN)−1/2 , (II.102)

where B is the matrix whose elements are

Bk,k = 2 + 2Dε2V ′′
k

Bk,k−1 = Bk,k+1 = −1 . (II.103)

It is not easy to get the determinant of matrix B this time. Let’s follow Wiegel’s work

[12]. First, from the calculation of the determinant of the matrix, one can get the recursive

relation

detBN = (2 + 2Dε2V ′′
N) detBN−1 − detBN−2 . (II.104)

To change this into a differential equation, let detBN = (N+1)CN , then Eq.(II.104) becomes

CN − 2CN−1 + CN−2 = − 2

N + 1
(CN−1 − CN−2) + 2ε2D

NV ′′
N

N + 1
CN−1 . (II.105)
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After taking the limit ε→ 0, N →∞ andNε = (t−t0), Eq.(II.105) changes into a differential

equation
d2C

dt2
+

2

t− t0

dC

dt
= 2DV ′′

s C , (II.106)

with initial conditions at t = t0, C = 1 and dC
dt

= 0. To solve Eq.(II.106), one can let

H = (t− t0)C. Then the differential equation for H is of the form

d2H

dt2
= 2DV ′′

s H , (II.107)

at t = t0, H = 0 and dH
dt

= 1. Next one changes the independent variable from t to xc

to make this equation easier. Recalling that the optimal path of the Brownian particle is

identical to the trajectory of a fictitious Newtonian particle of unit mass moving in potential

−2DVs, one finds

d2xc

dt2
= 2D

dVs

dxc

dxc

dt
= (2E + 4DVs)

1/2 , (II.108)

where E denotes the total mechanical energy of the Newtonian particle. With the change of

variables the left side of Eq.(II.107) becomes

d2H

dt2
=

d

dt

(
dH

dxc

dxc

dt

)

=

(
d

dt

dH

dxc

)
dxc

dt
+
dH

dxc

d2xc

dt2

=
d2H

dx2
c

(
dxc

dt

)2

+
dH

dxc

d2xc

dt2

= H ′′(2E + 4DVs) + 2H ′DV ′
s . (II.109)

Now one finds that Eq.(II.107) will become

[(2E + 4DVs)H]′′ = (6DHV ′
s )
′ , (II.110)

with initial conditions at xc = x0, H = 0 and dH
dxc

= (2E + 4DVs)
1/2.

By integrating both sides of Eq.(II.110) once and applying the initial conditions, one

gets

(2E + 4DVs)H
′ − 2DHV ′

s = (2E + 4DVs(x0))
1/2 . (II.111)
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Divided by (2E + 4DVs), Eq.(II.111) becomes a Bernoulli equation [24]

H ′ +W (xc)H = Q(xc) , (II.112)

where

W (xc) = − 2DV ′
s

2E + 4DVs

Q(xc) =
(2E + 4DVs(x0))

1/2

2E + 4DVs

. (II.113)

Then the solution is

H(xc) = e−
R

W (xc)dxc

∫
e
R

W (xc)dxcQ(xc)dxc + ce−
R

W (xc)dxc

= (2E + 4DVs)
1/2(2E + 4DVs(x0))

1/2

∫ xc

x0

(2E + 4DVs(y))dy + c(2E + 4DVs)
1/2

= (2E + 4DVs)
1/2(2E + 4DVs(x0))

1/2

∫ xc

x0

(2E + 4DVs(y))dy . (II.114)

In the derivation we used H = 0 when xc = x0 to find the constant c equals zero.

Finally one can write explicitly

F (x, t) = lim(4πεD detBN)−1/2

= [4πD(t− t0)C(x, t)]1/2

= [4πDH(x, t)]1/2

=

[
4πD(2E + 4DVs(x0))

1/2(2E + 4DVs(x))
1/2

×
∫ x

x0

(2E + 4DVs(y))dy

]1/2

. (II.115)

Hence under the quadratic approximation, the propagator for a Brownian motion in a field

of force is

P (x, t) ≈ exp

(
U?(x0)− U?(x)

2

) [
4πD(2E + 4DVs(x0))

1/2

×(2E + 4DVs(x))
1/2

∫ x

x0

(2E + 4DVs(y))dy

]1/2

× exp

[
− 1

4D

∫ t

t0

(
dxc

dτ

)2

dτ −
∫ t

t0

Vs(xc)dτ

]
. (II.116)

If the probability of path decreases sufficiently rapidly with increasing deviation from

the optimal path, i.e., D → 0, Eq.(II.116) will be a good approximation [12, 25].
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E. EXAMPLES

In this section we will review several Brownian motion problems. The examples will be

solved using the techniques and approximations discussed above.

1. Reaction rate

Problem: In one-dimensional space, there is an over-damped Brownian particle in the left

well of the double-well potential. What is the average time this particle will wait before the

noise drives it over the barrier to reach the right well for the first time?

Figure 9: An over-damped Brownian particle in a double-well potential.

Solving for the rate at which a Brownian particle escapes from a potential well is called

the Kramers problem [2]. The results can be derived by different methods [7, 8, 11]. Here

we will follow the method of solution given by Risken [8].

From Sec.II.C.1, the probability that this particle is found at position x at time t, P (x, t)

is given by the Fokker-Planck equation Eq.(II.44). According to Eq.(II.53), the current

36



satisfies

J(x, t) exp(U?(x)) = −D ∂

∂x
exp(U?(x))P (x, t). (II.117)

Integrating Eq.(II.117) between xmin and A yields

∫ A

xmin

J(x, t) exp(U?(x))dx = −D
∫ A

xmin

∂

∂x
exp(U?(x))P (x, t)dx

= D[exp(U?(xmin))P (xmin, t)− exp(U?(A))P (A, t)] .(II.118)

Assuming the barrier is high, at least several kBT , then the leak of the probability in the

left well to the right will only make negligible probability distribution change everywhere.

The whole system is approximately in a stationary state, and both sides of Fokker-Planck

equation will be very close to zero,

∂P (x, t)

∂t
= −∂J(x, t)

∂x
≈ 0 . (II.119)

Hence the current J(x, t) is independent of position x, and from Eq.(II.118) it is given by

J(t) = D[exp(U?(xmin))P (xmin, t)− exp(U?(A))P (A, t)]/

∫ A

xmin

exp(U?(x))dx . (II.120)

Because of the high barrier, the probability at position A will be negligible for a long time,

so we can put P (A, t) = 0 in Eq.(II.120), which becomes

J(t) = D exp(U?(xmin))P (xmin, t)/

∫ A

xmin

exp(U?(x))dx . (II.121)

Because the system is close to a stationary state, in the left well we have

P (x, t) = P (xmin, t)
exp(−U?(x))

exp(−U?(xmin)
, (II.122)

and the total probability in the left well is

P(t) ≈
∫ x2

x1

P (x, t)dx

=

∫ x2

x1

P (xmin, t) exp(U?(xmin)− U?(x))dx

= P (xmin, t) exp(U?(xmin))

∫ x2

x1

exp(−U?(x))dx , (II.123)
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where x1 and x2 don’t need to be specified, but (U?(x1)−U?(xmin)) and (U?(x2)−U?(xmin))

are large enough so the probability outside of these two ends can be neglected. From

Eq.(II.121) and (II.123) the average waiting time is

τ =
1

γ
≡ P(t)

J(t)

=
1

D

∫ x2

x1

exp(−U?(x))dx

∫ A

xmin

exp(U?(x))dx , (II.124)

where γ is the escape rate. Because the barrier height is large, the main contribution to the

first integral in Eq.(II.124) comes from the region around xmin, and the main contribution

to the second integral comes from the region around xmax. We can use the steepest descent

approximation to evaluate them,

τ =
1

D

∫ x2

x1

exp(−U?(x))dx

∫ A

xmin

exp(U?(x))dx

=
1

D

{
− exp(U?(xmin))

∫ ∞

−∞
exp

[
−1

2
U?′′(xmin)(x− xmin)2

]
dx

}

×
{

exp(U?(xmax))

∫ ∞

−∞
exp

[
1

2
U?′′(xmax)(x− xmax)

2

]
dx

}

=
2π

D
√
−U?′′(xmin)U?′′(xmax)

exp(U?(xmax)− U?(xmin)) . (II.125)

The escape rate is then

γ =

√
−U?′′(xmin)U?′′(xmax)

2π
exp[−(U?(xmax)− U?(xmin))] . (II.126)

In fact, the meaning of Eq.(II.126) is very important. As we mentioned in Sec.II.A.2,

a chemical or biological, macroscopic system in the lab can often be treated as a Brownian

particle moving along some reaction coordinate. If we use the double well as a simplest model

for a chemical or biological reaction, the escape rate γ gives its reaction rate. This rate γ

is determined by the barrier height and the curvatures at xmin and xmax; the waiting time

will increase exponentially as the barrier height increases. Readers can find more discussion

about this important topic in the article of Borkovec and Hänggi [2].
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The waiting time follows an exponential distribution [26]. Eq.(II.124) and the definition

of current J(t) gives rise to an differential equation of P(t)

J(t) = P(t)γ = −dP
dt
, (II.127)

whose solution is

P(t) = exp(−γt) , (II.128)

with the initial condition P(0) = 1. The distribution of waiting time f(t) is given by

f(t) = J(t) = −dP
dt

= γ exp(−γt) , (II.129)

which is an exponential distribution.

2. Splitting probability

Problem: Sparta was a militarist state, and all individuals would be trained strictly to be

warriors. Let’s make a simple model for the training. Suppose there is one quantity, fighting

power x, which measures how good a warrior is (like in computer or D&D games [27]).

The training begins from their childhood, every child has the same initial fighting power x0

. During the training, a Spartan grows up and becomes stronger and stronger, so x will

increase linearly with a slope Dk. But the effect of training is unpredictable, because one

can become more skillful or be hurt badly, which is given by a Gaussian noise R(t) with

zero mean and satisfying 〈R(t)R(t′)〉 = 2Dδ(t − t′). If one’s fighting power reaches xf , the

individual will be treated as a grown-up warrior. But one will die or be banished if fighting

power is zero. Under this model, what fraction of Spartans will succeed the in military

training?

In Gardiner’s book [7], this fraction is called the probability of exit through a particular

end of an interval. The picture in physics is, a Brownian particle starts from the initial

position x0 and walks in an interval (a, b) which has absorbing walls at two ends. What is

the probability that it will be absorbed at a or b?
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The probability of being absorbed by a is the integrated current at a

Πa(x0) = −
∫ ∞

0

J(a, s|x0, 0)ds

= D

∫ ∞

0

[
U?′(a)P (a, s|x0, 0) +

∂P (x, s|x0, 0)

∂x

∣∣∣∣
x=a

]
ds . (II.130)

One can solve the Fokker-Planck equation under this special boundary condition and cal-

culate the probability Πa using Eq.(II.130). However, in general it will be very difficult for

arbitrary potential U?. Here we follow Gardiner’s book [7] to find the solution. First one

can prove the P (x, s|x0, 0) will also satisfy the so-called “backward Fokker-Planck equation”

∂P (x, s|x0, 0)

∂s
= −D

(
dU?

dx

)
∂P (x, s|x0, 0)

∂x0

+D
∂2P (x, s|x0, 0)

∂x2
0

. (II.131)

Note the derivatives are with respect to the initial value of x. The proof will not be given

here; readers who are interested can find the details in Gardiner’s or Risken’s books [7, 8].

The backward Fokker-Planck equation carries the same information as the regular Fokker-

Planck equation; the difference is which set of variables are fixed.

Now we want to build up a differential equation for Πa(x0). Inspired by Eq.(II.131), one

can find

−D
(
dU?

dx

)
dΠa(x0)

dx0

+D
d2Πa(x0)

dx2
0

= D

∫ ∞

0

[
U?′(a)

∂P (a, s|x0, 0)

∂s
+

∂

∂x

∂P (x, s|x0, 0)

∂s

∣∣∣∣
x=a

]
ds

=

∫ ∞

0

∂J(a, s|x0, 0)

∂s
ds

= J(a,∞|x0, 0)− J(a, 0|x0, 0) . (II.132)

Since the current at a when s = 0 or s = ∞ is zero, Eq.(II.132) will become

−
(
dU?

dx

)
dΠa(x0)

dx0

+
d2Πa(x0)

dx2
0

= 0 . (II.133)
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For the absorbing boundary conditions, if a particle starts from a or b, it will be absorbed

immediately, which means Πa(a) = 1 and Πa(b) = 0. Then it is easy to get the solution of

Πa(x0) and Πb(x0)

Πa(x0) =

∫ b

x0
exp(U?(x))dx

∫ b

a
exp(U?(x))dx

Πb(x0) = 1− Πa(x0) =

∫ x0

a
exp(U?(x))dx∫ b

a
exp(U?(x))dx

. (II.134)

Πa and Πb are the “splitting probabilities”.

Returning to our problem of the Spartan training, the potential is U? = −kx, a = 0 and

b = xf ; then the probability of success is

Πxf
(x0) =

1− exp(−kx0)

1− exp(−kxf )
. (II.135)
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III. SIMULATION METHODS

A. IMPORTANCE OF SIMULATION

In this chapter, we will discuss a variety of simulation methods for rare events, which is

another important part of my research described in this thesis. The first topic I want to

discuss here is why simulations are important [1, 28–30].

From my review, the first reason is the limit of our analytical tools. We may be able to

do the analysis of some linear problems, but many natural phenomena are nonlinear. Even

for the simple laws of Newtonian mechanics, when the system we want to study has multiple

degrees of freedom - for example, the motion of more than two interacting bodies - it is very

difficult to obtain an analytical solution. A protein built up from hundreds of amino acid in

solvent is completely out of reach. But simulation can provide numerical results for these

problems, and it is a potential tool to help understand natural phenomena.

Because of the ability to obtain the numerical results, simulations are a bridge between

laboratory experiments and theory. After a theoretical model is given, it will generally

be checked against experiments. Sometimes physicists are lucky because their model can

be solved analytically, but this does not occur very often. When the model is too complex,

approximate methods are often applied. If the theoretical results don’t agree with the experi-

mental data, it may mean the model is wrong, or we have used an inadequate approximation.

Now simulations help us to get numerical results (with ’generally’ statistical errors) from a

given model system without using approximate methods, so that the theoretical model and

experiments can be compared directly.

Another important role that simulation plays is the possible replacement of some exper-

iments. First, it will save a lot of money by replacing experiments under extreme conditions
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with simulations. The case of a computer will not explode when it simulates a high pressure

container, and the CPU will not smoke when the simulation temperature is 6000◦C. Second,

simulation can get information which is very hard to obtain by available experimental tech-

niques. For example, in the study of the transition path for the conformational change of a

particular protein, experiments at this point seem powerless. The most effective techniques

for structure determination, like X-ray and NMR, are more compliant for stable states. They

may be able to give the two ends of the transition, but it is difficult to find intermediate

states by using these techniques, and more difficult still to get a continuous pathway, which

is much easier for simulations.

Then there is an important issue to consider: How good are the results given by simu-

lation? Can we really reproduce what happens in a laboratory experiment on a computer

today? I have doubts about it myself. But considering that computer simulation only began

in the early 1950s, I have no doubts that it will be better in the future. To make the simula-

tions more realistic is always an essential topic. Proper (simplified or idealized) description

for a system or process is the job of molecular modelling [28]. But it is not what I concen-

trate on in my research, so the discussion will stop here. More discussion and background

will be found in these books [1, 28–30].

B. BRUTE FORCE SIMULATION

To simulate rare events, the most straightforward way is running a long simulation and

collecting the rare events which happen to occur.

For example, to study rare events in one-dimensional over-damped Brownian motion, one

can just run a brute force simulation by using the over-damped Langevin equation (II.20).

Standard simulations of the over-damped Langevin Eq.(II.20) employ a simple first-order

scheme with fixed time step ∆t, such that

xj = x(j∆t), j = 0, 1, 2... (III.1)
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and [31]

xj+1 = xj +
F (xj)

γ
∆t+ ∆xR . (III.2)

Consistent with Eq.(II.22) the thermal fluctuation (noise increment) ∆xR is chosen from a

Gaussian distribution of zero mean and variance

σ2 = 2

(
kBT

γ

)
∆t = 2D∆t . (III.3)

However, this direct approach proves inadequate to simulate rare events, even in one di-

mension. Such a program running on a single CPU can provide an ensemble of transition

trajectories (with hundreds or thousands of transition-events) only for low barrier height

(less than 10 kBT). For high barriers, the waiting time between successful events will be-

come unacceptably long, which has been discussed in Sec. II.E.1.

C. PATH SAMPLING APPROACHES

Traditional molecular simulations are limited to less than 100 nsec [32], making them in-

adequate to the task of studying rare events, such as the large conformational transitions in

macromolecules, which may occur on µsec - msec timescales or beyond [33]. Yet the situa-

tion is actually worse than it first appears: even if such long simulations could be achieved,

the observation of a single transition-event would hardly be a full scientific description of

the process. Because structural transitions are driven by thermal fluctuations, some degree

of variability among events must be expected — in turn requiring the observation of many

events to draw statistically satisfactory conclusions. Such a statistical outlook has most

famously been exploited in studies of protein folding paths (e.g., Ref. [34–37] ).

Three basic approaches to the problem of long-time macromolecular dynamics have been

explored by a number of investigators. Coarse-graining is probably the oldest strategy, dat-

ing from the very earliest molecular simulations [38, 39]. By reducing the number of degrees

of freedom, coarse-grained models of proteins can drastically reduce the intrinsic cost of

simulating a time step, as well as increasing the duration of each step. The strategy has

been pursued for many different problems over the years from protein folding to aggregation
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to conformational change [40–53]. Although coarse-grained models fail to capture atom-

istic detail and may have limited biochemical accuracy, recent work may permit the use of

simplified ensembles in accelerating atomistic sampling [54, 55].

A second approach pursues a severe discretization of conformation-state space which

enables the use of master-equation stochastic kinetics [56–58]. Although an exact kinetic

description can be obtained, a comprehensive and accurate discretization of configuration

space is required. In other words, all states must be known with equilibrium probabilities

and transition rates. Thus, at present, such a description is limited to cases where rather

complete sampling can be obtained by some other means.

The third strategy, path sampling, is of greatest relevance to my research. Path sampling

approaches [59–71] can, in principle, be applied to models of any level of detail, without

approximation to the correct statistical mechanics. The potential for efficiency in these

approaches stems from an extreme separation of timescales: rare events are rare because

they are infrequent, not because the events are slow. As shown in Fig. 1, the duration

of an event itself typically is orders of magnitude less than the associated waiting time

between events [59, 72]. Path-sampling approaches make practical use of this separation by

focusing computer resources exclusively on rare transition events — as opposed to random

equilibrium motions which prove unproductive of transitions. Path sampling approaches,

it should be noted, have recently been applied to atomistic models of proteins and nucleic

acids [65, 66, 71].

1. Transition path sampling

To generate a sufficient quantity of transition-events, perhaps the best known method is a

Monte Carlo path-sampling approach, transition path sampling (TPS). The approach has

its roots in path integral Monte Carlo for quantum systems [73, 74], but Pratt provided

an important advance in recognizing the analogous application in classical and, particularly,

chemical systems [59].

Pratt’s approach has recently been taken up with some vigor by Chandler and co-workers

[75, 76]. Related work was presented by Zimmer and Paniconi [77, 78].
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The basic strategy behind path-sampling is simple: focus computer time on the rare

transition-events of interest, rather than on the waiting time between events, which can

be longer by many orders of magnitude. The transition path sampling methods primarily

follows Pratt’s approach, which is based on two facts: (i) Path (i.e., trajectory) probabilities

are readily computed for stochastic processes, so that trajectories themselves may be viewed

as N × d dimensional equilibrium “objects”, when there are N time steps and d spatial

dimensions. (ii) Wherever equilibrium probabilities can be computed for all such “objects”

in an abstract space, Metropolis sampling can be performed.

As in any Metropolis simulation, we require that detailed balance is satisfied. That is,

for arbitrary paths ζi and ζj with equilibrium probabilities P (ζ) and overall transition rates

Γ, we require

P (ζi)Γ(ζi → ζj) = P (ζj)Γ(ζj → ζi) . (III.4)

The rate Γ is decomposed into the usual product of the generating (D) and acceptance (acc)

components [1, 76], which are proportional to the conditional probability for generating

and accepting the trial path j, starting from i. Then trial moves should be accepted with

probability min[1, R], where

R =
acc(ζi → ζj)

acc(ζj → ζi)
=
P (ζj)×D(ζj → ζi)

P (ζi)×D(ζi → ζj)
. (III.5)

All paths in the ensemble will have the same total number of steps N , so that the probability

of two paths can be compared.

To proceed we need to discuss how to generate new paths. If we just make a small

change to the start position of the old path, and run the simulation, the probability that the

new path ends in the final state will be small [1]. Then the Monte Carlo acceptance will

be very low. Dellago, Bolhuis and Chandler suggested a better approach called a “shooting

algorithm” [76]. As shown in Fig. 10, instead of the initial point, they randomly choose one

point in the middle of the “old” path and run the simulation. Because the state in the middle

of a path usually, under the conditions of the simulation, is unstable, the system will most

likely relax to the initial or final state. Gluing the new relaxation part and the part in the

old path heading the opposite direction gives a new path. However, one can also relax the

system from the middle state several times so that one can get successful parts connecting
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both sides. Then the new path has only one common point with the old one. This is the

approach that has been used and that is illustrated below.

Figure 10: Shooting algorithm to generate new path [76].

Let’s consider the transition path sampling method for over-damped Brownian motion

in one-dimensional space with arbitrary potential U?(x) as an example. For a path ζ =

ζ({x0, x1, ..., xN}), the probability is

P (ζ) ∝ exp[−U?(x0)]× [ΠN−1
i=0 p(xi, xi+1;U

?)] , (III.6)

where the single-step transition probability corresponding to Eqs.(III.2) and (III.3) is a

Gaussian density, namely

p(xi, xi+1;U
?) =

1√
2πσ

exp




−

[
xi+1 − xi − 1

2

(
−dU?

dxi

)
(2D∆t)

]2

2σ2




. (III.7)

where dU?

dxi
≡ dU?(x)

dx

∣∣∣
xi

.

Then let’s suppose that we already have one “old” path ζo = ζ({y0, y1, ..., yN}), which

connects the initial and final states, and which has Mo steps in the transition region, where

Mo < N . By using the shooting algorithm described above we find a “new” path ζn =

ζ({x0, x1, ..., xN}), which connects the initial and final states by Mn steps, where Mn < N .

These two paths share one point ym(o) = xm(n). Then the generating probability from path

ζo to ζn is

D(ζo → ζn) ∝ 1

Mo

[Π
m(n)−1
i=0 p′(xi, xi+1;U

?)][ΠN−1
i=m(n)p(xi, xi+1;U

?)] . (III.8)
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On the right side of Eq.(III.8), the factor 1
Mo

raises because we randomly choose one point

from part of the old path {y0, y1, ...yMo} to start the shooting algorithm. The single-step

transition probability p(xi, xi+1;U
?) for steps from xm(n) to xN is the same as Eq.(III.7). For

the steps from x0 to xm(n), because this part is generated by shooting backward to the initial

state, the single-step transition probability is

p′(xi, xi+1;U
?) =

1√
2πσ

exp




−

[
xi − xi+1 − 1

2

(
− dU?

dxi+1

)
(2D∆t)

]2

2σ2




. (III.9)

where dU?

dxi+1
≡ dU?(x)

dx

∣∣∣
xi+1

. Similarly the generating probability from path ζn to ζo is

D(ζn → ζo) ∝ 1

Mn

[Π
m(o)−1
i=0 p′(yi, yi+1;U

?)][ΠN−1
i=m(o)p(yi, yi+1;U

?)] . (III.10)

Finally this trial move will be accepted with probability min[1, R], where

R =
Mo exp[−U?(x0)]× [Π

m(n)−1
i=0 p(xi, xi+1;U

?)]× [Π
m(o)−1
i=0 p′(yi, yi+1;U

?)]

Mn exp[−U?(y0)]× [Π
m(o)−1
i=0 p(yi, yi+1;U?)]× [Π

m(n)−1
i=0 p′(xi, xi+1;U?)]

. (III.11)

For different problems, different generating methods can be applied to gain better effi-

ciency for Monte Carlo simulation. For example, we use a new generating method in the

studying of the duration of transition-events in one-dimensional space, which will be dis-

cussed in Sec.IV.B.

The transition path sampling method is one well accepted path sampling approach and

has been coded into popular simulation software, like CHARMM [79].

What are the strengths and weaknesses of transition path sampling? It generates the

correct path ensemble, and it can be very fast in some cases. To apply transition path

sampling, one needs an initial path, which may be difficult to obtain. And it is also difficult

to code a path sampling method based on brute force simulation programs. A more serious

problem is that as a Monte Carlo simulation in the path space, it is possible to be trapped

in a local minimum, and miss other channels. We will come back to check this carefully in

a later chapter.
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2. Weighted ensemble method

The second advanced path sampling method discussed here is called Weighted Ensemble

(WE) method, which was first introduced by Huber and Kim [63]. It has been applied

to study diffusion effects in binding [63, 80–82] and the folding of a simple model protein

[83]. A similar idea has been used by Huber and McCammon to find the global minimum of

complicated functions [84]. We have shown it is a very promising simulation approach to

investigate conformational transitions [85].

a. Method

As we mentioned before, one can run multiple brute-force simulations simultaneously, as a

statistical ensemble, to get an approximate solution of the Fokker-Planck equation. Of course

running all these brute-force simulations simultaneously doesn’t save any computer time.

The weighted ensemble approach also runs multiple brute-force simulations simultaneously.

However, by assigning a different weight for every simulation, and distributing computing

resources toward the evolving tail of the probability distribution (in the direction of the

target), it turns out to be much more efficient to sample rare events than the regular brute-

force simulation.

Figure 11: Probability distribution and histogram of simulations for a regular brute-force

simulation.

Let’s use a simple example to explain the weighted ensemble method. Suppose one wants
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to get the solution to the Fokker-Planck equation for free diffusion with initial condition

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2

P (x, t0) = δ(x− x0) . (III.12)

Assume one runs N standard brute-force Langevin equation simulations for time τ simulta-

neously. Let n(x, τ)dx represent the number of Brownian particles found in the interval x

and x+ dx at time τ , satisfying

∫ ∞

−∞
n(x, τ)dx = N . (III.13)

Then the approximate solution for P (x, τ) in Eq.(III.12) at time τ is given by

P (x, τ) ≈ n(x, τ)

N
. (III.14)

Notice n(x, τ) and P (x, τ) will have the same shape in Fig. 11, and that in this simulation

every Brownian particle has the same weight.

Figure 12: Schematic probability and histogram of simulations for a weighted ensemble

simulation.

In the weighted ensemble approach, separate weights are assigned to all the independent

simulations. By properly accounting for trajectory weights, the weighted ensemble approach

obeys the Fokker-Planck equation, even when trajectories are distributed uniformly in space.
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As shown schematically in Fig. 12, after running N brute-force simulations for time τ using

the weighted ensemble approach, the distribution of P (x, τ) will be the same Gaussian

function, but n(x, τ) is kept as a constant in the whole space. This is because the Brownian

particles around x = x0 carry larger weights than those far away from the middle.

To keep simulations approximately uniformly distributed everywhere, the basic idea is to

observe unbiased trajectories along a “progress coordinate” divided into bins - to replicate

(split) those trajectories which move to empty bins. The progress coordinate is so named

because it need not correspond to a reaction coordinate, which is a strength of the Weighted

Ensemble method. (In an important development we have found that pre-defined progress

coordinate is unnecessary, see Chapter VII.)

The following steps are used in the Weighted Ensemble method:

I. Divide phase space into N bins or regions according to an arbitrarily chosen progress

coordinate. Each bin will be allowed to contain no more than M trajectories at any time.

II. Initially, M independent trajectories are started from the same configuration. Each

carries a weight 1/M .

III. Run all the independent simulations for a fixed time τ .

IV. Check each bin to see if it has become populated.

A. If there are fewer than M trajectories in the bin, split the trajectory (or trajectories)

in the bin so that there are M total. Usually one takes the trajectory in the bin

carrying biggest probability (weight) pmax, and copies an identical simulation from

it. The weights assigned to the original and this new trajectory become pmax/2.

B. If a bin contains more than M trajectories, combine the lowest-weight simulations.

One can take the two trajectories carrying smallest probabilities pmin1 and pmin2,

remove one of them and let the surviving one have the total weight (pmin1 + pmin2).

To perform this “combination” without introducing statistical bias, the “survival”

probabilities of these two trajectories are taken to be pmin1/(pmin1 + pmin2) and

pmin2/(pmin1 + pmin2). See Ref. [63] for details and explanation.

This procedure is repeated until there are M trajectories in the bin.

V. Go back to step III.
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Figure 13: Schematic illustration of the Weighted Ensemble (WE) method, using N = 3

bins and M = 2 simulations per bin following Ref. [80]. After initiating M trajectories,

unbiased dynamics are simulated for a time τ , after which the locations (bins) are checked.

Trajectories are split or combined to maintain M trajectories per bin, while preserving the

correct probabilities in each bin. Dynamics are again initiated and the process repeated.

The lower right box shows the corresponding evolution of the probability histogram.

In Fig. 13 we show a schematic example of the Weighted Ensemble method for a double-

well potential in one dimension. The progress coordinate (x in this case) is divided into

N = 3 bins, and each bin will allow M = 2 simulations. After 3τ , one trajectory carrying

probability P = 1/8 has arrived at the third bin.

b. Estimating the rate in weighted ensemble simulation from short trajecto-

ries

The Weighted Ensemble method embodies a strategy of replicating success (“enrichment”),

which has been introduced early in the construction of polymer configurations [86]; see also

[87]. This strategy makes it possible to sample rare events faster. According to the discus-

sion in Sec. II.E.1, the waiting time of the rare events satisfies the exponential distribution
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P (tw) = γ exp(−γtw) , (III.15)

where γ is the escape rate, as shown schematically in Fig. 14. Then for the brute-force

simulations, the average waiting time for every rare event 〈tw〉 equals 1/γ. But in the

weighted ensemble approach, the maximum time for one trajectory, nτ , can be much smaller

than 〈tw〉, but the method still can produce a “good” rare events ensemble. This means that

by replicating success and splitting weights, the weighted ensemble has the ability to sample

the rare events with short waiting time, which is shown in Fig. 14 by the shadow area. It

should be noticed that, first, the rare events ensemble is not biased because every trajectory

segment follows the prescribed dynamics (with or without history dependence). Second, in

this short timescale, the value of 〈tw〉 can be obtained. According to Eq.(II.129), when time

t = nτ is much shorter than 〈tw〉, the current cross the barrier will be constant because

J(t) = γ exp(−γt) = γ exp(− t

〈tw〉) ≈ γ =
1

〈tw〉 . (III.16)

The probability J(t)τ at time t is the sum of the probabilities of trajectories arriving in the

final state between (t−τ) and t, which can be obtained in the weighted ensemble simulation.

Then 〈tw〉 can be estimated.

Figure 14: The waiting time of the rare events satisfies the exponential distribution.
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c. Strength of the weighted ensemble method

In this thesis, the weighted ensemble method is chosen to investigate conformational transi-

tions for several reasons. First, among path sampling algorithms, it is particularly elegant

and straightforward to implement. Second, the weighted ensemble method appears to be

particularly well-suited for sampling multiple, structurally distinct pathways in a statisti-

cally correct way. Third, it yields both a path ensemble and the reaction rate from a single

simulation. Finally, multiple paths can be found without the need for a pre-specified progress

coordinate. Some of these issues will receive additional discussion in Sec.V.D.

3. Dynamic importance sampling

Building on work by Ottinger, [62] an independent path-sampling approach, dynamic im-

portance sampling (DIMS) was developed by Zuckerman and Woolf [31, 88]. The dynamic

importance sampling method is based on the idea of importance sampling, as the name

suggests. One generates a biased path ensemble by using any available knowledge about it,

then one reweights the ensemble to get the correct statistical result. It avoids the waiting

time for rare events, but depends on the quality of the path-generating method.

a. Reweighting paths

First, let’s review importance sampling. One wants to estimate an average property 〈f〉 of

a path ensemble, consisting of successful transition paths,

〈f〉 =

∫
f(ζ)P (ζ)dζ , (III.17)

where ζ = ζ({~x0, ~x1, ..., ~xN}) denotes a successful path and P (ζ) is its probability. As we

mentioned before, one can in principle run a long brute-force simulation to get the answer.

In fact, a brute-force simulation samples the paths correctly according their probabilities

P , which means the chance of a path ζ appearing during the simulation is proportional to

its P (ζ). Then from Eq.(III.17), after one gets n paths {ζ1, ζ2, ..., ζn} from a brute-force

simulation, the estimate of 〈f〉 is simply

〈f〉 =

∑n
i=1 f(ζi)

n
. (III.18)
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Brute force simulation works, but the average time for generating a successful path and

ultimately an ensemble is too long.

Suppose one can generate a path ensemble really quickly, but the chance of a path ζ

appearing in this ensemble is not proportional to P (ζ), but to D(ζ). Can one still get the

correct estimate of 〈f〉? We will understand how to do it by changing Eq.(III.17) into

〈f〉 =

∫
f(ζ)P (ζ)dζ =

∫
f(ζ)

(
P (ζ)

D(ζ)

)
D(ζ)dζ . (III.19)

Eq.(III.19) tells us that one will still get the right result if one assigns a weight w(ζ) =

P (ζ)/D(ζ) to every path generated. Now 〈f〉 is calculated by using

〈f〉 =

∑n
i=1wif(ζi)∑n

i=1wi

. (III.20)

b. An example of the dynamic importance sampling

Following Zuckerman and Woolf [31], we discuss applying the method to study a two-

dimensional Brownian motion, as shown in Fig. 15. To get a path ζ from state A to state

B, one can do a simulation by using a Langevin-like discrete equation

~xj+1 = ~xj + ∆~xb
j + ∆~xR , (III.21)

where the two components of the white noise ∆~xR are chosen from a Gaussian distribution

of zero mean and variance

σ2 = 2

(
kBT

γ

)
∆t = 2D∆t . (III.22)

In contrast to a brute force simulation Eq.(III.2), we will use some bias force instead of the

real force to drive our particle to state B, which causes displacement ∆~xb
j in Eq.(III.21).

There are many ways to define a bias force; here we just use the one in Zuckerman and

Woolf’s paper [31]. Their choice of the bias displacement for the step j is

∆~xb
j =

~xf − ~xj

N − j
, (III.23)

where ~xf is one target point we choose in state B, and N is the intended total number of

steps of each trajectory. Then the dynamic importance sampling method will sample the

paths shorter than N steps. Other choices, independent of N , are possible.
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Figure 15: Generate new path with a bias force in dynamic importance sampling method [31].

Generalizing from the one-dimensional problem, the probability for one successful path

is

P (ζ) ∝ exp[−U?(~x0)]× [ΠN−1
i=0 p(~xi, ~xi+1;U

?)] . (III.24)

The single-step transition probability in two dimensions is the product of two one-dimensional

Gaussian densities, namely

p(~xi, ~xi+1;U
?) =

1√
2πσ

exp




−

[
xi+1 − xi − 1

2

(
−dU?

dxi

)
(2D∆t)

]2

2σ2





× 1√
2πσ

exp




−

[
yi+1 − yi − 1

2

(
−dU?

dyi

)
(2D∆t)

]2

2σ2




, (III.25)
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where x and y are two components of vector ~x and dU?

dxi
≡ dU?(x,y)

dx

∣∣∣
xi,yi

, dU?

dyi
≡ dU?(x,y)

dy

∣∣∣
xi,yi

.

Let’s assume that when we generate one new path, the start point ~x0 is also chosen

according to the equilibrium distribution, and this path arrives in state B in M steps, where

M < N . Then the generating probability for this path is

D(ζ) ∝ exp[−U?(~x0)]
M−1∏
i=0

g(~xi, ~xi+1; ~xf ;N)
N−1∏
j=M

p(~xj, ~xj+1;U
?) , (III.26)

where

g(~xi, ~xi+1; ~xf ;N) =
1√
2πσ

exp

{
− [xi+1 − xi − (xf − xi)/(N − i)]2

2σ2

}

× 1√
2πσ

exp

{
− [yi+1 − yi − (yf − yi)/(N − i)]2

2σ2

}
. (III.27)

Finally the weight of a path generated by this method is

w(ζ) =
P (ζ)

D(ζ)
. (III.28)

As shown in Ref[31], this procedure works well, for example, for a single particle moving on

the two-dimensional surface. Inspired by this idea, a new generating procedure is applied in

Sec.IV.B for a transition path sampling approach in one-dimensional space.

Dynamic importance sampling is mathematically straightforward and simple to apply.

In principle, it is applicable for large biomolecular systems. The biggest challenge is finding

the path generating methods for different problems. To improve its efficiency, new path

generating methods will have to be developed. More details and applications can be found

in Zuckerman, Jang and Woolf’s papers [31, 67, 72, 88, 89].
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c. Discussion of optimal path-generating function

At first sight, the importance sampling approach discussed above is really impressive because

it seems that any arbitrary generating method will lead to the right answer. But after error

analysis as we sketch here, we conclude that a good choice is to make the generating density

D(ζ) proportional to the absolute value of F (ζ) ≡ f(ζ)P (ζ). A bad choice of D(ζ) will

give an poor statistical result. Following Numerical Recipes in C [90], let’s try to find the

optimal choice of D(ζ). For the function which is estimated

〈f〉 =

∫
f(ζ)P (ζ)dζ =

∫
F

D
Ddζ ≈

〈
F

D

〉

D

±
√
〈F 2/D2〉D − 〈F/D〉2D

N
, (III.29)

where the angle brackets denote the mean value over N sampling points (or paths here) with

distribution D. The last term of Eq.(III.29) is the error

Error =

〈
F 2

D2

〉

D

−
〈
F

D

〉2

D

≈
∫

F 2

D2
Ddζ −

[∫
F

D
Ddζ

]2

=

∫
F 2

D
dζ −

[∫
Fdζ

]2

. (III.30)

The reason for the approximation in Eq.(III.30) is that the angle brackets are also Monte

Carlo sampled estimators of the respective integrals. When F/D > 0, it is obvious that the

best choice is D = F so that the error will vanish, but F/D can possibly be negative. We

can find the general optimal D(ζ) by extremizing

δ

δD

(∫
F 2

D
dζ −

[∫
Fdζ

]2

+ λ

∫
Ddζ

)
= 0 , (III.31)

where λ is a Lagrange multiplier employed to ensure
∫
Ddζ = 1. Eq.(III.31) implies that

D =
|F |√
λ

=
|F |∫ |F |dζ , (III.32)

minimizes the error. Usually F (ζ) = f(ζ)P (ζ) is unknown from a sampling perspective, so

the challenge in using dynamic importance sampling is to generate a good path ensemble.

The previous three path sampling approaches are the major simulation methods I used

in my research. However there are additional path sampling and path generating methods.

To provide additional background I will briefly summarize a few of them.
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4. Langevin dynamics in path space

In Eastman, Grønbech-Jensen and Doniach’s paper [91], the authors presented an interesting

path sampling method, which performs a random walk in path space by following a pseudo

Langevin equation.

First, let’s consider a multiple dimensional over-damped Langevin equation

d~x

dt
=

~F

γ
+ ~R(t) , (III.33)

where γ is the friction coefficient, ~F = −∇U and U is the potential energy of the system,

and ~R represents a Gaussian white noise vector. In the limit of sufficiently small time step,

Eq.(III.33) will produce a canonical probability distribution [8].

For a path ζ = ζ({~x0, ~x1, ..., ~xN}), we have already shown its probability is

Ppath(ζ) ∝ exp[−U?(~x0)]× [ΠN−1
i=0 p(~xi, ~xi+1;U

?)]

∝ exp[−U?(~x0)]

×
(

ΠN−1
i=0

1√
2πσ

exp

{
−

[
~xi+1 − ~xi − 1

2
(−∇U?)(2D∆t)

]2

2σ2

})

∝ exp

(
−U?(~x0)−

N−1∑
i=0

[
~xi+1 − ~xi − 1

2
(−∇U?)(2D∆t)

]2

2σ2

)

∝ exp

(
−S(ζ)

kBT

)
, (III.34)

where

S(ζ) =

{
U?(~x0) +

N−1∑
i=0

[
~xi+1 − ~xi − 1

2
(−∇U?)(2D∆t)

]2

2σ2

}
kBT . (III.35)

Suppose there is an initial trajectory ζ; then one performs the random walking in path

space according to a pseudo-dynamical Langevin-like equation

d ~X

dt′
= −∇S

γ′
+ ~R′(t′) , (III.36)
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where γ′, t′ and ~R′ are the pseudo friction coefficient, time and Gaussian white noise respec-

tively. The vector ~X = {~x0, ~x1, ..., ~xN} represents all the coordinates that define a whole

path ζ. So we can formally rewrite Eq.(III.36) as

dζ

dt′
= − 1

γ′
dS

dζ
+ ~R′(t′) . (III.37)

Compared with Eq.(III.33), we know a simulation following Eq.(III.37) will give the right

canonical probability distribution according to pseudo potential S.

This path sampling method has some connection with the transition path sampling

method mentioned in Sec.III.C.1. Once the weight of a path is accessible, the path space can

be explored by Monte Carlo simulation like transition path sampling; it can also be explored

by Langevin dynamics. In addition to the three advanced path sampling approaches we

mentioned early this chapter (see Sec. III.C.1, Sec. III.C.2 and Sec. III.C.3), this is another

method that can also yield a correct path ensemble. Eastman, Grønbech-Jensen and Doniach

have applied this approach to do reaction path annealing for protein folding, and to search

for more realistic trajectories [91]. Beyond these applications, this method has found little

application.

5. Transition interface sampling

A method for reaction rate calculations that should be mentioned here is named “transition

interface sampling” (TIS), given by van Erp, Moroni and Bolhuis [92]. Indeed, it is a method

measuring the probability flux with the help of transition path sampling. To apply the

transition interface sampling method, one first chooses a reaction coordinate, and introduces

a series of “interfaces” along it. In fact, these interfaces are the same as the borders of

bins in the weighted ensemble approaches in Sec. III.C.2. As we show the example in

Fig. 16, there are two well defined stable states A and B, and the “interfaces” are labeled

λ1, λ2, . . . , λi, . . . , λn−1. λ0 and λn are the boundaries of states A and B, respectively.

The authors of the original paper [92] point out that the reaction rate is given by

kAB = kAΩ1Π
n−1
i=1 Pi,i+1 . (III.38)
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Here λ1 labels a closed surface in configuration space enclosing state A shown in Fig. 16. If

we treat the outside space of λ1 as a state called Ω1, kAΩ1 is the reaction rate between A

and Ω1. According to the definition, kAΩ1 is the effective positive flux through interface λ1

from state A. Because the interface λ1 is very close to state A, this reaction rate kAΩ1 can

be measured easily by brute force simulation. Pi,i+1 in Eq.(III.38) is the probability that the

system arrives at the interface λi+1 before it goes back to state A once it leaves interface λi.

So the right side of Eq.(III.38) is the total effective flux at the boundary of state B. Note

that all the flux calculated in Eq.(III.38) crosses state A at the same time but arrives in

state B distributed over time. Actually it gives the value of the reaction rate if A and B are

the only two stable states, because for the whole system

dProbB
dt

≈ −dProbA
dt

, (III.39)

where ProbA and ProbB are the total probabilities in states A and B, respectively.

Figure 16: Schematic diagram of sampling for p(x0) with given x0 in transition interface

sampling.
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The difficult part is the calculation of Pi,i+1, with λi as a continuous closed surface. We

write this probability as

Pi,i+1 =

∫

λi

Πλi+1
(x)ρ(x)dx , (III.40)

where x is one point in surface λi, Πλi+1
(x) is the probability that the system arrives at

interface λi+1 before it goes back to state A once it leaves point x, If we treat λ0 and λi+1

as two absorbing walls, Πλi+1
(x)is one of the splitting probabilities defined in Sec.II.E.2,

and ρ(x) is the distribution for the start point x as shown below. In Fig. 16, we show a

schematic diagram of sampling of Πλi+1
(x) with given x. Πλi+1

(x) is easy to get by brute

force simulation again because λi and λi+1 are close to each other and the relaxation to state

A is very fast. But what is ρ(x)? It is determined by the current at λi,

ρ(x) =
J(x)∫

λi
J(x)dx

, (III.41)

where J(x) is current reaching point x. Then ρ(x) will be decided by the total probability

of all the paths, which are between interfaces λ0 and λi, and start at start A and end at x.

The choice of x on surface λi is done by the transition path sampling method, discussed in

Sec.III.C.1.

Let’s briefly review the steps of transition interface sampling:

• find the reaction coordinate and define the “interface”

• obtain the flux kAΩ1 by using brute force simulation

• generate the first path connecting state A and λ1, x is the position where this path ends

in interface λ1

• get Πλ2(x) by running lots of brute simulations starting from x, which will end either in

state A or λ2

• generate a new path connecting state A and λ1 from the old path, accept it with a

probability min[1,WN/WO], where WN and WO are the weights of the new and old

paths. If the new path is accepted, one will sample Πλi+1
(x) at new x, which is the

position where this new path ends in λ1. Otherwise one just uses the value Πλi+1
(x)

giving by the old path one more time. Change x on this surface by transition path

sampling and repeat until one reaches a converged value of P1,2.
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• move to the next interface and finally arrive at the border of state B

• the reaction rate is given by kAB = kAΩ1Π
n−1
i=1 Pi,i+1.

For more detail and discussion please refer to Refs. [92–94].

Transition interface sampling method is a relatively new method and has not been applied

widely. It is a better way to calculate reactions rate than the one given by the original

transition path sampling method paper [75]. But its efficiency and accuracy may depend on

the choice of the reaction coordinate and the set of “interfaces”. Because it is based on the

transition path sampling, the failure of transition path sampling (for example, paths occur

in multiple channels) will produce the wrong results.

6. Others

Almost simultaneously to the introduction of transition interface sampling, another method,

called “milestoning” was developed by Faradjian and Elber [60, 95]. The milestoning method

is similar to transition interface sampling in that it also divides space into volumes along a

reaction coordinate, and glues all the information together to get the reaction rate. Allen

and his coworkers introduced the “forward flux sampling” method later [96], which differs

from the transition interface sampling method in the way of sampling ρ(x) in Eq.(III.41).

D. PATH FINDING TECHNIQUES

We note that a number of ad hoc path generating approaches have been developed for

biological systems [71, 97–104], but these do not lead to properly distributed path ensembles

or timescales. Many earlier efforts have also been directed to determining single, optimal

paths [101, 105–111].

1. Targeted molecular dynamics

Targeted molecular dynamics (TMD) is a tool for finding one transition path connecting

given initial and targeted final conformations [98, 112]. It was first introduced by Schlitter,
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Engels, Krüger, Jacoby and Wollmer in 1993 [98], and has become a quite popular approach

for path finding. However the targeted molecular dynamics does not generate the true path

ensemble, and should be distinguished from the previous path sampling methods.

Figure 17: Schematic representation of two-dimensional targeted molecular dynamics. The

red lines show the path from ~x0 to ~xf . Between two points ~xi and ~xi+1, the first arrow is the

displacement caused by the regular molecular dynamics ∆~x0
i+1 and the second arrow is the

additional displacement ∆~xa
i+1.

To apply the technique, one must first define a distance between two conformations.

Following Schlitter, we use vector ~x = x1, x2, ..., xj, ..., x3N to represent one molecular con-

formation. The distance between any conformation ~xi and the targeted final one ~xf is

ρ(~xi) = |~xi − ~xf | =
√√√√

[∑
j

(xij − xfj)2

]
. (III.42)

Then one decides on a total simulation time ts. Targeted molecular dynamics will find a

path with total number of steps n = ts/∆t, where ∆t is the time step. To complete this job,
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an additional displacement in the conformational space will correct the regular molecular

dynamics so that for each time step ∆t, the average change of conformational distance is

∆ρ =
ρ0

n
=
|~x0 − ~xf |

n
, (III.43)

where ρ0 is the distance between initial and final conformations.

There are an infinite number of ways to adjust or bias the molecular simulation to satisfy

Eq.(III.43). In the original paper [98], the additional displacement for the (i+ 1)th step is

chosen as

∆~xa
i+1 = k(~xf − ~xi) , (III.44)

where k is a parameter which will be calculated. For the (i+1)th step simulation, the change

in the conformational space is

∆~xi+1 = ~xi+1 − ~xi = ∆~x0
i+1 + ∆~xa

i+1 , (III.45)

where ∆~x0
i+1 is the value given by the natural molecular simulation. Then the constraint

Eq.(III.43) gives the equation for k

(~xi+1 − ~xf )
2 − ρ2

i+1 = 0 , (III.46)

where

ρi = ρ0
[n− i]

n
. (III.47)

After substituting xi+1 by using Eq.(III.44) and (III.45), Eq.(III.46) becomes

(~xf − ~xi)
2k2 + 2(~xf − ~xi) · (~xi + ∆~x0

i+1 − ~xf )k + (~xi + ∆~x0
i+1 − ~xf )

2 − ρ2
i+1 = 0 . (III.48)

This quadratic equation yields two values of k, which correspond to two points on the multiple

dimensional sphere (or on the circle in two-dimensional space) whose radius is ρi+1 and center

is at ~xf . The lower absolute value will be taken. It is possible the solutions are imaginary,

but we will not discuss that situation here. One will repeat doing this until the trajectory

reaches the final targeted conformation. In Fig. 17, we show a schematic representation of

two-dimensional targeted molecular dynamics.
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Targeted molecular dynamics has been applied to finding the path of large protein con-

formational change, for example, GroEL [113], which is a protein “chaperone” that can

assist the folding or unfolding of other proteins. This path generating approach is still under

development by several groups [101]. The paths generated by targeted molecular dynam-

ics carry no information of their weights. Then the relative importance of these paths is

unknown. But for a big protein like GroEL, finding one path of conformational change is

already very exciting. Targeted molecular dynamics has also been coded in CHARMM.

2. Steered molecular dynamics simulation

Steered molecular dynamics (SMD) was developed to reveal the microscopic processes under-

lying atomic force microscope (AFM) observations of ligand binding [114]. The basic idea is

to apply an external harmonic force, with force constant close to those of AFM cantilevers,

to the protein or ligand in the simulation [114–116]. The steered molecular dynamics sim-

ulation will not give the true path ensemble either. A schematic illustration is shown in the

left panel of Fig. 18.

Figure 18: Schematic diagram of steered molecular dynamics simulation. The left panel

shows the study of the rupture force of ligand binding. The right panel shows one Ig domain

of titin, which will unfold when it is stretched. There are multiple tandem Ig domains in

one titin protein [117].
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Steered molecular dynamics simulation was used to study the transition between states

because the external force can help the molecular system overcome the barrier and shorten

the waiting time for a rare event [118]. The most successful example is the simulation

for the modular protein titin done by Schulten and coworkers [117, 119]. Titin is a giant

muscle protein, which is responsible for the passive elasticity of muscle. Some domains

of titin will unfold one by one when it is pulled, just like a molecular spring. So steered

molecular dynamics is an ideal method to study its unfolding pathway. In the right panel of

Fig. 18, we show one tandem Ig domain of titin, whose extension increases the titin length

by ∼ 300Å[117].

Like the targeted molecular dynamics, steered molecular dynamics will not give the

weight of paths. Since the structure of the macromolecule changes under a steering force,

these paths may not be close to the natural path only driven by thermal noise.

With the help of Jarzynski’s equality [120, 121], steered molecular dynamics simulation

can be used to calculate the potential of mean force [122], an interesting application, which,

however, is beyond the scope of this thesis.
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IV. DURATION OF TRANSITION-EVENTS

A. INTRODUCTION

In this chapter, we will study the distribution, ρb(t), of the durations of transition-events

over a barrier in a one-dimensional system. The results of this chapter have been reported

in the Journal of Chemical Physics [123].

Basic aspects of the problem we address can be understood by examining Figs. 19 and

20, where we show a trajectory for a Brownian particle moving in a one-dimensional double-

well potential. There are two timescales of primary interest [2]. One is the waiting time,

or first passage time (FPT), which is the time the particle stays in one potential minimum

before it goes to the other minimum. Theoretical analysis of the first passage time is largely

a textbook subject now [7, 8]; see also [124–126] and Sec.II.E.1.

Figure 19: Trajectory for a Brownian particle moving in a double well potential. The left

graph is a long trajectory with several transition-events. The right graph focuses on a single

transition-event cut from the same long trajectory.
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The other timescale — the focus of the present study — is that for just climbing over

the barrier separating the two minima, excluding the waiting time. We refer to this as the

“transition-event duration” or tb, where the subscript connotes “barrier”; it has also been

termed the “translocation time” in the context of membrane and pore traversal [127]. In

the right-hand graph of Fig. 19, one transition-event extracted from the full time series on

the left is shown at higher temporal resolution. The duration may be defined in a simple

way, based on start and end points (or surfaces, more generally) as shown in Fig. 20: it is

the interval between the last time the trajectory passes the start point and the first time it

reaches the end point.

Figure 20: The definition of the transition-event duration, tb. In the left graph, two bound-

aries are defined as the start point a and end point b of the transition. In the right graph,

tb is the duration between the last time the particle passes a and the first time it passes b.

Note that our analysis does not require placement of the boundaries at the minima of the

potential.

Several factors underscore the importance of the transition-event duration and its dis-

tribution. First, in molecular systems, the event duration directly reflects details of the

reaction or isomerization mechanism, in that it is a characteristic of the reaction pathway.

By contrast, the FPT convolves equilibrium fluctuations and transition dynamics. Second,

in that a statistical mechanical description indicates that activated molecular processes gen-

erally may occur according to an ensemble of pathways and “speeds,” the distribution of the

scalar event duration can be seen as the simplest quantitative measure of the heterogeneity
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expected in transition-events. The need for an ensemble picture has been evident at least

since saddle-point avoidance was discussed more than 20 years ago [105]. Not surprisingly,

the statistics of event durations are of current biological interest in transport through ion

channels [127–129], and polymer translocation through a pore [130–134]. Looking toward

the future, the degree of heterogeneity in trajectories describing protein activity is a largely

unaddressed general issue with potentially significant biochemical implications [53]. Re-

cently developed nanosecond and femtosecond-scale experimental techniques [135, 136] one

day may prove capable of directly probing transition-events.

The third factor highlighting the importance of the event-duration distribution is the

considerable current interest in path sampling computations. These include quite a few

methods explicitly incorporating the ensemble picture [59–61, 63, 64, 67, 76, 88, 91, 92,

94, 137]. Some of these approaches could benefit from a detailed description of the duration

distribution [59, 61, 64, 67, 76, 88, 91, 137] although in principle, others do not require pre-

determined knowledge regarding event durations [60, 63, 92, 94]. Aside from ensemble-based

methods, other approaches seek optimal (single) paths [105–111].

Why study a one-dimensional description of transition-events, as is done in the present

report? Our investigation was motivated by an earlier simulation study suggesting a close

similarity between the distribution of transition-event durations in butane and a family of

one-dimensional systems [72]: were there general lessons to be learned from an analytically

tractable model? Analytical results, even for the simplest of one-dimensional systems, can

provide a valuable theoretical reference point for future comparisons to molecular studies.

Indeed, as will be seen, our analysis indicates which features of the distribution are expected

to be general (system independent) and which will depend on details of a potentially com-

plex energy landscape. Finally, we note that pore and channel systems can be considered

effectively one-dimensional [127–134].

Transition-event durations have received previous theoretical attention. The earliest

treatments were based on optimization of the Onsager-Machlup action [138]; see [139–

148]. The distribution of transition paths is implicit in the “pre-history” description invoked

by Dykman and colleagues [149–151]. Some explicit attention has been focused on the

event-duration distribution [72, 127, 129, 131, 134, 152, 153]. Notably, the distribution was
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studied in a phenomenological way by Zuckerman and Woolf [72], and Hummer provided

an analytic formula for the mean transition-event duration for an arbitrary one-dimensional

potential [152]; see also [131, 134]. Indirectly, Redner’s study of the first passage time in

an interval supplies important precedents for our work [154], as does Gardiner’s book [7].

Two groups have recently discussed the time-reversal symmetry of the ρb distribution, albeit

without attempting the detailed probe of the distribution itself [127, 129], which we pursue

here. Other efforts directed at polymer translocation [130, 132, 133] investigated a related

but distinct problem, critically differing in boundary conditions; see Sec. IV.C.

In this work, we attempt a rather complete description of the distribution of event dura-

tions for a class of one-dimensional systems. We first review the derivation of the probability

distribution of the transition-event durations, ρb(t), from the Fokker-Planck Equation (FPE)

with particular boundary conditions. We then obtain novel results. A recursive formula for

all the moments of ρb(t) is found, which permits accurate numerical approximations of ρb for

an arbitrary potential. The short-time behavior of ρb is studied by path integral techniques,

yielding universal behavior along with a potential-dependent correction. In turn, this leads

to an estimate of an important characteristic time. For a bistable potential with a high bar-

rier (i.e. a “double-well”), the long time behavior of ρb(t→∞) is described. The generality

of the results — or their specificity to one-dimensional models — is discussed throughout

and summarized in the Concluding Discussion.

B. SIMULATION

All of our key analytic results to be discussed below have been confirmed via numerical

simulation. Here our transition path sampling simulation approaches are briefly described.

The basic idea of transition path sampling has been introduced in Sec.III.C.1. To pro-

ceed, we must establish the equilibrium and generating probabilities in Eq.(III.5). The

“equilibrium” probability Ppath of the N -step path from a to xN is the product of the equi-

librium probability for the initial point and all subsequent single-step transition probabilities

consistent with Eqs.(III.2) and (III.3). We further restrict our ensemble to “successful” paths
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containing transition-events by formally introducing a projection operator θ. Thus we have

Ppath({a, x1, ..., xN}) ∝ exp[−U?(a)]× [ΠN−1
i=0 p(xi, xi+1;U

?)]× θ({xi}) . (IV.1)

The single-step transition probability corresponding to Eqs.(III.2) and (III.3) is a Gaussian

density, namely

p(xi, xi+1;U
?) =

1√
2πσ

exp




−

[
xi+1 − xi − 1

2

(
−dU?

dxi

)
(2D∆t)

]2

2σ2




. (IV.2)

where dU?

dxi
≡ dU?(x)

dx

∣∣∣
xi

. If the particle returns to the left boundary a before arriving at the

right boundary b, θ = 0; otherwise θ = 1.

We employ a novel path generating procedure designed to focus simulation effort on the

distribution ρb(t) of interest and, as necessary, on the rarest trial events. Our path generation

strategy is closely related to a non-Metropolis re-weighting procedure previously considered

by Zuckerman and Woolf [31]. Specifically, a trial path is built up “from scratch”, but

based on the average behavior of the previous path. From the previous path, which starts

from a and arrives at b after Mold (Mold < N) steps without being re-absorbed at a, we can

calculate the average velocity over total “time” 2MoldD∆t as

v̄(Mold) =
b− a

2MoldD∆t
. (IV.3)

This will be the “target speed” of the new trial path. This is extremely useful when studying

the fastest events, whose transition-event durations are much shorter than 〈t〉b.
To generate a new path, we linearly bias the particle from a to b using

xj+1 = xj + (v̄(Mold))(2D∆t) + ∆xR , (IV.4)

where ∆xR has been defined in Section III.B following Eq(III.2). Eq.(IV.4) may be compared

to the unbiased form (III.2). The linear bias in (IV.4) is motivated by the quasi-ballistic

quality of the fastest transition-events deriving from Eq.(II.108) in the limit E À DVmax,

where Vmax is the maximum of V (x) defined by Eq.(II.58). Thus, on the new path, the

particle moves with a constant drift (bias) velocity, as if the force were constant, affected

by ordinary noise. Note that for the new trajectory generated by Eq.(IV.4), the new value,
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Mnew, can be larger or smaller than Mold. Once it arrives at b, we remove the bias and allow

the particle to move for the remainder of N steps as governed by unbiased Brownian motion

Eq.(III.2). As noted above, all the paths formally must contain the same number of steps

for probabilities to be compared in our Metropolis procedure using Eq.(III.5); see, however,

Ref. [94].

The generating probability (gen) for our procedure is the conditional probability with

which we choose the new path, given the old one (with its average speed), namely,

gen(old→ new) =
Mnew−1∏

i=0

ḡ(xi, xi+1; v̄(Mold))
N−1∏

j=Mnew

p(xj, xj+1;U
?) , (IV.5)

where

ḡ(xi, xi+1, v̄(Mold)) =
1√
2πσ

exp

{
− [xi+1 − xi − (v̄(Mold))(2D∆t)]2

2σ2

}
. (IV.6)

This generating method is tailored to the potentials and boundary conditions we study in

this paper, so that the Brownian particle will not be trapped in any position between the

two absorbing walls.

By substituting Eqs.(IV.1),(IV.2),(IV.5) and (IV.6) into Eq.(III.5) we arrive at the ac-

ceptance criterion for our generating procedure, namely

R =

∏Mnew−1
i=0 p(xi, xi+1, U

?)θnew

∏Mold−1
i=0 ḡ(yi, yi+1, v̄(Mnew))∏Mnew−1

i=0 ḡ(xi, xi+1, v̄(Mold))θold

∏Mold−1
i=0 p(yi, yi+1, U?)

, (IV.7)

given an old transition path (a, y1, y2......yMold
, yMold+1.....yN) and a trial transition path

(a, x1, x2......xMnew , xMnew+1.....xN).

To ensure the correct behavior of our procedure and code, path-sampling results were

carefully checked against direct simulation, using Eq.(III.2), in a number of cases. In the

following sections of the paper, all the simulation results employ the path-sampling method

just described.

We also checked that our path-sampling simulations greatly exceeded the correlation

time resulting from our use of the “old” average velocity in Eq.(IV.3). This resulted in

negligible statistical uncertainty, as can be gauged from the smoothness of the data in all

path-sampling figures.
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C. TRANSITION-EVENTS

1. Distribution of transition-event duration

The distribution of transition-event durations, ρb(t), for a Brownian particle confined to

one dimension can be found by solving the Fokker-Planck equation using suitable boundary

conditions, as we now describe [131, 134].

During the entire transition process the particle must move between a and b, which

means that only trajectories that stay completely within the interval are considered, i.e.

a ≤ x(t) ≤ b during the entire event. To eliminate the extraneous trajectories, absorbing

walls must be put at the start and end points, [131, 134], so that

P (a, t) = 0

P (b, t) = 0 . (IV.8)

As recently stressed by Berezhkovskii [127], et al., the dual absorbing boundary conditions

distinguish the event duration as a “conditional first passage time”, rather than the usual

unconditional time associated with the Kramers’ problem [2, 127]. This contrasts with

several previous studies of polymer translocation [130, 132, 133].

One releases particles very close to the left absorbing wall at t = 0, so that the initial

condition is

P (x, 0) = δ[x− (a+ ε)] , (IV.9)

with ε→ 0+. Then the current at the right absorbing wall will determine the distribution,

ρb, of durations according to

ρb(t) ∝ lim
ε→0+

J(b, t) , (IV.10)

with the currents given in Eq.(II.46). Following Gardiner’s work [7], let πb(a+ ε|t) equal the

probability that a particle, released at a+ ε, is absorbed at the right absorbing wall during

0 < τ < t. It is easy to see that

πb(a+ ε|t) =

∫ t

0

J(b, τ)dτ . (IV.11)
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If we define

Πb(a+ ε) ≡ πb(a+ ε|∞) =

∫ ∞

0

J(b, τ)dτ , (IV.12)

this “splitting probability” can be used to normalize ρb(t) in Eq.(IV.10) according to

ρb(t) = lim
ε→0+

J(b, t)∫∞
0
J(b, τ)dτ

= lim
ε→0+

J(b, t)

Πb(a+ ε)
. (IV.13)

We note that the splitting probabilities are time-independent and follow directly from the

potential U? according to [7, 152]:

Πa(x) =

∫ b

x
exp[U?(x′)]dx′∫ b

a
exp[U?(x′)]dx′

Πb(x) =

∫ x

a
exp[U?(x′)]dx′∫ b

a
exp[U?(x′)]dx′

= 1− Πa(x) . (IV.14)

Hence, to find the distribution of the transition-event durations, ρb(t), one must solve

the Fokker-Planck equation (II.44) with the initial condition (IV.9) and absorbing boundary

conditions (IV.8). The current, J(b, t), can be found from Eq.(II.46), which can then be

combined with the splitting probabilities to find the normalized distribution of transition-

event durations, ρb(t).

2. Examples: free diffusion and linear potential

The solution of the Fokker-Planck equation can be formally expressed, in standard fashion,

in terms of the eigenvalues and eigenfunctions of a time independent equation [8], as we

mentioned in Sec.II.C.2.e. The solution can be written in the form

P (x, t) =
∑

n

Anpn(x)e−λnt , (IV.15)

where the eigenvalues {λn} are non-negative and, based on Eq.(II.44), the eigenfunctions

satisfy

D

{
d

dx

[
dU?(x)

dx

]
+

d2

dx2

}
pn(x) = −λnpn(x) . (IV.16)

Eq.(IV.16) with boundary conditions (IV.8) determine the functions {pn(x)}, while the con-

stants {An} are found from the initial condition (IV.9). The distribution ρb(t) follows from

Eqs.(IV.13) and (IV.14). As examples, we determine ρb(t) for a few special potentials U?(x).
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This will reveal some interesting features. We note that the linear potential, of which free

diffusion is a special case, previously was studied by Lubensky and Nelson [131], although

without numerical simulations.

Free Diffusion. Even in the absence of a true barrier, the event duration is still well

defined by the formalism above, and this simple case acts as a useful reference. We therefore

first consider free diffusion, with U?(x) = 0 and a = 0, b = L.

The solution of Eq.(IV.16) can easily be found, and the result can be formally expressed

as

ρ
(0)
b (t) = 2D

∞∑
j=1

(−1)j+1

(
jπ

L

)2

exp

(
−j

2π2

L2
Dt

)
. (IV.17)

Notice that at long times the decay is exponential and dominated by the lowest eigenvalue.

The right-hand side of Eq.(IV.17) is well behaved for long time, but is not useful for

t→ 0. We can re-cast the result in a format useful at short times by using the Poisson sum

formula [155],
∞∑

n=−∞
f(n) =

∞∑
j=−∞

∫ ∞

−∞
f(x) exp(−2iπjx)dx , (IV.18)

for function f . We then find an alternative representation

ρ
(0)
b (t) =

2L√
πDt3

∞∑
j=0

[
(2j + 1)2L2 − 2Dt

4Dt

]
exp

[
−(2j + 1)2L2

4Dt

]
, (IV.19)

which can be used to extract the behavior as t→ 0, namely

ρ
(0)
b (t) ∼ t−5/2 exp

[−L2

4Dt

]
, t→ 0 . (IV.20)

We note that Eq.(IV.19) can also be derived using an image method [154].

Linear Potential. The solution for the linear potential, U?(x) = kx, which corresponds to

a constant drift velocity, can also be formally written in terms of an eigenfunction expansion

[131],

ρb(t) = 2D
∞∑

j=1

(−1)j+1

(
jπ

L

)2 [
sinh(kL/2)

kL/2

]
exp

{
− [(kL/2)2 + j2π2]

L2
Dt

}
. (IV.21)

Comparing with Eq.(IV.17), the result can be written

ρb(t) = ρ
(0)
b (t)

[
sinh(kL/2)

kL/2

]
exp

[
−(kL/2)2

L2
Dt

]
. (IV.22)
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Figure 21: Scaled event duration distribution for free diffusion and the linear potential. The

left graph is for free diffusion with different widths L, where data points are from path-

sampling simulations and the solid line represents numerical evaluation of Eq.(IV.17). The

right graph is for the linear potential U? = kx with different widths L and different slopes k;

the points are data from path-sampling simulations and the lines are numerical evaluations

of Eq.(IV.21).

In the left graph of Fig. 21 we show path-sampling simulation results following Sec-

tion IV.B for ρb for free diffusion with U? = 0, L = 1.0 and U? = 0, L = 2.0. They are

compared with the numerical evaluations of Eq.(IV.17). The path-sampling simulations and

numerical results from the eigenfunction expansions match very well. We changed the units

of the vertical and horizontal axes, so that all the curves of ρ
(0)
b will not depend on the width

L, and the generic behavior is highlighted.

In the right graph of Fig. 21 we show path-sampling simulation results for the a series of

parameterizations of linear potential: U? = 4.0x, L = 2.0, U? = 8.0x, L = 1.0, U? = 9.0x,

L = 2.0, and U? = 18.0x, L = 1.0, which are compared to numerical evaluation of Eq.(IV.21).

The simulation and numerical results again match very well. We again scaled the axes to

emphasize that the shape of ρb only depends on the value of kL, which is essentially the

potential energy difference between the start and end points. These exercises add confidence

to the path-sampling methods used here.
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3. Approximate solution for inverted parabolic potential

As a first investigation of a more realistic potential, we employ a crude representation of

absorbing boundary conditions. In Fig. 22, inverted parabolic potentials are shown, one

with open boundary conditions and the other with two absorbing walls(U? → −∞; see,

e.g., [8]). When the “barrier” is high i.e., when U?(0) À U?(a = −1) = U?(b = 1), a

particle exiting the region a < x < b, has a small likelihood of returning with open boundary

conditions, because of the rapidly increasing “downhill” forces external to the region. Thus,

as long as there is a sufficiently high barrier, one might conclude the solution for open

boundary conditions will be a good approximation for an inverted parabolic potential with

two absorbing walls. We now investigate this approximation.

Figure 22: Inverted parabolic potential with different boundary conditions. The left graph

is the inverted parabolic potential U? = 20(1 − x2), with open boundary conditions, while

the right graph is the same potential with two absorbing walls at x = −1 and x = 1.

With open boundary conditions, the exact solution of the Fokker-Planck equation for an

inverted parabolic potential, U? = −1
2
αx2, is well known [8]:

P (x, t) =

√
α

2π[1− exp(−2αDt)]
exp

{
−α[x exp(−αDt)− a]2

2[1− exp(−2αDt)]

}
exp(−αDt) , (IV.23)

which satisfies the initial condition

P (x, 0) = δ(x− a) . (IV.24)
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For the same potential with absorbing walls at −W and W , we approximate the current

from Eqs.(IV.23) and (II.46) with a = −W and b = W ,

J(W, t) =

(
DαW

4

√
α

π

)
exp [− (αW 2/2) coth (αDt/2)]

sinh (αDt/2)
√

sinh(αDt)
. (IV.25)

For normalization we will need

N =

∫ ∞

0

J(W, t′)dt′ , (IV.26)

which is the total probability passing to the right of x = W . Under the influence of this

inverted parabolic potential, this probability will not pile up but will flow toward x → ∞.

Thus

N = Π∞(−W ) =

∫ −W

−∞ exp(−1
2
αx2)dx∫∞

−∞ exp(−1
2
αx2)dx

=
erfc(W

√
α/2)

2
, (IV.27)

from which one obtains the approximation

ρb(t) '
{

DαW

2[1− erf(W
√
α/2)]

} (√
α

π

)
exp [− (αW 2/2) coth (αDt/2)]

sinh (αDt/2)
√

sinh(αDt)
, (IV.28)

where erf(x) = 1 − erfc(x) = 2√
π

∫ x

0
exp(−z2)dz [156]. In Fig. 23 we compare the results

from direct simulation and from Eq.(IV.28) for inverted parabolic potentials with different

heights. In the simulations the two absorbing walls are placed at a = −1.0 and b = 1.0; then

the height of the barrier is given by α/2.

As expected, this approximation improves with increasing barrier height.
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Figure 23: The event-duration distribution ρb for inverted parabolic potentials with different

dimensionless barrier heights α
2
. The absorbing walls are at −W and W , with W = 1.

The data are from path-sampling simulations (points) and numerical evaluations (lines) use

the approximate formula, Eq.(IV.28). This approximation improves with increasing barrier

height.

4. Moments of the distribution of transition-event durations

a. Recursive formula

In studying a distribution, it is natural to investigate its moments. Gardiner [7] provides an

expression for the first moment of ρb(t) (i.e., the mean time), which is also given by Hummer

[152] and Chern et al. [134]. Here we derive a recursive formula for all moments of ρb(t),

as suggested by Gardiner [7].

Following Gardiner, we define gb(x, t) as the total probability that the particle is absorbed

80



at b after time t, given that it is released at position x at t = 0. Thus

gb(x, t) ≡
∫ ∞

t

J(b, τ)dτ , (IV.29)

and we have the initial condition

P (x′, 0) = δ(x′ − x) . (IV.30)

The limiting cases for gb(x, t) are

gb(x, t = 0) = Πb(x)

gb(x, t = ∞) = 0 , (IV.31)

where Πb(x) is defined in Eq.(IV.14) .

The nth moment, Tn, of the exit time distribution for particles released at arbitrary

a < x < b can be calculated from gb(x, t) according to

Tn(b, x) = −
∫ ∞

0

tn
∂

∂t

[
gb(x, t)

gb(x, 0)

]
dt =

n

Πb(x)

∫ ∞

0

tn−1gb(x, t)dt , (IV.32)

so that Tn(b, a) is the nth moment of ρb. Gardiner [7] shows that gb(x, t) satisfies the

backward Fokker-Planck equation

(
−DdU

?

dx

)
∂gb(x, t)

∂x
+D

∂2gb(x, t)

∂x2
=
∂gb(x, t)

∂t
. (IV.33)

Multiplying by ntn−1 on both sides and integrating with respect to t yields

(
−DdU

?

dx

)[
n

∫ ∞

0

tn−1∂gb(x, t)

∂x
dt

]
+D

[
n

∫ ∞

0

tn−1∂
2gb(x, t)

∂x2
dt

]
= n

∫ ∞

0

tn−1∂gb(x, t)

∂t
dt .

(IV.34)

Now the right side can be integrated by parts to find

n

∫ ∞

0

tn−1∂gb(x, t)

∂t
dt = −nΠb(x)Tn−1(b, x) , (IV.35)

and with Eq.(IV.32),

(
−DdU

?

dx

)
dy(x)

dx
+D

d2y(x)

dx2
= −nΠb(x)Tn−1(b, x) , (IV.36)
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where

y(x) ≡ Πb(x)Tn(b, x) . (IV.37)

The boundary conditions on y(x) are

y(b) = y(a) = 0 . (IV.38)

One way to solve equations like (IV.36) uses Green’s functions [157]. The function that

satisfies the homogeneous equation corresponding to Eq.(IV.36) with boundary condition

(IV.38) at a is, in fact, Πa(x); correspondingly at b, it is Πb(x). Using these solutions, one

obtains a recursive formula for all the moments

Tn(b, x) =
n

D

{∫ b

a

exp[U?(x′)]dx′
} {

Πa(x)

Πb(x)

∫ x

a

exp[−U?(x′)]Π2
b(x

′)Tn−1(b, x
′)dx′

+

∫ b

x

exp[−U?(x′)]Πa(x
′)Πb(x

′)Tn−1(b, x
′)dx′

}
. (IV.39)

Our main interest is in the moments of ρb, namely,

Tn(b, a) =
n

D

{∫ b

a

exp[U?(x)]dx

}{∫ b

a

exp[−U?(x)]Πa(x)Πb(x)Tn−1(b, x)dx

}
.(IV.40)

Given the moments according to Eq.(IV.40), the distribution of transition-event durations,

ρb(t), can be reconstructed numerically, at least for a fixed range of t.
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b. Lowest eigenvalue

From Eqs.(II.46) and (IV.15) one knows that ρb(t) can be written in the series

ρb(t) =
∞∑

n=1

Cne
−λnt , (IV.41)

where the eigenvalues defined by Eq.(IV.16) satisfy 0 < λ1 < λ2 < λ3 < .... The eigenvalues,

in particular λ1, can be found via direct numerical solution of Eq.(IV.16). Here we show

an alternative based on integrations involving the potential. The first eigenvalue λ1 can

be expressed in terms of the high-order moments because of asymptotically exponential

behavior. When nÀ 1,

Tn(b, a) =

∫ ∞

0

tnρb(t)dt

= Γ(n+ 1)
C1

λn+1
1

[
1 +

C2

C1

(
λ1

λ2

)n+1

+
C3

C1

(
λ1

λ3

)n+1

+ ...

]
, (IV.42)

where Γ(n) is the Gamma function. The lowest eigenvalue can then be estimated from a

ratio of high moments; for example,

λ1 = lim
n→∞

[
Tn(b, a)

Tn+1(b, a)
(n+ 1)

]
, (IV.43)

and from Eq.(IV.42), the constant can be determined according to

C1 = lim
n→∞

Tn(b, a)λn+1
1

Γ(n+ 1)
. (IV.44)

Recalling that the moments can be constructed via successive integration, Eq.(IV.43) pro-

vides a way to estimate the first eigenvalue in Eq.(IV.41). In Section IV.C.6 Eq.(IV.43) will

be used together with simulations to check an approximate analytic result for the leading

eigenvalue in a representative case.
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c. First moment

For n = 1, using T0(b, a) = 1, Eq.(IV.40) yields the first moment of the distribution of

transition-event durations [152], see also [134],

T1(b, a) =
1

D

{∫ b

a

exp[U?(x)]dx

}{∫ b

a

exp[−U?(x)]Πa(x)Πb(x)dx

}
. (IV.45)

We can immediately evaluate T1 for the simple potentials. For free diffusion with U? = 0

and a = 0, b = L,
2DT 0

1

L2
=

1

3
. (IV.46)

With U? = kx, a = 0, b = L,

2DT1

L2
=

2

(kL)2

[
kL coth

(
kL

2

)
− 2

]
. (IV.47)

For an inverted parabolic potential U? = H(1− x2

W 2 ), where the curvature α = 2H
W 2 , and

a = −W , b = W , we can find an approximation of T1. When H À 1, by using the method

of steepest descents, ∫ W

−W

exp[U?(x)]dx ≈ exp(H)

√
2π

α
, (IV.48)

and

Πa(x)Πb(x) ≈
1−

[
erf

(
x
√

α√
2

)]2

4
. (IV.49)

Then

2DT1 ≈
√

2π

α

∫ W

0

exp

(
Hx2

W 2

) 

1−

[
erf

(√
Hx

W

)]2


 dx

=

√
πW 2

H

∫ √
H

0

exp(y2){1− [erf(y)]2}dy

=

√
πW 2

H

{∫ 1

0

exp(y2){1− [erf(y)]2}dy +

∫ √
H

1

exp(y2){1− [erf(y)]2}dy
}

≈ W 2

H
[1.27 + log(H)] =

2

α
[1.27 + log(H)] . (IV.50)
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Eq.(IV.50) provides a good approximation for T1 for the inverted parabolic potential with

high barrier. It also gives a rough estimate of T1 for a “single-bump” barrier with height H

and width 2W .

Naively, one might guess T1 should simply be proportional to the effective frequency for

the barrier top, namely, the inverse curvature α−1. However, this intuition falls short in two

respects. First, the logarithmic term in Eq.(IV.50) is dominant for large barriers, for this

simplest purely parabolic potential. Further, in extensive numerical work, for a double-well

potential, we have seen unambiguously that the mean event duration is sensitive to details

of the potential far from the barrier top (data not shown). This sensitivity can be traced

to the dependence of the optimal “speed”, Eq.(II.108), on details of the potential. To give

an extreme example, if there were a second barrier and minimum in the potential, then T1

would have to include the Kramers’ time for the second barrier.

d. Reconstruction of ρb from moments

Reconstructing a function approximately from a finite number of moments has been studied,

e.g., by maximum entropy method [158–160], continued fraction approach [161, 162], and

Talenti method [163, 164] and perhaps other techniques. Here we follow Hon and Wei’s

work [164] to reconstruct the density ρb(t) in a similar way.

First one builds up an orthonormal set of basis functions ψj(t), which are polynomials,

ψj(t) =

j∑
n=0

cjnt
n , (IV.51)

by using the standard Gram-Schmidt orthonormalization technique [157]. The polynomials

satisfy ∫ ∞

0

ψj′(t)ψj(t)w(t)dt = δjj′ , (IV.52)

with respect to a weight function w(t), which is tailored to our problem with the choice

w(t) = exp(−λ1t) exp

(
− L2

4Dt

)
(1 + t−

5
2 ) , (IV.53)

where L = b− a. For this weight factor, when t→∞, w(t) ∼ exp(−λ1t), and when t→ 0,

w(t) ∼ exp
(
− L2

4Dt

)
t−

5
2 . These forms represent the long-time and short-time behaviors
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for ρb(t) as we will show in Section IV.C.6 and IV.C.5 below. Thus we built in all the

information we know about ρb(t) in this weight factor. Notice that λ1 can be found by

following the scheme in Section IV.C.4.b, or via other numerical methods.

Following the usual Gram-Schmidt procedure, one builds up

ρm(t) = w(t)
m∑

j=0

ajψj(t) , (IV.54)

which will be an approximation for ρb(t) of “order” m. If we incorporate moments of ρb by

setting coefficients according to

a0 =
T0∫∞

0
ψ0(t)w(t)dt

=
1

c00

∫∞
0
w(t)dt

aj =
Tj −

∑j−1
i=0 ai

∫∞
0
tjψi(t)w(t)dt∫

tjψj(t)w(t)dt
, (IV.55)

then ρm(t) will reproduce the first m moments Tn (0 ≤ n ≤ m), i.e.,

Tn ≡
∫ ∞

0

tnρb(t)dt ≈
∫ ∞

0

tnρm(t)dt . (IV.56)

By using the first five moments, we reconstruct the distribution of transition-event dura-

tions for several different double-well potentials. These potentials are parameterized in the

form

U? = H

[
1−

( x

W

)2
]2

, (IV.57)

where H is the height of the barrier in units of kBT and W is the half-width of the barrier.

Two of the results are shown in Fig. 24. They match well with the simulations except for

the long time tail as seen in the semi-log plot. However, the event probability in that region

is quite small.
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Figure 24: Reconstruction of ρb for double-well potentials of the form (IV.57) based on

moments and a Gram-Schmidt procedure. The two absorbing walls are at −W and W ,

where W = 1. The data are from path-sampling simulations (dot-dash lines) and numerical

results are based on the approximation in Section IV.C.4.a and IV.C.4.d, using the first

five moments (solid lines). They match well except the long time tail as emphasized in the

semi-log plot.

e. Implications of moment calculations for molecular and high-dimensional sys-

tems

What lessons are contained in the preceding results for higher dimensional systems? The

main point can be deduced from the first moment, which is given by Eq.(IV.45): In par-

ticular, the moments generally depend not only on details of the potential, but also on the

definitions of the state boundaries (i.e., a and b in our one-dimensional case). Nonetheless,

qualitatively the first moment can be construed to set the overall (system-dependent) scale
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for the distribution. Of greater interest are general features of the shape and functional form

of the distribution, as was noted in an earlier empirical study of butane [72]. We will discuss

those general aspects below.

5. Short time behavior

Beyond the moments, it is of interest to study the asymptotic behavior of the event-duration

distribution, in both short and long time limits. We first analyze the t→ 0 behavior 1, using

exact methods.

a. Short time behavior for the green function with open boundary conditions

From the perspective of the path integral, introduced in Section II.D, if (t− t0) is short,

the velocity on the optimal trajectory dxc

dt
will be large. This implies a large “energy” E in

Eq.(II.116). We therefore assume 2E À 4DV and obtain the corresponding Green function

for short time t with open boundary conditions,

G(x, t|a, t0) ≈ exp

(
1

2kBT

∫ x

a

Fdx′
)

1√
4πD(t− t0)

exp

[
− (x− a)2

4D(t− t0)

]

× exp[−V (t− t0)] , (IV.58)

where V is the average effective potential between a and x,

V =
1

x− a

∫ x

a

Vs(x
′)dx′ . (IV.59)

We have used the quadratic approximation, which is expected to be reasonable if the diffusion

coefficient D is small [12]. Also, because we are further restricting our analysis to short-time

behavior, the important paths will be close to the optimal one, which should improve the

approximation.

1Of course time t can not go strictly to zero, since all the analysis is based on over-damped Brownian
dynamics. Here time t is still much longer than the timescale τ mentioned in Sec.II.A.1.
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If we define G0 as the Green function for free diffusion with open boundary conditions

[7],

G0(x, t|a, t0) =
1√

4πD(t− t0)
exp

[
− (x− a)2

4D(t− t0)

]
, (IV.60)

Eq.(IV.58) can be expressed as

G(x, t|a, t0) ≈ G0(x, t|a, t0) exp

(
1

2kBT

∫ x

a

Fdx′
)

exp[−V (t− t0)] , (IV.61)

which will be useful when we discuss the early time behavior with alternative boundary

conditions below in Section IV.C.5.b.

b. Short time behavior for the current with absorbing boundary conditions

In this subsection we need to retrace the path integral method in order to study transition-

event durations, as required, with two absorbing walls.

Figure 25: Calculating the path integral between the start point ’+’ and the end point ’◦’
with absorbing walls at x = 0 and x = L. The solid curve represents an arbitrary potential

between the two absorbing walls. Eq.(IV.62) indicates that one must calculate the path

integrals between the start point ’+’ and all “end points”, including the real one ’◦’ and

image end points ’4’, in the periodically repeated potential (dash line) with open boundary

conditions.

As shown in Fig. 25, we wish to calculate the path integral from the start point ’+’

at x = (a+) = (0+) to the end point ’◦’ at x = (b−) = (L−) during the time interval
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(t − t0). There are two absorbing walls at positions x = 0 and x = L, with some arbitrary

potential between them. Note that we are making no assumptions about the symmetry of

the potential in the interval [0, L]. If the position of the start point is ε1 and the end point

is x, then the Green function Gabs with absorbing boundary conditions can be expressed as

a sum over Green functions G for open boundary conditions [21]

Gabs(x, t|ε1, t0) =
∞∑

j=−∞
G(2jL+ x, t|ε1, t0)−

∞∑
j=−∞

G(2jL− x, t|ε1, t0) . (IV.62)

The construction is shown schematically in Fig. 25.

As shown above, to determine the distribution of event durations, we first calculate the

current at x, then take the limits ε1 → 0 and x→ L,

Jabs(L, t|0, t0) = −2D
∞∑

j=−∞

∂G(x, t|0, t0)
∂x

∣∣∣∣
x=(2j+1)L

. (IV.63)

From Eq.(IV.61), when (t− t0) is small

∂G(x, t|0, t0)
∂x

∣∣∣∣
x=(2j+1)L

≈ ∂G0(x, t|0+, t0)

∂x

∣∣∣∣
x=(2j+1)L

× exp

[
1

2kBT

∫ (2j+1)L

0

Fdx′
]

× exp[−Vj(t− t0)] , (IV.64)

where the symmetry of the periodically continued potential has been used; see Fig. 25.

The periodicity implies further simplifications, including

∫ (2j+1)L

0

Fdx′ =

∫ L

0

Fdx′

Vj =
1

(2j + 1)L

∫ (2j+1)L

0

Vs(x
′)dx′ =

1

L

∫ L

0

Vs(x
′)dx′ = V0 . (IV.65)

If we define the free diffusion current with absorbing boundary conditions as

Jabs
0 (L, t|0, t0) = −2D

∞∑
j=−∞

∂G0(x, t|0, t)
∂x

∣∣∣∣
x=(2j+1)L

, (IV.66)

Eq.(IV.63) can be written

Jabs(L, t|0, t0) ≈ Jabs
0 (L, t|0, t0) exp

(
1

2kBT

∫ L

0

Fdx′
)

exp[−V0(t− t0)] , (IV.67)
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or since the start and end points were arbitrary, we revert to our previous notation,

Jabs(b, t|a, t0) ≈ Jabs
0 (b, t|a, t0) exp

(
1

2kBT

∫ b

a

Fdx′
)

exp[−V (t− t0)] (IV.68)

where V0 becomes

V =
1

b− a

∫ b

a

Vs(x
′)dx′ . (IV.69)

We can now estimate the short time behavior of the normalized current.

c. Short time behavior for the distribution of the transition-event durations

Combining Eq.(IV.13) and (IV.68) , we find that the short-time behavior for the distri-

bution of transition-event durations is given by

ρb(t→ 0) ≈ ρ
(0)
b (t) exp

(
1

2kBT

∫ b

a

Fdx′
)

exp(−V t)
[

lim
ε→0+

Π0
b(a+ ε)

Πb(a+ ε)

]
, (IV.70)

where Π0
b(x) is the splitting probability for free diffusion and ρ

(0)
b is the distribution given in

Eq.(IV.19) for free-diffusion with absorbing boundary conditions. From Eq.(IV.14)

lim
ε→0+

Π0
b(a+ ε)

Πb(a+ ε)
=

∫ b

a
exp[U?(x′)]dx′

exp[U?(a)](b− a)
. (IV.71)

Combining Eq.(IV.70) and (IV.71), and using F (x) = kBT
(−dU?

dx

)
, the normalized distribu-

tion becomes

ρb(t→ 0) ≈ ρ
(0)
b (t)

{ ∫ b

a
exp[U?(x′)]dx′

exp[U?(a)](b− a)

}
exp

[
U?(b)− U?(a)

2

]
exp(−V t) , (IV.72)

revealing corrections to the free diffusion result due to the potential. Combining this result

with Eq.(IV.20) one can find the short time behavior corrected by the potential. Note, as

t→ 0 the behavior is dominated by ρ
(0)
b .

In Fig. 26 we compare the results from a path-sampling simulation as described in

Sec. IV.B and our final result Eq.(IV.72) for two double-well potentials of the form (IV.57)

of varying barrier height. Absorbing walls are placed at x = ±W , with W = 1. The simula-

tions and the analytic results of Eq.(IV.72) are in good agreement at sufficiently early times,

although at the earliest times the simulations reveal degraded statistics.
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Figure 26: Short time behavior of ρb for double-well potentials of the form (IV.57). Data

from path-sampling simulations (solid lines) are compared to the approximation (IV.72) for

ρb(t→ 0) (dashed lines). The approximation and the simulations agree closely on the extent

of the transient regime.

More importantly , Eq(IV.72) provides a means for estimating the characteristic time t?

at which the effect of the underlying potential U becomes comparable to that resulting from

free diffusion embodied in ρ
(0)
b . In particular, by equating arguments of the exponentials in

Eq.(IV.20) and in exp(−V t) from Eq.(IV.72), one finds (b− a)2/2Dt? ∼ V t?. For a double-

well potential of the form (IV.57), this implies 2Dt? ' 3.6W 2/H, which for W = 1 and

H = 10, 20 (as in Fig. 26) yields 2Dt? ' 0.36, 0.18, respectively. Comparison of these values

with Fig. 26 indicates that t? captures the overall “scale” of the distribution remarkably well.

This echoes the agreement seen in Fig. 26 between the simulation and the approximation

Eq.(IV.72) for the onset of the physically important regime of ρb following the transient

period. Qualitatively, t? arises from the geometric mean of a free-diffusion time and a time
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characteristic of the potential. Accordingly, t? ∼ W 2/DH is expected for simple barriers of

the form U? ∼ Hf(x/W ).

d. Implications for the short-time behavior of complex systems

Based on the preceding results, some interesting mathematical and physical observations

can be made, even for systems with more degrees of freedom. First, the asymptotic behavior

of (IV.72) is universal in that it does not depend on potential function (see Eq.(IV.20)). It

depends on the arbitrary boundaries, furthermore, in a trivial way. A first physical reading

of Eq. (IV.72) suggests that when the system is forced to traverse a ‘barrier’ (broadly defined

— it could be a series of barriers) fast enough, the trajectories will behave diffusively, as if

there were no barrier.

While extremely rapid crossings are clearly unphysical, they are built in to the Fokker-

Planck description arising from Langevin dynamics with white noise. Appropriately, how-

ever, such processes make a negligible contribution. Intuitively — for instance, from a

consideration of the discrete description embodied in Eqs. (IV.1) and (IV.2) — there is a

competition between the tendency toward the tight “stretching” of short trajectories (and

hence, uniformity of speed) as opposed to conformity to the underlying potential (implying

non-uniformity). At very short times, uniformity wins. However, the cost is high: such

tightly stretched trajectories, which do not “feel” the potential, are damped via an essential

singularity ∼ exp(−1/t). Their probability is near-zero in comparison to slower trajectories.

This point is consistent with previous simulation results reported by one of the authors [72],

in which duration distributions for butane and toy models clearly were not described by

‘weaker’ mathematical forms.

In fact, our short-time path-integral analysis estimates, in t?, the onset of the physically

important trajectories. In other words, our asymptotic calculation is able to capture a

physically relevant timescale.

The competition between tight stretching and non-uniformity should be expected in

stochastic descriptions of molecular systems, as well. In other words, the transient region of

near-zero probability at short times should be a general feature of distributions of transition-
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event durations. The Fokker-Planck formalism thus supplies the mathematical underpinnings

for the transient region, which is one of the characteristic features of the shape of the duration

distribution. Not surprisingly, this suppression was also found in deterministic/Newtonian

transition trajectories in a recent study [153], in addition to having been seen in the complex

permeation processes studied by Hummer [128].

6. Long time behavior for double-well potential

From Eqs.(II.46) and (IV.15) we know that the long time behavior of ρb(t) will be determined

primarily by the first eigenvalue λ1. Here we use a perturbative approach to obtain an

approximation for λ1 for a double-well potential with high barrier. We confirm, by direct

numerical calculation, the validity of using perturbation theory. We also perform path-

sampling simulations to check the accuracy of our final approximation.

By a variable transformation, the one-dimensional Fokker-Planck equation can be trans-

formed to a Schrödinger-like equation [8], which has been discussed in Sec.II.C.2.d.

We will consider double-well potentials as in Eq.(IV.57) having high barriers, H À 1,

and fixed half width, W . The absorbing walls are placed at the two minima, x = ±W . The

Schrödinger potential corresponding to (IV.57) is

Vs(x) = D

[
2H

W 2
+

(
4H2

W 4
− 6H

W 4

)
x2 − 8H2

W 6
x4 +

4H2

W 8
x6

]
. (IV.73)

In Fig. 27 we plot U?(x) and Vs(x) for a double-well with sufficiently high barrier. For

the potential in the Schrödinger picture, Vs = +∞ outside the central interval to ensure

the wave functions φn(x) vanish at the ends of the interval, thus satisfying the absorbing

boundary conditions.

We use perturbation theory to describe the lowest stationary state, which must exist be-

cause of the boundary conditions. For sufficiently high barriers, we expect that, the lowest

eigenstate will be localized at the central minimum, suggesting the use of a perturbation

process based on a simple harmonic oscillator. Using a numerical procedure for bound-state

solutions of the time-independent Schrödinger equation [30], we confirmed this localization
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for high barriers. We also note that for high barriers, the oscillator’s Gaussian wave func-

tion nearly vanishes at the boundaries, in approximate satisfaction of the proper boundary

conditions.

Figure 27: A high-barrier double-well potential U? (left) and its Schrödinger analogue Vs

(right) from Eqs.(IV.57) and (IV.73), for H = 8 and W = 1. The two absorbing walls are

put at the two minima. If the barrier height of the potential U? is not sufficiently large, the

minimum of Vs at x = 0 will disappear.

Our perturbation calculation is therefore based on separating off the dominant harmonic

component of Vs, noting H À 1, using

Vs(x) = V0(x) + V1(x) , (IV.74)

where

V0(x) = D

(
2H

W 2
+

4H2

W 4
x2

)
, (IV.75)

V1(x) = D

(
−6H

W 4
x2 − 8H2

W 6
x4 +

4H2

W 8
x6

)
. (IV.76)

From textbook results for a linear harmonic oscillator, the first eigenvalue and wave function

are

λ
(0)
1 = D

(
4H

W 2

)
, (IV.77)

ψ
(0)
1 (x) =

√
γ

π1/4
exp

(
−1

2
γ2x2

)
, (IV.78)
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where

γ =

(
2H

W 2

)1/2

. (IV.79)

The first order perturbative correction is

λ
(1)
1 =

∫
ψ

(0)∗
1 V1(x)ψ

(0)
1 dx = D

[
− 3

W 2
+O

(
1

HW 2

)]
, (IV.80)

which is down by a factor of H from the zero order result. The second order correction is

down by another factor of H:

λ
(2)
1 =

∑
m

′
{

|Vm1|2
λ

(0)
1 − λ

(0)
m

}
∼ D

[
O

(
1

HW 2

)]
. (IV.81)

The net result for the lowest eigenvalue is thus

λ1 = D

[
4H

W 2
− 3

W 2
+O

(
1

HW 2

)]
(IV.82)

= D

[
α− 3

W 2
+O

(
1

HW 2

)]
, (IV.83)

where α = 4H/W 2 gives the curvature at the top of the barrier.

Eq.(IV.83) shows that the long time behavior is simply linear in the barrier-top curvature

α, for large values of α and fixed W . This is also the case for the inverted parabolic potential,

as can be determined from Eq.(IV.28), or by performing the same calculation as we did for

the double-well in this section. In fact, when DαtÀ 1, Eq.(IV.28) becomes

ρb(t) '
[

DαW

1− erf(W
√
α/2)

] (√
2α

π

)
exp

(
−αW

2

2

)
exp(−Dαt) . (IV.84)

We therefore expect similar linearity with α in the higher barrier limit for any system that

can be approximated by an inverted parabola and a high order correction.
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Figure 28: Comparison of two numerical approaches for computing the long time behavior of

the event-duration distribution. A path-sampling simulation is compared to pure exponential

behavior based on the lowest eigenvalue λ1 determined from Eqs.(IV.43) and (IV.44) with

H = 10 and W = 1. Similar results are obtained for other high barrier cases.

We performed numerical checks of the approximation (IV.83). We determined the lowest

eigenvalue λ1 numerically using high moments and Eq.(IV.43). We also used path-sampling

simulations as a consistency check. Fig. 28 compares the numerical evaluation of λ1 via

Eqs.(IV.43) and (IV.44) with a path-sampling simulation data for a particular double-well

potential.

In Fig. 29, we compare Eq.(IV.83) with numerical calculations of λ1 for double-well

potentials and inverted parabolae with fixed W and a range of effective curvatures (α =

10 − 100) and plot λ1/Dα as a function of dimensionless curvature αW 2. As Eq.(IV.83)

predicts, λ1/Dα approaches unity for large curvature. This simple dependence contrasts

with that for the first moment T1, in Eq.(IV.50).
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Figure 29: Long time behavior of ρb for double-well potentials and the inverted parabola.

Exact numerical results for the lowest eigenvalue λ1/Dα are plotted as a function of the

dimensionless curvature αW 2 at the barrier peaks. The values of λ1/Dα, which dominate the

long-time behavior, approach 1 for large curvatures, as predicted by Eq.(IV.83). Note that

barrier heights are proportional to α for the models considered. Two double-well potentials

with fixed W 2 = 1 and W 2 = 3, and one inverted parabola system with fixed W 2 = 1 are

considered. Filled symbols indicate the α values where the barrier height H is 10 (in units

of kBT ).

7. Implications for long-time behavior in complex systems

Unlike the asymptotic short-time behavior, the lowest eigenvalue of Eqs. (IV.15) and (IV.16)

clearly depends on the form of the potential. While that dependence is simple for the

smooth potential studied here, one cannot expect the simplicity to be a general rule for

more complicated systems. In a rough molecular landscape, characterized by many barriers

of varying heights [106], the long-time behavior will reflect a convolution of “micro-barrier-

crossings.”

Perhaps the most important and general statement regarding the long-time behavior is

the simplest: the eigenfunction decomposition of Eqs. (IV.15) and (IV.16) indicates that the
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slowest trajectories will follow an exponential distribution. While this is not surprising, we

emphasize that the event duration is not generated from a Poisson process — unlike typical

treatments of the Kramers waiting-time. Nevertheless, the exponential long-time behavior

should be a general characteristic of the distribution of durations, even in high dimensional

systems.

D. CONCLUDING DISCUSSION

Langevin dynamics with white noise is widely used to study a variety of transitions or

activated processes. We have applied a combination of analytic and numerical techniques

to study the distribution, ρb(t), of the durations of transition-events over a barrier in a

one-dimensional system undergoing over-damped Langevin dynamics. The typical event

duration is much shorter than the well-studied first passage time (FPT) [127]; see Figs. 19

and 20. The event duration is the simplest non-trivial measure of the detailed dynamics of

an activated process, and we believe it is critical for future quantitative study of dynamics

of many chemical and biological systems [72].

The distribution ρb(t) can be derived from the Fokker-Planck equation with special

boundary conditions and was subjected to detailed analysis. A number of results are ob-

tained, including: (i) the analytic form of the asymptotic short-time behavior (t→ 0), which

is universal and independent of the potential function; (ii) the first non-universal correction

to the short-time behavior, which leads to an estimate of a key physical timescale; (iii) fol-

lowing Gardiner [7], a recursive formulation for calculating, exactly, all moments of ρb based

solely on the potential function — along with approximations for the distribution based on

a small number of moments; (iv) a high-barrier approximation to the long-time (t → ∞)

behavior of ρb(t); and (v) a rough but simple analytic estimate of the average event duration

〈t〉b, which generally is sensitive to details of the potential. All of the analytic results are

confirmed by transition-path-sampling simulations.

Despite the simplicity of the models studied, a number of conclusions can be drawn

concerning the characteristic shape of the distribution of event durations expected even
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in molecular systems. First, the universal exp(−1/t) short-time behavior suggests that

transient regions (of near-zero probability) will be a general feature of the distribution for

white-noise Langevin dynamics. The transient regime of the distribution is consistent with

the intuitive notion that there is, effectively, an absolute minimum time required for physi-

cally reasonable trajectories. Second, the long-time behavior is expected to be exponential,

since we anticipate the generality of the eigenfunction decomposition. Finally, even the one-

dimensional models indicate that average event duration will be system-dependent, so this

clearly will be the case for more complicated systems. These observations can be summa-

rized in a very rough, but perhaps useful description of the shape of the distribution of event

durations: once the system-dependent average behavior has been scaled out [72], the dis-

tribution is characterized by a nearly zero transient regime, a rapid rise to a peak of typical

events, and an exponential tail of slower transitions.

A number of interesting questions remain open. First, how can the detailed relationship

between ρb and first passage-time distribution be quantified, if at all? The distribution

of first-passage times, after all, cannot be a simple exponential if the event durations are

finite. Second, can the rough sketch we have suggested for ρb in complex systems be refined?

A particular interest is in conformational transitions in proteins, which have only recently

become amenable to study [53, 165, 166]. Furthermore, it is relevant to consider how

non-white noise, implicit in a reduced description of molecular systems [72], affects event

durations.
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V. WE SIMULATION FOR CAM

A. INTRODUCTION

In this chapter, we will employ the “weighted ensemble” path sampling method to generate

an unbiased ensemble of paths for a conformational transition in a 210-dimensional model

of the protein calmodulin, and also find the reaction rate. The results of this chapter have

been reported in the Proceedings of the National Academy of Sciences [85].

It has long been appreciated that conformational changes in proteins are critical to bio-

logical function. As we mentioned in Sec.III.C, because the traditional molecular simulations

are inadequate to the task of studying large conformational transitions in macromolecules,

three basic approaches to the problem of long-time macromolecular dynamics have been

explored by a number of investigators. Of those, path sampling is of interest here.

Despite these important studies mentioned in Sec.III.C, a critical question remains: Do

the path sampling methods work? That is, do they yield unbiased results which would be

obtained with sufficient resources via brute-force simulation? While the question has been

answered in the affirmative for some toy models [31, 63, 72, 75] molecular systems include

major difficulties not present in simpler cases. The present study appears to be unique

among path-sampling investigations of proteins because we verify the results by comparison

with brute-force simulations.

We study conformational transitions in a “double-native” Gō model introduced in Ref. [53]

and since adapted to other contexts [165–167]. It is a united-residue model of calmodulin’s

N-terminal domain constructed to be stable in two highly distinct experimentally determined

conformations [53], one corresponding to the calcium-bound state (Holo) and the other be-

ing calcium-free (Apo). These structures are depicted in Fig. 30. Despite its simplicity, the
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72-residue model possesses 72 × 3 − 6 = 210 degrees of freedom and incorporates the basic

conformational complexity of a protein. Calmodulin itself is an ideal system for our study:

It is a key signalling protein involved in many cellular processes (e.g.,Ref. [5]), it is small,

and it exhibits a particularly large structural rearrangement, see Sec.I.B.2

Figure 30: The N-terminal domain of calmodulin undergoes a large-scale structural change

when it binds calcium. (a)The calcium-free Apo structure (1CFD) and the calcium-bound

Holo structure (1CLL) are shown. (b)A sample trajectory from the simulation of the “double-

native” Gō model of calmodulin exhibits several transition-events, one of which is detailed

in (c). The approximate duration of the event tb is indicated by the arrow.

We employ the “weighted ensemble” (WE) approach [63], see Sec.III.C.2, to generate an

unbiased ensemble of paths for the calmodulin transition and, simultaneously, the reaction

rate. Previously, WE sampling has been applied to study diffusion effects in binding [63, 80]

and the folding of a simple protein model [83]. The WE method was chosen to investigate

conformational transitions for three reasons. First, among path sampling algorithms, it is

particularly elegant and straightforward to implement. Second, the WE method appears to

be particularly well-suited for sampling multiple, structurally distinct pathways in a statisti-

cally correct way. (A comparative study in this regard is planned for future work.) Third, it

yields both a path ensemble and the reaction rate from a single simulation. The WE method

embodies a strategy of replicating success (“enrichment”), which had earlier been introduced

in the construction of polymer configurations [86]; see also [87]. As illustrated in Fig. 13 in

Sec.III.C.2, the strategy has three essential steps and maintains a rigorous statistical weight-

ing throughout: (i) the initiation of multiple trajectories; (ii) replication of trajectories which
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advance along a progress coordinate; and (iii) occasional pruning of low-weight trajectories.

The pruning ensures manageable computational cost. Issues surrounding the selection of a

progress coordinate — which need not be a reaction coordinate in the traditional sense —

are discussed in detail below.

Our data show that WE path-sampling of calmodulin transitions provides excellent quan-

titative agreement with brute-force results, which include substantial pathway heterogeneity.

Because the WE simulations consume a fraction of the brute-force simulation time, they

appear to be a promising choice for the study of more realistic protein models.

B. METHODS

1. Path sampling using the weighted ensemble (WE) approach.

The weighted ensemble path sampling approach has been explained carefully in sec.III.C.2.

For our calmodulin simulations, the progress coordinate was chosen to be the negative of the

“distance RMSD” (DRMSD) [168] to the Holo state.

Like the standard RMSD, the distance-RMSD (DRMSD) quantifies molecular distance

measurement. Letting dij and d′ij be the distances between residue i and j in two structures

of the same molecule, which has N residues, then

DRMSD ≡
√

2

N × (N − 1)

∑
i<j

(dij − d′ij)2 . (V.1)

(Sometimes the constant factor
√

2 is removed in the definition.) DRMSD does not require

alignment of two structures. For our united-residue model of calmodulin, it is faster to

compute than RMSD and provides qualitatively similar information.

The simulation starts from the Apo state and progresses toward Holo. Fig. 31 shows the

evolution of the probability in one weighted ensemble simulation of calmodulin.
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Figure 31: The time evolution of the probability distribution, which is shown at times

0, τ (72000 MC steps), 4τ , 8τ 16τ and 100τ based on Weighted Ensemble (WE) simula-

tion of calmodulin. The simulations all start from the Apo state, located in the bins near

DRMSDHolo = 3.5Å. After 16τ , some trajectories have climbed over the free energy barrier

and arrived at the Holo state (DRMSDHolo < 1.5Å). Notice the varying semi-log scale.
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2. Bistable Gō model of united-residue calmodulin (N-terminal domain).

One of the authors previously designed a united-residue potential and associated software

to enable brute-force generation of an ensemble of unbiased large-scale conformational tran-

sitions. Full details are given in Ref. [53]. As in the previous study, only the N-terminal

domain (residues 4 - 75) 1 of calmodulin was studied [169]. Although a Gō model will not

capture realistic biochemistry or detailed kinetics, it serves as an ideal system for testing

algorithms. Further, the degree of activation can be tuned by lowering the temperature as

we have done.

The united-residue “double-Gō ” model [53] consists of alpha-carbon interaction centers

with pairwise contact interactions as described below.

For a molecule with N residues, the total potential is the sum of N(N − 1)/2 two-body

potentials,

utot =
N∑

i=1

N∑
j>i

ui,j , (V.2)

where i and j label residues. The two-body potential is given by

ui,j =





ubond
i,j if j = i+ 1

unon−bond
i,j if j > i+ 1

(V.3)

When the ith and jth residues are sequential (j = i + 1), ubond
i,j accounts for the chain

connectivity. A infinite well potential is constructed with reference to interresidue distance

in the Apo (calcium-free) structure rApo
i,i+1, as shown in Fig. 32.

When the ith and jth residues are not sequential, their interaction potential unon−bond
i,j

is further classified into “non-native”, “single-native” and “double-native” depending on the

distances found in the two native structures (1CFD and 1CLL). First we define a cut-off

distance Rcut; standard square-well (contact) interactions occur only below it, vanishing for

ri,j > Rcut.

(i)If rApo
i,j > Rcut and rHolo

i,j > Rcut, the ith and jth residues are considered non-native.

The interaction potential is taken to consist of a forbidden region defined by a hard-core

1The first three residues in the Holo structure (1CLL) of calmodulin are not included in its protein data
bank file.
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radius found in the Apo (calcium-free) structure and a shoulder for the remaining part for

ri,j < Rcut. See panel (a) of Fig. 33.

(ii)If min(rApo
i,j , rHolo

i,j ) < Rcut and max(rApo
i,j , rHolo

i,j ) > Rcut, the pair is termed single-native

- i.e, the pair of residues is sufficiently close in one of the two native structure. Their

interaction is described by a square-well pair potential. The single well is centered near

min(rApo
i,j , rHolo

i,j ). See Fig. 33(b).

(iii)If rApo
i,j < Rcut and rHolo

i,j < Rcut, the pair is considered double-native. Their interaction

is described by two square wells centered near rApo
i,j and rHolo

i,j respectively with a barrier

between them. See panel (c) of Fig. 33.

u

Figure 32: The potential of bonded interaction.

In summary, the double-native Gō potential stabilizes two native structures and creates

a barrier between them. This is accomplished by the pairwise potentials shown in Fig. 33.

The key double-well interactions occur between residues exhibiting two distinct distances in

the two reference structures, as in Fig. 33(c). The potential guarantees that the two native

structures (1CFD and 1CLL) have low total energies and that the transition between the

two is possible. The potential is, of course, constructed using empirical information, and can

be used with care in specific applications.
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u u u

Figure 33: The non-native, single-native and double-native potentials.

See Ref. [53] for full details and for the parameters used in the simulation.

We employed “dynamical Monte Carlo” for the calmodulin model, i.e. Metropolis Monte

Carlo employing only small, physically reasonable trial moves. This is a natural choice for any

square-well potential; but further, when small trial steps are used, one can expect dynamical

Monte Carlo to provide dynamics similar to over-damped Langevin dynamics [170, 171].

The reason is that, considering an energy landscape consisting of many barrier-separated

basins, small-step dynamical Monte Carlo should cross barriers according to the standard

Arrhenius factor without any unphysical, large jumps. In our simulations, the only trial

move attempted was a single-particle translation of one grid-spacing (0.13Å) to a randomly

chosen grid point among the 26 closest in the surrounding 3× 3× 3 cube.

Although neither the model nor the dynamics is fully accurate, the key point is that

both our WE and brute-force simulations were performed with the identical computer code,

ensuring a fair comparison in a tractable system.

3. Error analysis by block averaging.

The transition paths generated by the WE method are correlated, ruling out the use of simple

statistical analyses. We therefore employed a standard statistical block-averaging approach

based on [172], which is a reliable algorithm for calculating the statistical errors embodied in

time-correlated data. In brief, one divides the sequence of data into n blocks and calculates
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the standard deviation among the block averages, σn, for the quantity of interest. The

length of blocks is continually increased until the quantity SE = σn/
√
n reaches a plateau,

which indicates the blocks have become significantly longer than any correlation times and

yields the effective standard error (i.e., scale of statistical uncertainty) of the estimate. All

statistical uncertainties and error bars in figures are given as ±2SE.

C. RESULTS

To validate the Weighted Ensemble (WE) method, we first considered the temperature

kBT/ε = 0.5 as in the previous study [53]. As a reference for comparison, brute-force

simulations were run on several CPUs, yielding 373 independent transition-events from the

Apo to Holo structure of our model of calmodulin. The total cost of these simulations is

equivalent to ∼18 months of single-processor CPU time (Xeon, 3.2 GHz).

WE simulation, by contrast, required considerably less computer time, although identical

code was used for running the embedded dynamical Monte Carlo. The WE simulation was

run on a single CPU (Xeon, 3.2 GHz) for 4 weeks, yielding 33,576 correlated transitions. We

made the simple choice of using the DRMSD distance [168] to the Holo state (DRMSDHolo)

as the progress coordinate and cut this one-dimensional space into 40 bins, with M = 40

simulations allowed in each bin. After every τ = 72000 Monte Carlo steps, the embedded

brute-force simulations are paused, then combined and split without introducing bias, as

described in Materials and Methods. See also Fig. 13.

1. Distribution of event durations

We first studied the distribution of transition-event durations ρb(t) [72, 123]. The duration

of a transition-event is a short timescale characteristic of the reaction pathway itself (by

contrast to the more common first-passage time). It is defined as the time elapsed from

the last exit from the initial/reactant state until the first entry to final/product state. See

Fig. 30. The distribution of these durations is the simplest quantitative measure of the
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heterogeneity expected in the ensemble of transition-events. For conformational change in

calmodulin, transition-event durations were calculated based on a reactant state defined such

that DRMSDApo < 1.5Å and the the product state by DRMSDHolo < 1.5Å.

Figure 34: The distribution of transition-event durations ρb(t) from WE and brute-force

simulations. In addition the error bars of the result from brute-force simulation are plotted.

The event duration is the time interval between the last time a trajectory leaves the reactant

state (DRMSDApo < 1.5Å) and the first time it reaches the product state ( DRMSDHolo <

1.5Å); see Fig. 30. The inset shows results from the two methods using equal amounts of

CPU time, ∼4 weeks, which is not sufficient for brute-force simulation to obtain a good

statistical distribution.

In Fig. 34 we show the WE simulation result for ρb(t) compared with that from brute-

force simulation. They match well. The inset shows results from the two methods using equal

quantities of CPU time. It is clear that WE method is more efficient than the brute-force

simulation even at the relatively high temperature kBT/ε = 0.5.
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2. The transition rate

For chemical and biological reactions and transitions, the reaction rate k is one of the most

important quantities, and is impossible to obtain by brute-force simulation if the first-passage

time is long [2]. Distinguished from other path-sampling methods, WE simulation not only

yields the path ensemble, but also the reaction rate simultaneously. In WE simulation,

after a transient period reflecting the finite event durations, the average current arriving to

the product state (Holo) gives the transition rate. For kBT/ε = 0.5, we obtained kWE =

(1.9 ± 0.4) × 10−10/ MC step, which is in excellent agreement with the brute-force result,

kBF = (2.1± 0.2)× 10−10 /MC step.

3. Structural cross-sections of the path ensemble

We also compared structural properties of the path ensembles generated by the two methods,

following the approach taken in previous work by Zuckerman [53]. Specifically, we examined

the distributions of intermediate structures isolated along several “cross sections” of a two-

dimensional reaction surface. The two coordinates of this surface — each a distance between

residues located at the ends of helices — were chosen to assay heterogeneity in the path

ensemble [53]. As shown in Fig 35(a), five cross-sectional “planes” were placed orthogonally

to a straight line drawn between the two states. Histograms were made of the position,

relative to the center line, at which each trajectory first crossed a given plane.

These cross-sectional histograms were produced by both simulation methods, and again

compare favorably. They also demonstrate the structural heterogeneity in the path ensemble

of this simple model system. Figure 35(b-e) shows the distributions, with the error bars

representing approximately a 90% confidence interval. This sensitive structural analysis

further underscores the accuracy of the WE method.

4. Efficiency

The previous results indicate the accuracy of the WE approach — i.e., that it properly

corrects for bias as claimed. Nevertheless, the “bottom line” measure of a path-sampling
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Figure 35: Structural distributions describing the heterogeneity of the path ensemble con-

necting the Apo and Holo states of calmodulin, based on both WE and brute-force simula-

tions. Panel (a) shows two sample Apo → Holo transitions, with open symbols indicating

points at which the five parallel (dashed) “planes” are first crossed. The plots (b) - (e) show

the ensemble-based distributions of the first crossing points of the paths on each of the five

planes from (a).
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approach is its efficiency, and especially its potential for efficiency in more chemically realistic

and larger systems. We measured efficiency by calculating the ratio of single-processor CPU

times required by WE and brute-force simulations to estimate the reaction rate with a given

statistical precision. Similar results are found if the average event duration is used.

By studying a range of lower temperatures to assay the promise of WE simulation in

more challenging systems, we found very encouraging results. First, for the temperature

studied above (kBT/ε = 0.5), we found a modest efficiency gain of somewhat more than a

factor of five — that is, WE simulation requires less than one fifth the CPU expenditure

for a given level of statistical precision. However, as the system becomes more difficult to

simulate by brute-force simulation at lower values of kBT/ε, the WE approach becomes

relatively more efficient. Equally importantly, the WE simulations require essentially the

same overall amount of CPU time regardless of the temperature. For kBT/ε = 0.45, we

found an efficiency gain of a factor of ∼15 and for kBT/ε = 0.4, it increased to ∼100.

In greater detail, for kBT/ε = 0.45 three weeks of WE simulation yielded 32,464 cor-

related transition trajectories, along with the estimate kWE = (6.4 ± 1.3) × 10−11 /MC

step. By contrast 30 months of brute-force simulation generated 172 trajectories and kBF =

(7.4 ± 1.2) × 10−11 /MC step. The distributions of event durations also agree very well.

For kBT/ε = 0.4, the WE method gives the reaction rate kWE = (8.4 ± 1.8) × 10−12 /(MC

step) from three weeks of simulation, whereas brute-force simulation was too slow to yield

even a single transition-event in the time we allotted to it. However, based on the reaction

rate from WE simulation and the simple statistics of Poisson processes expected for brute-

force simulation, the efficiency gain can be estimated as ∼100. (We also confirmed that

such estimation based on Poisson statistics reproduced the efficiency estimates of the higher

temperatures.)

5. Use of a two-dimensional progress coordinate

To investigate whether the WE simulations for calmodulin were sensitive to the choice of

progress coordinate — and also to explore potentially useful strategies for more complex

systems — we investigated a two-dimensional progress coordinate. Specifically, we employed
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two-dimensional bins where the first coordinate was the DRMSDHolo distance as described in

Materials and Methods, and the second coordinate was DRMSDApo. Our results were essen-

tially indistinguishable from those based on a one-dimensional coordinate for the kBT/ε = 0.5

condition we investigated.

Although using DRMSDproduct as a single coordinate might be expected to be a fairly

robust choice for many systems, generally one cannot expect a single dimension to be suffi-

cient since there could be barriers transverse to the chosen coordinate [75] (i.e., free energy

saddle points within a single bin). The Discussion, below, further probes this issue.

D. DISCUSSION: APPLYING WE TO MORE COMPLEX SYSTEMS

While WE simulation has proven highly successful in the present application of a simplified

protein model, strategies for applying the approach robustly in more complex systems are

important to consider. But before describing such strategies, it should be recognized that

the WE algorithm is statistically correct for sufficiently long simulations regardless of the

choice of progress coordinate. This can be seen heuristically by noting that, because the WE

approach records statistical weights and does not use a biasing force or potential, unnatural

transitions will only occur rarely and with very low weight. Each full transition trajectory is

simply a concatenation of unbiased segments with proper statistical weights. Eventually, the

important transition trajectories will occur and their weights will (correctly) dominate the

results. In other words, the choice of coordinate(s) and binning should affect the efficiency

of the weighted ensemble approach, but not its asymptotic correctness.

There are many possible strategies for using higher-dimensional binning while maintain-

ing the overall number of bins at a practicable level. To be concrete, assume an initial

one-dimensional progress coordinate, such as DRMSDproduct, has already been divided into

bins. Additional “sub-bins” can be added which will encourage transitions across possible

saddles in the free energy landscape which may be orthogonal to the initial coordinate. For

instance, the first bin (only) can be divided into sub-bins based on DRMSD1, the distance

from the starting structure in the first bin. Once a trajectory arrives in the second bin, a set
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of sub-bins there can be defined based on DRMSD2, the distance from the first configuration

recorded in bin 2. By repeating this process, “transverse” sub-bins are always defined locally

to maximize the chances for transverse motion with each bin.

Other strategies may also be useful. For instance, one could use just a single (“reactant”)

structure and the corresponding DRMSDreactant as an initial coordinate, along with orthog-

onal sub-bins defined on-the-fly, as above. In other words, one can let the simulation find

the product state(s), see also Chapter VI and VII Further, one can use bins of non-uniform

sizes, possibly adjusted on-the-fly, or populate bins with different numbers of particles —

and still maintain conformity with the statistical assumptions of the WE method.

The main point is that there is enormous flexibility to construct structurally suitable

bins. We believe this flexibility will ultimately lead to robust strategies suitable for a wide

range of biomolecular systems.

E. CONCLUSIONS

We have applied the weighted ensemble (WE) approach of Huber and Kim [63] to the study

of a protein conformational transition for the first time, and shown that it is a remarkably

straightforward and successful approach. Because we employed a tractable united-residue

model for a 72-residue domain of calmodulin [53], we verified the quantitative correctness of

the results, by comparison to brute-force simulations. The WE results were also obtained in

a fraction of the brute-force simulation time. To our knowledge, no previous path-sampling

study of a nontrivial protein model performed such comparisons. Further, efficiency rela-

tive to brute-force simulation was found to increase dramatically as the system was made

“difficult” by lowering the temperature, with minimal increase in absolute cost.

Although our model exhibits substantial heterogeneity in its transition-path ensemble,

it remains an open and fundamental biochemical question as to whether real proteins are

more precisely tuned. While proteins need to be robust — insensitive to many mutations —

they are also precisely calibrated to their specific function. How is the balance achieved?

It is certainly premature to choose a single method as best for path sampling in biomolec-
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ular systems, but the WE approach appears to be quite promising: (i) it estimates the reac-

tion rate simultaneously with generating the transition path ensemble; (ii) it has the ability

to sample heterogeneous pathways independently, avoiding trapping; and (iii) it is extremely

easy to implement. Additionally, we have described a method which overcomes a potential

weakness of the approach: effective, low-dimensional progress coordinates can be defined for

any system in a simple, automated way that does not require any previous knowledge of the

system beyond two structures of interest (or even just one). Of course, the ultimate proof

will be in the future application to more difficult problems, but these initial, verified results

in a non-trivial model mark the passing of a critical test. We also note that structurally

diverse pathways determined via WE, possibly in simplified models, can be refined using

transition path sampling [75].
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VI. TEST SYSTEMS WITH MULTIPLE CHANNELS

A. INTRODUCTION

Because transitions are driven by thermal fluctuations, we expect to see some degree of

variability among events. Transition paths can even go through different “channels”. Every

channel is identified by a local minimum in the path space.

The transition path sampling approach (TPS), maybe the most popular path sampling

method, described in Chapter III, could have a weakness as a Monte Carlo simulation in

path space. It is possible for the Markov chain to be trapped in local minimum. In transition

path sampling, because of the close similarity between the trial and old paths, it may be

difficult to switch from one channel to another, and thereby sample all available channels.

But for a weighted ensemble approach (WE), which describes the approximate solution of

the Fokker-Planck equation, multiple channels should not be a problem.

Here we use these two methods to test systems with multiple channels for paths between

local minimum positions in the free energy landscape. First we compare the weighted en-

semble approach and the transition path sampling method by testing two-dimensional model

potentials. Then we apply the weighted ensemble approach for the potential representing an

alanine dipeptide molecule.
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B. COMPARISON OF TWO PATH SAMPLING METHODS

1. Potentials

Figure 36: Contours of toy potentials. The left panel is the potential U?
1 with α = 20, the

right panel is the potential U?
2 with α = 72.

We wanted to study low-dimensional but difficult potentials. The low dimensionality will

permit full sampling for careful comparison of methods. However, two barrier-separated

channels make the system challenging. Inspired by Chen, Nash and Horing’s work [173], we

build up two toy potentials (kBT )U?
1 and (kBT )U?

2 , with

U?(x, y) = α(x2 + y2 − 1)2

− exp{−4[(x− 1)2 + y2]} − exp{−4[(x+ 1)2 + y2]}
+ exp[8(x− 1.5)] + exp[−8(x+ 1.5)]

+ exp[−4(y + 0.25)] + 16 exp(−2x2) , (VI.1)

with α = 20 and α = 72 respectively distinguishing the two potentials.

The contours of these two potentials are shown in Fig. 36. Both potentials have two wells

located near (±1.2, 0.1). In Fig. 37, the cross sections of these two potentials at x = 0 are

plotted. Two saddle points can be found in their cross sections. The barriers between saddle

points separate the transition paths (from the left well to the right well) into channels. The
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channels for motion along the passes are shown by red arrows in Fig. 36. The significant

difference between these two potentials is the height of the barrier between the two saddle

points.

Figure 37: Cross sections at x = 0 of the model potentials given by Eq.(VI.1). The left

picture is the cross section of U?
1 , and the right picture is the cross section of U?

2 .

For the convenience of comparison, the important extreme points of these two potentials
are listed in Table. 1.

U?
1 (α = 20) U?

2 (α = 72)

bottom of wells U?
1 (±1.235, 0.162) = 1.085 U?

2 (±1.231, 0.089) = 1.293

saddle point 1 U?
1 (0.000, 0.101) = 17.15 U?

2 (0.000, 0.036) = 17.33

saddle point 2 U?
1 (0.000, 1.001) = 16.03 U?

2 (0.000, 1.001) = 16.03

top of the barrier U?
1 (0.000, 0.567) = 19.10 U?

2 (0.000, 0.575) = 26.80

Table 1: The extreme points of the model potentials, including the bottom points of wells,

saddle points and the top points of the barriers between saddle points.

2. Simulation results

a. Path switching
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Figure 38: The transition path sampling (TPS) method switches between two types of

paths, the left picture shows the path switch for potential U?
1 , the right picture shows the

path switch for potential U?
2 .

The transition path sampling method is a Monte Carlo simulation in path space. We can

monitor sampling effectiveness by studying the “speed” with which path space is sampled.

The transition path sampling method switches between two types of paths seen in Fig. 36.

To identify them, one can use the y position at the x = 0 section on every path. Fig. 38

shows this position for each path versus the path index (Monte Carlo time). For potential

U?
1 , the switch happens about every 1.0e4 paths, For potential U?

2 , because of the higher

barrier, the switch happens approximately every 5.0e6 paths, which is much less frequent.

This reveals how, for higher barriers, the sampling can get “trapped”, and for limited number

of transition-events, could be biased.

Fig. 39 shows path switches in weighted ensemble simulations. The frequent switches

suggest that the Weighted Ensemble method generates different types of paths simultane-

ously in both potentials. Because the weighted ensemble approach describes the approximate

solution of the Fokker-Planck equation, the two channels become populated simultaneously.
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Figure 39: The weighted ensemble method switches between two types of paths, the left

panel is for potential U?
1 , the right panel is for potential U?

2 .

b. Distribution of transition-event duration

Figure 40: Distribution of transition-event durations. The left panel is for potential U?
1

(smaller barrier), the right panel is for potential U?
2 (larger barrier).

Fig. 40 shows the distributions of transition-event durations for these two model poten-

tials, as estimated by both transition path sampling and weighted ensemble methods. Notice

for potential U?
2 , because of the high barrier separating the two types of paths, a “short”

transition path sampling simulation yields an incorrect distribution even after 1.0e6 paths
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have been sampled. In that case, the transition path sampling is trapped by the local mini-

mum in path space; see Fig. 38. But with the same number of paths, the weighted ensemble

method gives the correct result.

C. ALANINE DIPEPTIDE

1. Alanine dipeptide

The second system on which we will test the weighted ensemble approach is a small molecule

called alanine dipeptide (ace-ala-nme). The molecule is shown in Fig. 41. The alanine

dipeptide molecule is made of two peptide planes. In each plane, six atoms (three carbon

atoms, one hydrogen, one oxygen atom and one nitrogen atom) are fairly rigid. The principle

variables describing the structure of alanine dipeptide are two backbone dihedral angles: Φ

(C-N-C-C) and Ψ (N-C-C-N).

Alanine dipeptide is frequently used for testing simulation methods and force fields [174].

It is one of the simplest molecules which contains two full peptide planes. The dipeptide

contains many structural features of protein backbones because proteins are polypeptide

chains [175]. The carbon atom connecting two peptide planes is called alpha carbon (Cα).

For proteins twenty different amino acid side chains are available to attach to the alpha

carbon, and the alanine side chain in alanine dipeptide is one of them [175]. The methyl

group connecting to the alpha carbon is a representative for most side chains (not good,

however, for glycine and proline side chains). Furthermore alanine dipeptide is small enough

that its free energy surface can be studied thoroughly by different approaches [174, 176–

182]. The conformational transitions of alanine dipeptide contains multiple channels and

have been studied by several groups recently [89, 102, 183].
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Figure 41: Alanine dipeptide molecule (CH3CO− Ala− NHCH3). Different atoms are

shown by different colors. White: Hydrogen; Red: Oxygen; Green: Carbon; Blue: Nitrogen.

Alanine is one of the 20 proteinogenic amino acid. The side chain comes from alanine is a

methyl group.

2. Simulation results and discussion

a. Definition of transition path

First we checked the four energy minimum states of alanine dipeptide which will serve as

the initial and final states of path sampling. These energy minimum states have been intro-

duced by Apostolakis et al. [177]. Several brute force simulations were performed by using

Langevin dynamics in the CHARMM program 1 [79]. The simulations used the “united

atom model” with the CHARMM parameter set 19 and implicit solvent ACE (analytical

continuum electrostatics) model [184]. Even for this small molecule, to obtain its free en-

ergy surface by brute force simulation on a single CPU will take several weeks. Because

our purpose is not exploring its whole free energy surface, we just ran several short brute

1CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a widely used molecular simulation
program.
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force simulations starting from different structures. So our results did not yield an equilib-

rium picture. But it is already good enough to show the four energy minima in Fig. 42.

And by using the CHARMM program, the minima are found at (Ψ,Φ)[Energy(kBT)] values

αL(55.1, 46.4)[7.22], C7eq(−77.9, 138.4)[0], αR(−75.6,−39.9)[1.78] and C7ax(61.4,−71.4)[4.49]

in the (Ψ,Φ) dihedral plane, as shown in Fig. 42. Our locations and energy values of minima

are somehow different with the previous study [102, 177, 181], but it is known that the

simulation of alanine dipeptide is very sensitive to environments [88].

Figure 42: Four energy minima of alanine dipeptide.

Then we applied weighted ensemble approach to find the transition-events between state

C7eq and C7ax. The initial state C7eq is defined as the area closed by the circle

[Ψ− (−77.9)]2 + [Φ− (138.4)]2 = (40)2 , (VI.2)
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and the final state C7ax is the area closed the circle

[Ψ− (61.4)]2 + [Φ− (−71.4)]2 = (20)2 , (VI.3)

as shown in Fig. 42. According to calculations by other research groups [102, 177], the

major barriers between these two states are higher than 10kBT . It will typically take days

to find one transition path by brute force simulation.

b. Paths in different channels

The weighted ensemble simulation was run on a single CPU (Xeon, 3.2Ghz) for 4 days,

and yielded 43439 correlated transition paths. We chose the dihedral angles Ψ and Φ as

the progress coordinates and cut the two-dimensional space into a 12 × 12 grid, with 20

simulations allowed in each grid (see Sec.III.C.2). After every τ = 100fs, the embedded

CHARMM simulations are paused, and the simulations are combined and split without bias,

as discussed in the discussion of Sec.III.C.2. The weighted ensemble program was stopped

after 1000τ .

Figure 43: One path is plotted in the regular dihedral plane and an enlarged dihedral plane.

In the right panel, the region of the regular dihedral plane is in the lower right square.
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The paths will be studied in an enlarged dihedral plane, like the extended-zone scheme

in solid state physics [185]. The reason of using an enlarged dihedral plane is that the path

will be continuous in it. In the left panel of Fig. 43, a path is shown in the “first zone” of

the dihedral plane. Because the dihedral plane is periodic, this path leaves the right border

of the dihedral plane and re-enter from the left border. In the right panel of Fig. 43, the

four closest final states C7ax (one in the first zone and three images) around the initial state

C7eq are included. Now the path is continuous and it is clear that it leads to the lower left

C7ax state (image).

Figure 44: Four types of transition paths between states C7eq and C7ax.

The transition paths can be roughly divided into four types according to which C7ax

state they end in this extended dihedral plane. These four types of paths correspond to the

combinations of clockwise and anticlockwise rotational directions of dihedral angles Ψ and Φ.

Different types of paths pass different barriers; therefore they belong to different channels.
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Approximately 100 paths randomly chosen (based on their weights) are plotted in Fig. 44.

The distributions of these four types of paths are listed in Table 2.

C7ax position upper left upper right lower left lower right

Distribution 5.9% 13.8% 0.7% 79.6%

Table 2: The distributions of four types of transition paths between states C7eq and C7ax.

There are multiple channels for each of the four types of paths. Among all these paths,

79.6% of them connect states C7eq and the lower right C7ax. Most of those go through two

channels; 41.9% of all the paths pass state αL in the middle and 37.7% pass state αL, as

shown in Fig. 45.

Figure 45: Two channels of transition-events between states C7eq and lower right C7ax.

c. Intermediate stable states in the middle of path

For the weighted ensemble simulations, the total time nτ should be long enough so that all
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the possible paths will be sampled well if intermediate metastable states exit. The transition-

events found in alanine dipeptide’s conformational change can be divided into several small

transition parts and metastable states. The simplest case has one intermediate metastable

state in the transition path, if we consider just one of the two channels in Fig. 45. Then the

total duration of the whole transition-event is

tb = t1 + t2 + t3 , (VI.4)

where t1 is the duration of the transition-event between the initial and intermediate states,

t2 is the time that the simulation spends in the intermediate state before it goes to the final

state, and t3 is the duration of the transition between the intermediate and final states.

Because the transition-events are fast events, and t2 is the waiting time in a metastable

state, we expect their averages will satisfy

〈t2〉 À 〈t1〉
〈t2〉 À 〈t3〉 . (VI.5)

If the distributions of these three time intervals are ρ1(t1), ρ2(t2) and ρ3(t3), the distribution

of the total duration tb can be written as a simple convolution

ρ(tb) =

∫ tb−t1

0

dt3

∫ tb

0

dt1ρ1(t1)ρ3(t3)ρ2(tb − t1 − t3) . (VI.6)

When tb À 〈t1〉 and tb À 〈t3〉, Eq.(VI.6) can be approximated

ρ(tb) =

∫ tb−t1

0

dt3

∫ tb

0

dt1ρ1(t1)ρ3(t3)ρ2(tb − t1 − t3)

≈
(∫ tb

0

ρ3(t3)dt3

)(∫ tb

0

ρ1(t1)dt1

)
ρ2(tb)

= ρ2(tb) . (VI.7)

The scale of averages 〈t2〉 and 〈tb〉 will be of the same order. Then for the weighted ensemble

simulations, the total time nτ should be much longer than 〈t2〉 so that all the possible paths

will be sampled well. From our experience, we expect nτ ∼ 10〈t2〉 will yield good results.

However, if what happens during t2 is not interesting, (for example, only the transition part

of path is of interest,) a simulation with nτ À (t1 + t3) will be sufficient to give transition
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path ensembles for the first and third parts, the actual transition-events. The two reaction

rates also can be found by the weighted ensemble methods in a timescale much shorter than

the average waiting times, as we discussed in Sec.II.E.1 and Sec.III.C.2. A good discussion

about consecutive reaction rate can be found in Atkins and Paula’s book [186].

The intermediate stable states in the middle of path will decrease the efficiency of the

transition path sampling method, specially when the shooting algorithm, mentioned in

Sec.III.C.1, is used to generate new paths. The simulation will stay in the intermediate

state for a long time before it finds a trial transition path.

D. CONCLUSIONS

In this chapter, we first used two-dimensional model potentials to show that the weighted

ensemble approach has an advantage in finding multiple channels of paths compared with the

transition path sampling method. It is shown that the transition path sampling approach,

which is a Monte Carlo simulation in the path space, is possible to be trapped in the local

minimum. However the weighted ensemble approach sampled multiple channels of paths

successfully.

Then the weighted ensemble method was applied to the alanine dipeptide molecule to

find all possible paths between two stable structures. The weighted ensemble approach

found multiple channels of paths and gave the probability distributions of different channels

in one simulation. Furthermore, it also got the information on reaction rates for these

channels. These kinds of results have not been previously obtained by any other path

sampling method even for this small molecule. Our simulation exhibits the weighted ensemble

method’s distinguishing ability of complete path sampling for systems with multiple channels.
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VII. CONCLUSION AND OUTLOOK

A. WHAT HAS BEEN ACCOMPLISHED

This thesis describes the study of the distribution of the durations of transition-events in one-

dimensional systems, and the applications of the weighted ensemble path sampling approach

for a variety of toy and molecular system.

We applied a combination of analytic and numerical techniques to study the distribu-

tion, ρb(t), of the durations of transition-events over a barrier in a one-dimensional system

undergoing over-damped Langevin dynamics. A number of results were obtained, includ-

ing a recursive formulation for calculating all moments of ρb based solely on the potential

function, and the properties of the short-time and long-time behavior of ρb. These analyti-

cal results of one-dimensional systems can provide a valuable theoretical reference point for

future comparisons to molecular studies.

We applied the weighted ensemble (WE) approach of Huber and Kim [63] to the study

of a protein conformational transition. We employed a tractable united-residue model for

a 72-residue domain of calmodulin [53], which, nevertheless involves over 200 degrees of

freedom, and verified the quantitative correctness of the results, by comparison to brute-force

simulations. The comparison indicates that the WE approach quantitatively reproduces the

brute-force results, as assessed by considering: (i) the reaction rate; (ii) the distribution of

event durations; and (iii) structural distributions describing the heterogeneity of the paths.

Our results suggest that the WE method can increase efficiency by orders of magnitude in

more challenging systems.

We applied the weighted ensemble approach and transition path sampling method to test

systems with multiple channels for paths. First we compared these two methods by sampling
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paths in two-dimensional model potentials. It was shown that the transition path sampling

method is susceptible “trapping” in the local minimum as a Monte Carlo approach in path

space. But the weighted ensemble approach sampled multiple channels of paths successfully.

Then the weighted ensemble approach was applied for the potential representing an alanine

dipeptide molecule. It found multiple channels of paths and gave the probability distributions

for different channels in one simulation, which has never been accomplished, to the author’s

knowledge, by other path sampling methods.

B. WHAT WILL BE ACCOMPLISHED

1. Distribution of the durations of transition-events

Can the results of the distribution of the durations of transition-events in one-dimensional

spaces be generalized to high-dimensional space and applied to large biological systems?

Some exciting comparable work has been done by Zwanzig [187]. Under certain conditions,

a high-dimensional Fokker-Planck equation is projected into a one-dimensional Smoluchowski

equation in Zwanzig’s study on diffusion past an “entropy barrier”. It may be possible to

follow his idea and generalize our results beyond one-dimensional space.

2. Weighted ensemble approach

We plan to apply the weighted ensemble approach to a more realistic model of a larger

protein. For example, the motor protein myosin [3, 6] is one good candidate. Path sampling

on a large biological system requires considerably more computational power than what has

been used in this thesis. One available solution is parallel computation. If we check the

procedure discussed in Sec.III.C.2, it seems that parallel computation is very suitable for

the weighted ensemble approach, especially in steps III and IV. If the problem of interest is

still beyond our reach even when parallel computation is applied, a coarse grained model for

simulation will be considered.

The weighted ensemble approach has the ability to find the stable states of the system by
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itself, i.e., they don’t have to be known in advance. As we mentioned before, when the dy-

namics of the system can be treated as over-damped Brownian motion, the WE approach can

work as an discrete unbiased picture of forward integration of the Fokker-Planck equation.

Then the trajectories in the weighted ensemble approach will arrive at every stable state

without knowing them before hand. In fact, the results on alanine dipeptide in Sec.VI.C is

an example. Further, compared with the simulation for calmodulin in Chapter V, when we

changed the progress coordinate to the DRMSD to the initial state (Apo state), the weighted

ensemble approach found the final state (Holo state) without problem (results not shown).

These simulation results are extremely encouraging.

Now we are developing an improved weighted ensemble method which does not require

choosing a progress coordinate at the outset. One drawback of WE and several other path

sampling methods is the requirement of a predetermined reaction coordinate or progress

coordinate. Based on the relationship of this approach and the Fokker-Planck equation, we

realized that there exists more freedom to define the “bins” in the weighted ensemble method,

and the predetermined progress coordinate is not necessary. We already succeeded in demon-

strating the new “knowledge-free” approach in low-dimensional space (results not shown).

The improved weighted ensemble method in high-dimensional space is under development.
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[98] J. Schlitter, M. Engels, P. Krüger, E. Jacoby, and A. Wollmer, Mol. Simul. 10, 291
(1993).

[99] B. Isralewitz, M. Gao, and K. Schulten, Curr. Opin. Struct. Biol. 11, 224 (2001).

[100] N. M. Amato and G. Song, J. Comput. Biol. 9, 149 (2002).

[101] A. van der Vaart and M. Karplus, J. Chem. Phys. 122, 114903 (2005).

[102] A. van der Vaart and M. Karplus, J. Chem. Phys. 126, 164106 (2007).

[103] M.-R. Yun, N. Mousseau, and P. Derreumaux, J. Chem. Phys. 126, 105101 (2007).

[104] H. Grubmuller, Phys. Rev. E 52, 2893 (1995).

[105] M. Berkowitz, J. D. Morgan, J. A. McCammon, and S. H. Northrup, J. Chem. Phys.
79, 5563 (1983).

136



[106] R. Czerminski and R. Elber, J. Chem. Phys. 92, 5580 (1990).

[107] C. Choi and R. Elber, J. Chem. Phys. 94, 751 (1991).

[108] S. Fischer and M. Karplus, Chem. Phys. Lett. 194, 252 (1992).

[109] S. Huo and J. E. Straub, J. Chem. Phys. 107, 5000 (1997).

[110] R. Crehuet and M. J. Field, J Chem Phys 118, 9563 (2003).

[111] S. A. Trygubenko and D. J. Wales, J. Chem. Phys. 120, 2082 (2004).

[112] J. Schlitter, M. Engels, and P. Krüger, J. Mol. Graph. 12, 84 (1994).
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