
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

April 2023 

DATA-DRIVEN COMPUTATIONAL METHODS FOR QUASI-DATA-DRIVEN COMPUTATIONAL METHODS FOR QUASI-

STATIONARY DISTRIBUTION AND SENSITIVITY ANALYSIS STATIONARY DISTRIBUTION AND SENSITIVITY ANALYSIS 

Yaping Yuan 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Numerical Analysis and Computation Commons, and the Partial Differential Equations 

Commons 

Recommended Citation Recommended Citation 
Yuan, Yaping, "DATA-DRIVEN COMPUTATIONAL METHODS FOR QUASI-STATIONARY DISTRIBUTION AND 
SENSITIVITY ANALYSIS" (2023). Doctoral Dissertations. 2792. 
https://scholarworks.umass.edu/dissertations_2/2792 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2792&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/2792?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2792&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


DATA-DRIVEN COMPUTATIONAL METHODS FOR
QUASI-STATIONARY DISTRIBUTION AND SENSITIVITY

ANALYSIS

A Dissertation Presented

by

YAPING YUAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2023

Mathematics & Statistics



© Copyright by Yaping Yuan 2023

All Rights Reserved



DATA-DRIVEN COMPUTATIONAL METHODS FOR
QUASI-STATIONARY DISTRIBUTION AND SENSITIVITY

ANALYSIS

A Dissertation Presented

by

YAPING YUAN

Approved as to style and content by:

Yao Li, Chair

Matthew Dobson, Member

Brian Van Koten, Member

Jianhan Chen, Member

Tom Braden, Graduate Program Director
Mathematics & Statistics



DEDICATION

To my family.



ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to my advisor, Professor Yao Li, who

has taught me an enormous amount of mathematics and gave me invaluable guidance for

my thesis work. This thesis would would be impossible without his consistent support and

inspiring guidance. It was an honor to be his student. I am also thankful to Professor

Hongkun Zhang, who has provided tremendous help me during my PhD study.

My thankfulness is also to my parents for their endless support and encouragement

through my study. My special thanks go to my husband, Bintian. Throughout the ups and

downs of life, you never left my side, thank you for being my rock. Last but not least, I want

to thank my daughter, Yuyan, who makes my life colorful and meaningful.

v



ABSTRACT

DATA-DRIVEN COMPUTATIONAL METHODS FOR
QUASI-STATIONARY DISTRIBUTION AND SENSITIVITY

ANALYSIS

FEBRUARY 2023

YAPING YUAN

B.Sc., INNER MONGOLIA UNIVERSITY

M.Sc., INNER MONGOLIA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yao Li

The goal of the dissertation is to develop the computational methods for quasi-stationary-

distributions(QSDs) and the sensitivity analysis of a QSD against the modification of the

boundary conditions and against the diffusion approximation.

Many models in various applications are described by Markov chains with absorbing

states. For example, any models with mass-action kinetics, such as ecological models, epi-

demic models, and chemical reaction models, are subject to the population-level randomness

called the demographic stochasticity, which may lead to extinction in finite time. There

are also many dynamical systems that have interesting short term dynamics but trivial long

term dynamics, such as dynamical systems with transient chaos [28]. A common way of

capturing asymptotical properties of these transient dynamics is the quasi-stationary distri-

bution (QSD), which is the conditional limiting distribution conditioning on not hitting the

vi



absorbing set yet. However, most QSDs do not have a closed form. So numerical solutions

are necessary in various applications.

This dissertation studies computational methods for quasi-stationary distributions (QSDs).

We first proposed a data-driven solver that solves Fokker-Planck equations for QSDs. Moti-

vated by the case of Fokker-Planck equations for invariant probability measures, we set up

an optimization problem that minimizes the distance from a low-accuracy reference solution,

under the constraint of satisfying the linear relation given by the discretized Fokker-Planck

operator. Then we use coupling method to study the sensitivity of a QSD against either

the change of boundary condition or the diffusion coefficient. The 1-Wasserstein distance

between a QSD and the corresponding invariant probability measure can be quantitatively

estimated. Some numerical results about both computation of QSDs and their sensitivity

analysis are provided.

This dissertation also studies the sensitivity analysis of mass-action systems against their

diffusion approximations, particularly the dependence on population sizes. As a continu-

ous time Markov chain, a mass-action system can be described by a equation driven by

finite many Poisson processes, which has a diffusion approximation that can be pathwisely

matched. The magnitude of noise in mass-action systems is proportional to the square root

of the molecular count/population, which makes a large class of mass-action systems have

quasi-stationary distributions (QSDs) instead of invariant probability measures. In this the-

sis we modify the coupling based technique developed in [15] to estimate an upper bound of

the 1-Wasserstein distance between two QSDs. Some numerical results for sensitivity with

different population sizes are provided.
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CHAPTER 1

INTRODUCTION

Many models in various applications are described by Markov chains with absorbing

states. For example, any models with mass-action kinetics, such as ecological models, epi-

demic models, and chemical reaction models, are subject to the population-level randomness

called the demographic stochasticity, which may lead to extinction in finite time. There

are also many dynamical systems that have interesting short term dynamics but trivial long

term dynamics, such as dynamical systems with transient chaos [28]. A common way of

capturing asymptotical properties of these transient dynamics is the quasi-stationary distri-

bution (QSD), which is the conditional limiting distribution conditioning on not hitting the

absorbing set yet. However, most QSDs do not have a closed form. So numerical solutions

are necessary in various applications.

Computational methods for QSDs are not very well developed. Although the relation

between QSD and the Fokker-Planck equation is well known, it is not easy to use classical

PDE solver to solve QSDs because of the following two reasons. First a QSD is the eigen-

function of the Fokker-Planck operator whose eigenvalue is unknown. The cost of solving

eigenfunction of a discretized Fokker-Planck operator is considerably high. Secondly the

boundary condition of the Fokker-Planck equation is unknown. We usually have a mixture

of unbounded domain and unknown boundary value at the absorbing set. There are some

literatures about Monte Carlo sampling from a QSD, which usually include regenerating

samples from an empirical distribution once hitting the boundary [5,6,8,9,43]. However the

efficiency of the Monte Carlo simulation is known to be low. To get the probability density

function, one needs to deal with undesired noise associated to the Monte Carlo simulation.
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Methods like the kernel density estimator and the variable kernel density estimation can

smooth the solution but also introduce undesired diffusions to the solution, especially when

a QSD is highly concentrated at the vicinity of some low-dimensional sets.

We are particularly interested in studying the dynamics of mass-action networks, as many

of them admits QSDs instead of steady states. A mass-action network is a system of finite

many species and reactions whose rule of update satisfies the mass-action law. Mass-action

network covers a large number of chemical reaction network, epidemiology models, and

population models. At the molecular level, reactions in the mass-action network are random

events that modify the state of the network according to the stoichiometric equations. The

time of these random events satisfy mass-action laws. Therefore, a mass-action network can

be mathematically described by a continuous-time Markov process, which is driven by finite

many Poisson processes.

The randomness in updating the network is called the demographic noise in population

and epidemiology models. It is well known that demographic noise leads to finite time

extinction in a very large class of population models (see for example the discussion in

Section 5.1). This is because the magnitude of the demographic noise is proportional to the

population size. As a result, when the population is small, in many mass-action systems,

the noise could become the dominate term and leads to finite time extinction with strictly

positive probability. Therefore, the asymptotic property of the mass-action network with

finite time extinction is usually described by the quasi-stationary distribution (QSD), which

is the conditional limiting distribution conditioning on not hitting the absorbing set yet. As

discussed in [32], when the extinction rate is low, the quasi-stationary distribution can be

well approximated by the invariant probability measure of a modified process that artificially

”pushes” the trajectory away from the extinction.

It has been known for decades that when the population size is large, the continuous-

time Markov process converges to the mass-action ordinary differential equations (ODEs).

In addition, by setting up a martingale problem, one can show that the re-scaled differ-

2



ence between the continuous-time Markov process and the mass-action ODE converges to a

stochastic differential equation. Therefore, at any finite time, the continuous-time Markov

process of a mass-action network is approximated by a stochastic differential equation. This

is called the diffusion approximation of a mass-action network. We refer [2, 18] for further

details.

The first goal of this dissertation is to extend the data-driven Fokker-Planck solver [14]

to the case of QSDs . Similar to [14], we need a reference solution v generated by the

Monte Carlo simulation. Then we discretize the Fokker-Planck operator in a numerical

domain D without the boundary condition. Because of the lack of boundary conditions,

the discretization only gives an underdetermined linear system, denoted by Au = 0. Then

we minimize ∥v − u∥ in the null space of A. As shown in [15], this optimization problem

projects the error terms of v to a low dimensional linear subspace, which significantly reduces

its norm. Our numerical simulations show that this data-driven Fokker-Planck solver can

tolerate very high level of spatially uncorrelated error, so the accuracy of v does not have to

be high. The main difference between QSD solver and the Fokker-Planck solver is that we

need a killing rate to find the QSD, which is obtained by a Monte Carlo simulation. We find

that the QSD is not very sensitive against small error in the estimation of the killing rate.

The second goal of this dissertation is to study the sensitivity of QSDs. We are inter-

ested in two different kinds of sensitivities of QSDs, the one against modifying boundary

condition and the one against diffusion approximation. Some modifications of either the

boundary condition or the model parameters can prevent the Markov process from hitting

the absorbing state in finite time. So the modified process would admit an invariant prob-

ability measure instead of a QSD. It is important to understand the difference between the

QSD of a Markov process and the invariant probability measure of its modification. For

example, many ecological models do not consider demographic noise because the population

size is large and the QSD is much harder to study. But would the demographic noise com-

pletely change the asymptotical dynamics? More generally, a QSD captures the transient
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dynamics of a stochastic differential equation. If we separate a domain from the global dy-

namics by imposing reflecting boundary condition, how would the local dynamics be different

from the corresponding transient dynamics? All these require some sensitivity analysis with

quantitative bounds. Our approach is to regenerate from QSD after exiting. The process

with regeneration admits the QSD as its invariant probability measure. So the approach of

sensitivity analysis for invariant measure can be applied.

The last goal of this dissertation is to study the sensitivity of QSDs against the diffusion

approximation. We are interested in how the QSD of the Markov process and its diffusion

approximation differs from each other. The motivation is that an exact simulation at the

molecular level is usually computationally expensive even if the stochastic simulation algo-

rithm (SSA) is implemented optimally [19,30,40]. It is even harder to numerically compute

the QSD when the number of molecules is large. On the other hand, the simulation of a

diffusion process is much easier. The technique of computing the invariant probability mea-

sure or QSD of a stochastic differential equation is also well developed [14, 45]. Hence it

is important to have a quantitative upper bound of the difference between the QSD of a

mass-action system and that of its diffusion approximation. The way of sensitivity analysis

is developed from on the coupling-based method in [15]. We need both finite time trunca-

tion error and the rate of contraction of the transition kernel of the diffusion process. The

finite time error is given by the KMT algorithm in [36]. With the explicit construction of

coupled trajectories of the Poisson process and the diffusion process, the finite time error up

to fixed time T can be computed. The rate of contraction is modified from the data-driven

method proposed in [31]. We design a suitable coupling scheme for the modified diffusion

process that regenerates from the QSD right after hitting the absorbing set. Because of the

coupling inequality, the exponential tail of the coupling time can be used to estimate the

rate of contraction. The sensitivity analysis is demonstrated by several numerical examples.

Generally speaking, the distance between two processes is much larger for smaller volume

(i.e., molecular count).
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The organization of this dissertation is as follows. Beside a preliminary about Quasi-

stationary-distribution(QSD), stochastic differential equations, connection to the Fokker-

Planck equation, we also provide basic settings and properties about the mass-action sys-

tems, Poisson processes and diffusion processes in Chapter 2. Chapter 3 is about the first

goal of this dissertation. We introduce the data-driven solver for QSD and some numerical

results are provided as well. The sensitivity analysis of Quasi-stationary-distribution(QSD)

against modification of boundary condition or diffusion coefficients are presented in Chapter

4. Chapter 5 is about applications of Quasi-stationary-distribution(QSD) in mass-action

systems and the introduction to the algorithms for computing the finite time error and the

rate of contraction in two different cases. All explicit expressions of Poisson process and

Wiener process are shown in the appendix.
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CHAPTER 2

PRELIMINARY

2.1 Quasi-stationary-distribution(QSD)

We first give definition of the QSD and the exponential killing rate λ of a Markov process

with an absorbing state. Let X = (Xt : t ≥ 0) be a continuous-time Markov process taking

values in a measurable space (X ,B(X )). Let P t(x, ·) be the transition kernel of X such that

P t(x,A) = P[Xt ∈ A |X0 = x] for all A ∈ B. Now assume that there exists an absorbing set

∂X ⊂ X . The complement X a := X\∂X is the set of allowed states.

The process Xt is killed when it hits the absorbing set, implying that Xt ∈ ∂X for all

t > τ , where τ = inf{t > 0 : Xt ∈ ∂X} is the hitting time of set ∂X . Throughout this thesis,

we assume that the process is almost surely killed in finite time, i.e. P[τ <∞] = 1.

For the sake of simplicity let Px (resp. Pµ) be the probability conditioning on the initial

condition x ∈ X (resp. the initial distribution µ).

Definition 2.1.1. A probability measure µ on X a is called a quasi-stationary distribu-

tion(QSD) for the Markov process Xt with an absorbing set ∂X , if for every measurable

set C ⊂ X a

Pµ[Xt ∈ C|τ > t] = µ(C), t ≥ 0, (2.1.1)

If there is a probability measure µ exists such that

lim
t→∞

Px[Xt ∈ C|τ > t] = µ(C), ∀x ∈ X a. (2.1.2)

in which case we also say that µ is a quasi-limiting distribution(QLD).
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Remark 2.1.1. When µ satisfies (2.1.2), it is called a quasi-limiting distribution (QLD), or

a Yaglom limit. A QLD must be a QSD. Under some mild ergodicity assumptions, a QSD

is also a QLD [11].

In the analysis of QSD, we are particularly interested in a parameter λ, called the killing

rate of the Markov process. If the distribution of the killing time Px(τ > t) has an exponential

tail, then λ is the rate of this exponential tail. The following theorem shows that the killing

time is exponentially distributed when the process starts from a QSD [10].

Theorem 2.1.1. Let µ be a QSD of stochastic process X. Then

∃ λ = λ(µ) such that Pµ[τ > t] = e−λt, ∀t ≥ 0,

where λ is called the killing rate of X.

Throughout this thesis, we assume that X admits a QSD denoted by µ with a strictly

positive killing rate λ.

2.2 Stochastic differential equations

2.2.1 Stochastic differential equations

Consider a stochastic differential equation (SDE)

dXt = f(Xt)dt + σ(Xt)dWt, (2.2.1)

where Xt ∈ Rd and Xt is killed when it hits the absorbing set ∂X ⊂ Rd; f : Rd → Rd is

a continuous vector field; σ is an d × d matrix-valued function; and dWt is the white noise

in Rd. The following well known theorem shows the existence and the uniqueness of the

solution of equation (2.2.1).
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Theorem 2.2.1. Assume that there are two positive constants C1 and C2 such that the two

functions f and σ in (2.2.1) satisfy

(1) (Lipschitz condition) for all x, y ∈ Rd and t

|f(x)− f(y)|2 + |σ(x)− σ(y)|2 ≤ C1|x− y|2;

(2) (Linear growth condition) for all x, y ∈ Rd and t

|f(x)|2 + |σ(x)|2 ≤ C2(1 + |x|2).

Then there exists a unique solution X(t) to equation (2.2.1).

There are quite a few recent results about the existence and convergence of QSD. Since

the theme of this thesis is numerical computations, in this thesis we directly assume that

Xt admits a unique QSD µ on set X a that is also the quasi-limit distribution. The detailed

conditions are referred in [17,24,38,41,42].

2.2.2 Connection with Fokker-Planck equation

The Fokker-Planck equation is the equation governing the time evolution of the proba-

bility density of a stochastic process. For a stochastic differential equation(SDE)

dXt = f(Xt)dt + σ(Xt)dWt ,

the probability density u of the random variable Xt satisfies the Fokker-Planck equation

ut = Lu = −
d∑

i=1

(fiu)xi
+

1

2

d∑
i,j=1

(Diju)xixj
,

with diffusion tensor D = σσT . u(x, t) denotes the probability density at time t, and

subscripts t and xi denote the partial derivatives with respect to time t an location x. In
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this dissertation, we focus on the quasi-stationary-distribution (QSD), whose density function

u satisfies [3]

−λu = Lu = −
d∑

i=1

(fiu)xi
+

1

2

d∑
i,j=1

(Diju)xixj
, (2.2.2)

where D = σTσ, and λ is the killing rate. The operator L is the infinitesimal generator.

For simplicity, we only consider cases when Dij are constants in this dissertation.

2.2.3 Numerical Scheme

2.2.4 Basic settings

For simplicity, we introduce the algorithm for n = 2, specifically, we solve u in equation

(2.2.2) numerically on a 2D domain D = [a0, b0] × [a1, b1]. Firstly, we construct an N ×M

grid on D with grid size h = b0−a0
N

= b1−a1
M

. Each small box in the mesh is denoted by

Oi,j = [a0 + (i − 1)h, a0 + ih] × [a1 + (j − 1)h, a1 + jh]. Let u = {ui,j}i=N,j=M
i=1,j=1 be the

numerical solution on D that we are interested in, then u can be considered as a vector in

RN×M . Each element ui,j approximates the density function u at the center of each Oi,j, with

coordinate (ih+a0−h/2, jh+a1−h/2). We consider u as the solution to the boundary-free

partial differential equation (2.2.2) and discretize the operator L on D with respect to all

(N−2)(M−2) interior boxes. The discretization of the Fokker-Planck equation with respect

to each center point is given by the following Finite Difference Methods.

2.2.4.1 Finite difference method

In numerical analysis, finite difference method is a numerical technique for solving dif-

ferential equations by approximating derivatives with finite difference. Finite difference

representations of derivatives are derived from Taylor series expansions. The basic philoso-

phy of finite difference methods is to replace the derivatives of the governing equations with

algebraic difference quotients. This will result in a system of algebraic equations which can

be solved for the dependant variables at the discrete grid points. Let ui,j approximates the

density function u at the center of each Oi,j. Note that we assume ui,j represent a smooth
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function, meaning that we can differentiate the function several times and each derivative is

well-defined bounded function over Oi,j. It is not hard to see that ui,j is immediately related

to the function value at its right side ui+1,j and to the function value at its left side ui−1,j.

By Taylor series expansion, we have

ui+1,j = ui,j +

(
∂u

∂x

)
i,j

h +

(
∂2u

∂x2

)
i,j

h2

2
+

(
∂3u

∂x3

)
i,j

h3

6
+ · · · (2.2.3)

If terms of order h2 and higher are neglected, then equation (2.2.3) is reduced to

ui+1,j ≈ ui,j +

(
∂u

∂x

)
i,j

h,

therefore, the first-order forward difference is defined as

(
∂u

∂x

)
i,j

=
ui+1,j − ui,j

h
+ O(h).

Similarly, the first-order backward difference is defined as

(
∂u

∂x

)
i,j

=
ui,j − ui−1,j

h
+ O(h),

And the second-order central difference for the derivative
(
∂u
∂x

)
at the gird point (i, j) is

defined as (
∂u

∂x

)
i,j

=
ui+1,j − ui−1,j

2h
+ O(h2).

For second-order partial derivatives, the central difference of second derivative is

(
∂2u

∂x2

)
i,j

=
ui+1,j − 2ui,j + ui−1,j

h2
+ O(h2).

With all derivatives approximations above, we have the discretization of the Fokker-Planck

operator L, which is an (N − 2)(M − 2)× (NM) matrix. More precisely, row (i− 1) ∗ (N −

2) + j − 1 is the discretization of L at the center of box (i, j), which is given by

10



− 1

2h
(fi+1,jui+1,j − fi−1,jui−1,j + fi,j+1ui,j+1 − fi,j−1ui,j−1) +

1

2h2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) = −λui,j

2.2.4.2 Sampling

In order to compute the QSD, one needs to numerically simulate a long trajectory of X.

Once Xt hits the absorbing state, a new initial value is sampled from the empirical QSD. The

re-sampling step can be done in two different ways. We can either use many independent

trajectories that form an empirical distribution [4] or re-sample from the history of a long

trajectory [6]. In this dissertation we use the latter approach.

Let X̂ = {X̂δ
n, n ∈ Z+} be a stochastic process that samples the “numerical QSD”.

When X̂δ
n ∈ X a, X̂ simply approximates the time-δ sample chain of Xt, i.e., Xnδ. The

approximation uses either Euler-Maruyama scheme or the Milstein scheme. The Euler-

Maruyama numerical scheme is given by

X̂δ
n+1 = X̂δ

n + f(X̂δ
n)δ + σ(X̂δ

n)(W(n+1)δ −Wnδ), (2.2.4)

where X̂δ
0 = X0, W(n+1)δ −Wnδ ∼ N (0, δIdd), n ∈ Z+ is a d-dimensional normal random

variable. A more accurate scheme is the Milstein scheme, which reads

X̂δ
n+1 = X̂δ

n + f(X̂δ
n)δ + σ(X̂δ

n)(W(n+1)δ −Wnδ) + σ(X̂δ
n)IL,

where I is a d× d matrix with its (i, j)-th component being the double Itô integral

Ii,j =

∫ (n+1)δ

nδ

∫ s2

nδ

dW i(s1)dW
j(s2),
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and L ∈ Rd is a vector of left operators with i-th component

uLi =
d∑

i=1

σi,j(X̂
δ
n)

∂u

∂xi

.

Under suitable assumptions of Lipschitz continuity and linear growth conditions for f and

σ, the Euler-Maruyama approximation provides a convergence rate of order 1/2, while the

Milstein scheme is an order 1 strong approximation [25].

To deal with the situation when X̂ hits the absorbing set, in addition to X̂δ
n, we also need

to update a temporal occupation measure

µn =
1

n

n−1∑
k=0

δX̂δ
n
.

If the numerical scheme gives X̂δ
n+1 ∈ ∂X , we immediately resample X̂δ

n+1 from µn. More

precisely, let the transition kernel of the numerical scheme of X (without resampling) be Q̂.

Then Q̂ has an absorbing set, i.e., Q̂(∂X , ∂X ) = 1. The transition kernel of X̂δ
n is modified

from Q̂ such that

P[X̂δ
n+1 ∈ A | X̂δ

n = x] = Q̂(x,A) + Q̂(x, ∂X )µn(A) .

We have the following convergence result from [6].

Proposition 2.2.1 ((Theorem 2.5 in [6])). Under suitable assumptions about X̂, the occu-

pation measure µn converges to the QSD µ as n→∞.

The assumption in Proposition 2.2.1 about X̂ is that X̂ must be Feller, the absorbing set

is accessible, X̂ admits a “weak small set”, and that the killing rates from different initial

values are uniformly controlled. It is easy to check that these assumptions are satisfied by the

numerical scheme of most ergodic SDEs. Since this thesis focuses on numerical algorithm,

throughout this thesis, we assume that all assumptions in Proposition 2.2.1 are satisfied.
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2.3 Monte-Carlo method for QSD

In line with the basic settings, we solve u in equation (2.2.2) numerically on a 2D domain

D = [a0, b0]× [a1, b1]. Firstly, we construct an N ×M grid on D with grid size h = b0−a0
N

=

b1−a1
M

. Each small box in the mesh is denoted by Oi,j = [a0 + (i− 1)h, a0 + ih]× [a1 + (j −

1)h, a1 + jh]. Let u = {ui,j}i=N,j=M
i=1,j=1 be the numerical solution on D that we are interested

in, then u can be considered as a vector in RN×M . Each element ui,j approximates the

density function u at the center of each Oi,j, with coordinate (ih+ a0− h/2, jh+ a1− h/2).

Generally speaking, we count the number of X̂ falling into each box and set the normalized

value as the approximate probability density at Oi,j. The detail of the simulation is shown

in Algorithm 1 below.

Algorithm 1 Monte Carlo for QSD

Input: Equation (2.2.4) and the grid
Output: A Monte Carlo approximation u = {ui,j}. Sample size Ns.

Pick any initial value X0 /∈ ∂X in D
for n = 1 to Ns do

Use X̂δ
n and equation (2.2.4) to compute X̂δ

n+1

Record the coordinates of the small box Oi,j where X̂δ
n+1 stands, say i∗, j∗

if X̂δ
n+1 /∈ ∂X then

ui∗,j∗ ← ui∗,j∗ + 1
else
X̂δ

n+1 = X̂δ
⌊U∗n⌋, where U is a uniformly distributed random variable

end if
end for
Return ui,j/Nsh

2 for all i, j as the approximation solution.

Sometimes the Euler-Maruyama method underestimates the probability that X moves

to the absorbing set, especially when Xt is close to ∂X . This problem can be fixed by

introducing the Brownian bridge correction. We refer to [6] for details. For a sample falling

into a small box which are closed to ∂X , the probability of them falling into the trap ∂X is

relatively high. In fact, this probability is exponentially distributed and the rate is related

to the distance from ∂X . Let BT
t = Wt− t

T
WT be the Brownian Bridge on the interval [0, T ].

In the 1D case, the law of the infimum and the supremum of the Brownian Bridge can be
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computed as follows: for every z ≥ max(x, y)

P[ sup
t∈[0,T ]

(x + (y − x)
t

T
+ ϕBT

t ) ≤ z] = 1− exp(− 2

Tϕ2
(z − x)(z − y)), (2.3.1)

where x = X̂δ
n ∈ X a, y = X̂δ

n+1 ∈ X a, and ϕ = σ(X̂δ
n) is the strength coefficient of Brownian

Bridge. This means that at each step n, if X̂δ
n+1 ∈ X a, one can compute, with the help of

the above properties, a Bernoulli random variable G with the parameter

p = P[∃t ∈ (nδ, (n + 1)δ), X̂t ∈ ∂X|x = X̂δ
n, y = X̂δ

n+1] (If G = 1, the process is killed).

2.4 Coupling

2.4.1 Coupling Method

The coupling method is used for the sensitivity analysis of QSDs.

Definition 2.4.1. (Coupling of probability measures) Let µ and ν be two probability

measures on a probability space (X ,B(X )). A probability measure γ on (X×X ,B(X )×B(X ))

is called a coupling of µ and ν, if two marginals of γ coincide with µ and ν respectively.

The definition of coupling can be extended to any two random variables that take value

in the same state space. Now consider two Markov processes X = (Xt : t ≥ 0) and

Y = (Yt : t ≥ 0) with the same transition kernel P . A coupling of X and Y is a stochastic

process (Xm, Y m) on the product state space X × X such that

(i) The marginal processes Xm and Y m are Markov processes with the transition kernel

P ;

(ii) If Xm
s = Y m

s , we have Xm
t = Y m

t for all t > s.

The first meeting time of Xm
t and Y m

t is denoted as τ c := inft≥0{Xm
t = Y m

t }, which is

called the coupling time. The coupling (Xm, Y m) is said to be successful if the coupling time

is almost surely finite, i.e. P[τ c < ∞] = 1. Here the super index m stands for the marginal

distribution, which is dropped when it causes no confusion.
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In order to give an estimate of the sensitivity of the QSD, we need the following two

metrics.

Definition 2.4.2. (Wasserstein distance) Let d be a metric on the metric state space V

equipped with distance d(·, ·). For probability measures µ and ν on V , the Wasserstein

distance between µ and ν for d is given by

dw(µ, ν) = inf{Eγ[d(x, y)] : γ is a coupling of µ and ν.}

= inf{
∫

d(x, y)γ(dx, dy) : γ is a coupling of µ and ν.}
(2.4.1)

In this thesis, without further specification, we assume that the 1-Wasserstein distance

is induced by d(x, y) = min{1, ∥x− y∥}, where ∥x− y∥ is the Euclidean norm.

Definition 2.4.3. (Total variation distance) Let µ and ν be probability measures on (X ,B(X )).

The total variation distance of µ and ν is

∥µ− ν∥TV := sup
C∈B(X )

|µ(C)− ν(C)|.

Lemma 2.4.1. (Coupling inequality) For the coupling given above and the Wasserstein

distance induced by the distance given in (2.4.1), we have

P[τ c > t] = P[Xm
t ̸= Y m

t ] ≥ dw(P t(x, ·), P t(y, ·)).

Proof. By the definition of Wasserstein distance,

dw(P t(x, ·), P t(y, ·)) ≤
∫

d(x, y)P[(Xm
t , Y m

t ) ∈ (dx, dy)]

=

∫
x ̸=y

d(x, y)P[(Xm
t , Y m

t ) ∈ (dx, dy)]

≤
∫
x ̸=y

P[(Xm
t , Y m

t ) ∈ (dx, dy)]

= P[Xm
t ̸= Y m

t ].
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The lemma follows because P[τ c > t] = P[Xm
t ̸= Y m

t ] by definition.

Consider a Markov coupling (X̂, Ŷ ), where X̂ = {X̂δ
n : n ∈ N} and Ŷ = {Ŷ δ

n : n ∈ N}

are two numerical trajectories of the stochastic differential equation described in (2.2.4).

Theoretically, there are many ways to make stochastic differential equations couple. But

since numerical computation always has errors, two numerical trajectories may miss each

other when the true trajectories couple. Hence we need to apply a mixture of the following

coupling methods in practice.

Independent coupling. Independent coupling means the noise term in the two marginal

processes X̂ and Ŷ are independent when running the coupling process (X̂, Ŷ ). That is

X̂δ
n+1 = X̂δ

n + f(X̂δ
n)δ + (W

(1)
(n+1)δ −W

(1)
nδ )

Ŷ δ
n+1 = Ŷ δ

n + f(Ŷ δ
n )δ + (W

(2)
(n+1)δ −W

(2)
nδ ),

where (W
(1)
(n+1)δ −W

(1)
nδ ) and (W

(2)
(n+1)δ −W

(2)
nδ ) are independent random variables for each n.

Reflection coupling Two Wiener processes meet less often than the 1D case when the

state space has higher dimensions. This fact makes the independent coupling less effective.

The reflection coupling is introduced to avoid this case. Take the Euler-Maruyama scheme

of the SDE

dXt = f(Xt)dt + σdWt

as an example, where σ is a constant matrix. The Euler-Maruyama scheme of Xt reads as

X̂δ
n+1 = X̂δ

n + f(X̂δ
n)δ + σ(W(n+1)δ −Wnδ),

where W is a standard Wiener process. The reflection coupling means that we run X̂δ
n as

X̂δ
n+1 = X̂δ

n + f(X̂δ
n)δ + σ(W(n+1)δ −Wnδ),
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while run Ŷ δ
n as

Ŷ δ
n+1 = Ŷ δ

n + f(Ŷ δ
n )δ + σP (W(n+1)δ −Wnδ),

where P = I − 2ene
T
n is a projection matrix with

en =
σ−1(X̂δ

n − Ŷ δ
n )

∥σ−1(X̂δ
n − Ŷ δ

n )∥
.

Nontechnically, reflecting coupling means that the noise term is reflected against the hyper-

plane that orthogonally passes the midpoint of the line segment connecting X̂δ
n and Ŷ δ

n . In

particular, en = −1 when the state space is 1D.

Maximal coupling Above coupling schemes can bring X̂δ
n moves close to Ŷ δ

n when

running numerical simulations. However, a mechanism is required to make X̂δ
n+1 = Ŷ δ

n+1

with certain positive probability. That’s why the maximal coupling is involved. One can

couple two trajectories whenever the probability distributions of their next step have enough

overlap. Denote p(x)(z) and p(y)(z) as the probability density functions of X̂δ
n+1 and Ŷ δ

n+1

respectively. The implementation of the maximal coupling is described in the following

algorithm.

Algorithm 2 Maximal coupling

Input: X̂δ
n and Ŷ δ

n

Output: X̂δ
n+1 and Ŷ δ

n+1, and τ c if coupled
Compute probability density functions p(x)(z) and p(y)(z)
Sample X̂δ

n+1 and calculate r = Up(x)(X̂δ
n+1), where U is uniformly distributed on [0,1]

if r < p(y)(X̂δ
n+1) then

Ŷ δ
n+1 = X̂δ

n+1, τ
c = (n + 1)δ

else
Sample Ŷ δ

n+1 and calculate r′ = V p(y)(Ŷ δ
n+1), where V is uniformly distributed on [0,1]

while r′ < p(x)(Ŷ δ
n+1) do

Resample Ŷ δ
n+1 and V . Recalculate r′ = V p(y)(Ŷ δ

n+1)
end while
τ c is still undetermined

end if

For discrete-time numerical schemes of SDEs, we use reflection coupling when X̂δ
n and Ŷ δ

n

are far away from each other, and maximal coupling when they are sufficiently close. The
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threshold of changing coupling method is 2
√
δ∥σ∥ in our simulation, that is, the maximal

coupling is applied when the distance between X̂δ
n and Ŷ δ

n is smaller than the threshold.

2.5 Mass-action network

2.5.1 Stochastic mass reaction networks

We consider a mass action network of K reactions involving d distinct species, S1, · · · , Sd,

d∑
i=1

ckiSi →
d∑

i=1

c′kiSi, k = 1, · · · , K (2.5.1)

where cki and c′ki are non-negative integers that denote the number of moleculars of species

Si consumed and produced by reaction k, respectively. Let V be the volume of the reaction

system. Let X(t) = (x1(t), · · · , xd(t)) ∈ Rd be the state of the mass action system at time

t, such that the i-th entry of X(t) represents the concentration of species Si, i = 1, · · · , d.

In other words the number of moleculars of Si is V xi := Ni. Let λk be the rate at which the

kth reaction occurs, that is, it gives the propensity of the k-th reaction as a function of the

concentrations of moleculars of the chemical species.

2.5.2 Rates for the law of mass action

The law of mass action means the rate of a reaction should be proportional to the number

of distinct subsets of the participating moleculars. More precisely, the rate of reaction k reads

λk = κkV
d∏

i=1

(
Ni

V
)cki := V fk(X),

where κk is a rate constant, and Ni be the number of molecular of the ith species in the

system. Let ∆t ≪ 1 be a very short time period. More precisely, given all information of

the system up to time t, we have

P[ reaction k occurs in [t, t + ∆t)] = λk∆t + O(∆t2) .
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2.5.3 Poisson process

We use Poisson counting process to represent X(t), because X(t) is a continuous time

discrete state Markov chain. Let Xi(t) be i-th entry of X(t), then

Xi(t) = Xi(0) +
1

V

∑
k

Rk(t)(c′ki − cki),

where Rk(t) is the number of times the reaction k has occurred by time t and Rk(0) = 0.

Because the number of moleculars of species changes with time, Rk(t) is an inhomogeneous

Poisson process that is given by

Rk(t) = Pk(V

∫ t

0

fk(X(s))ds), (2.5.2)

where Pk(·) is a unit-rate Poisson point process. It is well known that Pk(·) satisfies the

following three properties: (1) Pk(0) = 0, (2) Pk(·) has independent increments, and (3)

Pk(s + t) − Pk(s) is a Poisson random variable with parameter t. And the whole system is

given by

X(t) = X(0) +
∑
k

lk
V
Pk(V

∫ t

0

fk(X(s))ds) (2.5.3)

where Pk(t), k = {1, · · · , K} are independent unit-rate Poisson processes, and lk = c′k−ck ∈

Rd denotes the coefficient change of moleculars at reaction k.

2.5.4 Diffusion process

When V is large, a Poisson process can be approximated by a diffusion process. The

follow lemma in [26,27] gives the strong approximation theorem for Poisson processes.

Lemma 2.5.1. A unit Poisson process P (·) and a Wiener process B(·) can be constructed

so that ∣∣∣∣P (V t)− V t√
V

− 1√
V
B(V t)

∣∣∣∣ ≤ log(V t ∨ 2)√
V

Γ,

where Γ is a random variable such that E(ecΓ) <∞ for some constant c > 0.
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Remark 2.5.1. By the scaling property of Wiener process, 1√
V
B(V t) is also a standard

Wiener process.

With the lemma above and Ito’s formula, we have the diffusion approximation

Pk

(
V

∫ t

0

fk(X(s))ds

)
≈ V

∫ t

0

fk(X(s))ds +

∫ t

0

√
V fk(X(s))dB(s)

= V

∫ t

0

fk(X(s))ds + Bk

(
V

∫ t

0

fk(X(s))ds

)

This gives the diffusion approximation of the mass action system X(t):

Y (t) = Y (0) +
∑
k

lk
V

[
V

∫ t

0

fk(Y (s))ds + Bk

(
V

∫ t

0

fk(X(s))ds

)]
.

In the chemical literature, Y is known as the Langevin approximation for the continuous

time Markov chain model. Theoretically, the distance between these two approximations is

bounded as follow theorem in [36].

Theorem 2.5.2. Let X(t) be a Poisson process represented by (2.5.3), let Y (t) be a diffusion

process with initial condition satisfying X(0) = Y (0) and solves the following stochastic

differential equation

Y (t) = Y (0) +
∑
k

lk
V

[
V

∫ t

0

fk(Y (s))ds + Bk

(
V

∫ t

0

fk(Y (s))ds

)]
(2.5.4)

where the Bk(·) are independent standard Wiener processes. As V →∞,

sup |X(t)− Y (t)| = O

(
log V

V

)
. (2.5.5)

The error of diffusion approximation is proportional to log V
V

, which converges to 0 as

V → ∞. In macroscopic chemical reaction system V is at the magnitude of Avogadro’s

number. Therefore, the entire diffusion term can be safely ignored. However, in many
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ecologic systems or cellular chemical reaction systems, the effective volume cannot be simply

treated as infinity. This motivates us to consider the sensitivity of the quasi-stationary-

distributions (QSDs) against the diffusion approximation. For any finite capacity V , the

finite time error of the diffusion approximation can be explicitly simulated. Paper [36] gives

the constructive procedure to generate discretized trajectories of the two processes X(t) and

Y (t) on the same probability space that they stay close to each other trajectory by trajectory

with probability one. We apply the algorithm to compute the finite time error in Chapter 3.

2.5.5 Paired trajectories of Poisson process and of the diffusion process

Recall that according to Lemma 2.5.1 a unit-rate Poisson process has a strong diffusion

approximation. Hence equation (2.5.3) also has a strong approximation given by equation

(2.5.4). As the processes Pk(·) and Bk(·) are continuous time processes, we apply the τ -

leaping approximation for equation (2.5.3) with the same step size h. This gives

X̂n+1 = X̂n +
∑
k

lk
V

[
Pk

(
V h

n∑
m=0

fk(X̂m)

)
− Pk

(
V h

n−1∑
m=0

fk(X̂m)

)]
(2.5.6)

with X̂0 = X0. Similarly, the discretized approximation of equation (2.5.3), or the Euler-

Maruyama method reads

Ŷn+1 = Ŷn +
∑
k

lk
V

(V hfk(Ŷn))

+
∑
k

lk
V

[
Bk

(
V h

n∑
m=0

fk(Ŷm)

)
−Bk

(
V h

n−1∑
m=0

fk(Ŷm)

)] (2.5.7)

with initial condition Ŷ0 = Y0.

The paired trajectories of Pk(t) and Bk(t) can be numerically generated by applying the

KMT algorithm. The KMT algorithm actually generates a sequence of standard Poisson

random variables {Pn} and a sequence of standard normal random variables {Wn}, such

that
∑N

n=1 Pn is approximated by N +
∑N

n=1Wn for each finite N . Then after a re-scaling,
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one obtains a pair of discretized trajectories of Pk(t) and Bk(t) respectively. We refer [36]

for a detailed review of the KMT algorithm.
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CHAPTER 3

DATA-DRIVEN SOLVER FOR QSD

Recall that QSD solves the equation −λu = Lu where L is the Fokker-Planck opera-

tor defined in (2.2.2). The QSD solver consists of three components: an estimator of the

killing rate λ, a Monte Carlo simulator of QSD that produces a reference solution, and an

optimization problem similar as in [29].

3.1 Estimation of λ

Let X̂ = {X̂δ
n, n ∈ Z+} be a long numerical trajectory of Xt as described in Algorithm

1. Let τ = {τm}Mm=0 be recordings of killing times of the numerical trajectory such that Xt

hits ∂X at τ0, τ0 +τ1, τ0 +τ1 +τ2, · · · when running Algorithm 1. Note that τ is an 1D vector

and each element in τ is a sample of the killing time. It is well known that if the QSD µ

exists for a Markov process, then there exists a constant λ > 0 such that

Pµ[τ > t] = e−λt .

Recall that the killing times τ be exponentially distributed and the rate can be approximated

by

λ =
1

mean of τ
.

One pitfall of the previous approach is that Algorithm 1 only gives a QSD when the

time approaches to infinity. It is possible that τ has not converged close enough to the

desired exponential distribution. So it remains to check whether the limit is achieved. Our

approach is to check the exponential tail in a log-linear plot. After having τ , it is easy to
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choose a sequence of times t0, t1, · · · , tn and calculate ni = |{τm > ti | 0 ≤ m ≤M}| for each

i = 0, · · ·n. Then pi = ni/M is an estimator of Pµ[τ > ti]. Now let pui (resp. pli) be the

upper (resp. lower) bound of the confidence interval of pi such that

pui = p̃ + z

√
p̃

ñi

(1− p̃) ( resp. pli = p̃− z

√
p̃

ñi

(1− p̃)) ,

where z = 1.96, ñi = ni +z2 and p̃ = 1
ñi

(ni +
z2

2
) [1]. If pli ≤ e−λti ≤ pui for each 0 ≤ i ≤ n, we

accept the estimate λ. Otherwise we need to run Algorithm 1 for longer time to eliminate

the initial bias in τ .

3.2 Data driven QSD solver.

The data driven solver for the Fokker-Planck equation introduced in [29] can be modified

to solve the QSD for the stochastic differential equation (2.2.1). We use the same 2D setting

in Section 2.3 to introduce the algorithm. Let the domain D and the boxes {Oi,j}i=N,j=M
i=1,j=1 be

the same as defined in Section 2.3. Let u be a vector in RN×M such that uij approximates

the probability density function at the center of the box Oi,j. As introduced in [14], we

consider u as the solution to the following linear system given by the spatial discretization

of the Fokker-Planck equation (2.2.2) with respect to each center point:

A0u = λu, (3.2.1)

where A0 is an (N − 2)(M − 2) × (NM) matrix, which is called the discretized Fokker-

Planck operator, and λ is the killing rate, which can be obtained by the way we mentioned

in previous subsection. More precisely, each row in A0 describes the finite difference scheme

of equation (2.2.2) with respect to a non-boundary point in the domain D.

Motivated by [29], we need the Monte Carlo simulation to produce a reference solution

v, which can be obtained via Algorithm 1 in Chapter 2. Let X̂ = {X̂δ
n}Nn=1 be a long
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numerical trajectory of time-δ sample chain of process Xt produced by Algorithm 1, and

let v = {vi,j}i=N,j=M
i=1,j=1 such that

vi,j =
1

Nh2

N∑
n=1

1Oi,j
(X̂δ

n)

It follows from the convergence result in Proposition 2.2.1 that v is an approximate solution

of equation (2.2.2) when the trajectory is sufficiently long. However, as discussed in [29],

the trajectory needs to be extremely long to make v accurate enough. Noting that the error

term of v has little spatial correlation, we use the following optimization problem to improve

the accuracy of the solution.

min ∥u− v∥2

subject to A0u = λu.

(3.2.2)

The solution to the optimization problem (3.2.2) is called the least norm solution, which

satisfies u = v −AT(AAT)−1(Av), with A = A0 − λI. [29]

An important method called the block data-driven solver is introduced in [14], in order

to reduce the scale of numerical linear algebra problem in high dimensional problems. By

dividing domain D into K × L blocks {Dk,l}k=1,l=1
k=K,l=L and discretizing the Fokker-Planck

equation, the linear constraint on Dk,l is

Ak,lu
k,l = λuk,l,

where Ak,l is an (N/K − 2)(M/L− 2)× (NM/KL) matrix. The optimization problem on

Dk,l is

uk,l = −AT
k,l(Ak,lA

T
k,l)

−1Ak,lvk,l + vk,l,

where vk,l is a reference solution obtained from the Monte-Carlo simulation. Then the

numerical solution to Fokker-Planck equation (3.2.1) is collage of all {uk,l}k=1,l=1
k=K,l=L on all
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blocks. However, the optimization problem ”pushes” most error terms to the boundary

of domain, which makes the solution is less accurate near the boundary of each block.

Paper [14] introduced the overlapping block method and the shifting blocks method to reduce

the interface error. The overlapping block method enlarges the blocks and set the interior

solution restricted to the original block as new solution, while the shifting block method

moves the interface to the interior by shifting all blocks and recalculate the solution.

Note that in Section 3.1, we assume that λ is a pre-determined value given by the Monte

Carlo simulation. Theoretically one can also search for the minimum of ∥u− v∥2 with

respect to both λ and v. But empirically we find that the result is not as accurate as using

the killing rate λ from the Monte Carlo simulation, possibly because v has too much error.

One natural question is that how the simulation error in λ would affect the solution

u to the optimization problem (3.2.2). Some linear algebraic calculation shows that the

optimization problem (3.2.2) is fairly robust against small change of λ.

Theorem 3.2.1. Let u and u1 be the solution to the optimization problem (3.2.2) with

respect to killing rates λ and λ1 respectively, where |λ− λ1| = ϵ≪ 1. Then

∥u− u1∥ ≤ 2s−1
minϵ∥v∥+ O(ϵ2),

where smin is the smallest singular value of A.

Proof. Let E =
[
ϵI(N−2)(M−2)|0

]
be an (N − 2)(M − 2) × (NM) perturbation matrix. Let

Ã = A + E, B = AT(AAT)−1A and B̃ = ÃT(ÃÃT)−1Ã. Since u = v − Bv and u1 =

v − B̃v, it is sufficient to prove

∥B− B̃∥ ≤ 2s−1
minϵ + O(ϵ2).

Note that

ÃÃT = (A + E)(A + E)T = AAT + AET + EAT + EET.
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Since ∥EET∥ is O(ϵ2), we can neglect it when we consider the inverse matrix of ÃÃT. This

means

(ÃÃT)−1 ≈ (AAT)−1 − (AAT)−1(AET + EAT)(AAT)−1.

Without considering the high order term O(ϵ2), we can see

ÃT(ÃÃT)−1Ã ≈ (AT + ET)((AAT)−1 − (AAT)−1(AET + EAT)(AAT)−1)(A + E)

= AT(AAT)−1A + (ET(AAT)−1A−AT(AAT)−1(AET)(AAT)−1A)

+ (AT(AAT)−1E−AT(AAT)−1(EAT)(AAT)−1A)

= B + [ET −AT(AAT)−1(AET)](AAT)−1A

+ AT(AAT)−1[E− (EAT)(AAT)−1A].

Consider the singular value decomposition(SVD) of matrix A, i.e. A = uSvT, wherein

S =


s1 0

. . .
...

s(N−2)(M−2) 0

 is an (N − 2)(M − 2) × (NM) matrix and both u ∈

R(N−2)(M−2)×(N−2)(M−2),v ∈ R(NM)×(NM) are orthogonal. Then AT(AAT)−1A = vD1v
T,

where D1 =

 I(N−2)(M−2) 0

0 0


(NM)×(NM)

, and

(ET −AT(AAT)−1AET) = (ET − vD1v
TET)

= vD2v
TET, where D2 = I−D1.

E− (EAT)(AAT)−1A = E− EAT(AAT)−1A

= E− EvD1v
T

= EvD2v
T.

Note that ∥vD2v
TET∥ ≤ ϵ, ∥EvD2v

T∥ ≤ ϵ. Since AT(AAT)−1 and (AAT)−1A are two

generalized inverse of A,
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AT(AAT)−1 = vS∗TuT, (AAT)−1A = uS∗v,

where

S∗ =


1
s1

0

. . .
...

1
s(N−2)(M−2)

0

 (3.2.3)

and ∥AT(AAT)
−1∥ = ∥(AAT)−1A∥ = 1

smin
, hence we conclude that

∥B− B̃∥ ≤ 2smin
−1ϵ + O(ϵ2).

Remark 3.2.1. It is very difficult to estimate the minimum singular value of matrix A ana-

lytically, even for the simplest case when the Fokker-Planck equation is just a heat equation.

But empirically we find that s−1
min is usually not very large. For example, s−1

min for the gradient

flow with a double well potential is Section 4.3 is 0.4988, and s−1
min for the “ring example” in

Section 3.3 is only 0.2225.

3.3 Numerical Results

The first SDE example is the Ornstein–Uhlenbeck process :

dXt = θ(µ−Xt)dt + σdWt, (3.3.1)

where θ > 0 and σ > 0 are parameters, µ is a constant. In addition, Wt is a Wiener process,

and σ is the strength of the noise. In our simulation, we set θ = 1, µ = 2, σ = 1 and the

absorbing set ∂X = (−∞, 0] ∪ [3,∞). In addition, we apply the Monte Carlo simulation

with 512 mesh points on the interval [0, 3].

We first need to use Algorithm 1 to estimate the survival rate λ. Our simulation uses

Euler-Maruyama scheme with δ = 0.001 and sample size N = 106 and N = 108 depending
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on the setting. All samples of killing times are recorded to plot the exponential tail. The

mean of killing times gives an estimate λ = 0.267176. The exponential tail of P[τ > t] vs. t,

the upper and lower bound of the confidence interval, and the plot of e−λt are compared in

Figure 3.1. We can see that the plot of e−λt falls in the confidence interval for all t. Hence

the estimate of λ is accepted.

Figure 3.1: Plot of P(τ > t) vs. t, confidence interval(upper bound and lower bound) and
function y = e−λt

.

Furthermore, we would like to show the robustness of our data-driven QSD solver. The

QSD is not explicit given so we use very large sample size (1010 samples) and very small

step size (10−4) to obtain a much more accurate solution, which is served as the benchmark.

Then we compare the numerical solutions obtained by the Monte Carlo method and the

data-driven method for QSD with N = 106 and N = 108 samples, respectively. The result is

shown in the first column of Figure 3.2. The data-driven solver performs much better than

the Monte Carlo approximation for N = 106 samples. It takes 108 samples for the direct

Monte Carlo sampler to produce a solution that looks as good as the QSD solver. Similar
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as the data-driven Fokker-Planck solver, our data-driven QSD solver can tolerate high level

error in Monte Carlo simulation that has small spatial correlation.

It remains to check the effect of Brownian Bridge. We apply different time step sizes

δ = 0.01 and δ = 0.001 for each trajectory. We use 107 samples for δ = 0.001 and 106

samples for δ = 0.01 to make sure that the number of killing events (for estimating the

killing rate) are comparable. When δ = 0.001, the error is small with and without Brownian

bridge correction. But Brownian bridge correction obviously improves the quality of solution

when δ = 0.01. See the lower left panel of Figure 3.2. This is expected because, with larger

time step size, the probability that the Brownian bridge hits the absorbing set ∂X gets

higher.

Figure 3.2: Upper panel:(Left) Monte Carlo estimation vs. data-driven solver estimation
for sample size N = 106. (Right) Effect of Brownian Bridge for sample size N = 107

and time step size 0.001. Lower panel: (Left) Effect of Brownian Bridge for sample size
N = 106 and time step size 0.01. (Right) Monte Carlo estimation vs. data-driven solver
estimation for sample size N = 108.
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3.3.1 Wright-Fisher Diffusion

The second numerical example is the Wright-Fisher diffusion model, which describes

the evolution of colony undergoing random mating, possible under the additional actions of

mutation and selection with or without dominance [22]. The Wright-Fisher model is an SDE

dXt = −Xtdt +
√

Xt(1−Xt)dWt,

where Wt is a Wiener process and ∂X = {0} is the absorbing set. By the analysis of [22],

the Yaglom limit, i.e., the QSD, satisfies

lim
t→∞

P[Xt ∈ dy|τ > t] = 2(1− y)dy.

The goal of this example is to show the effect of Brownian bridge when the coefficient of

noise is singular at the boundary. Since the Euler-Maruyama scheme only has an order of

accuracy 0.5, in the simulation, we apply the Milstein scheme, which reads

X̂δ
n+1 = X̂δ

n − X̂δ
nδ +

√
X̂δ

n(1− X̂δ
n)(W(n+1)δ −Wnδ) +

1

4
(1− 2X̂δ

n)[(W(n+1)δ −Wnδ)
2 − δ]

One difficulty of using the Brownian bridge correction in this model is that the coefficient

of the Brownian motion is vanishing at the boundary. Recall that the strength coefficient

of Brownian bridge is denoted by ϕ. Larger ϕ means Xt has higher probability of hitting

the boundary. Since the coefficient of the Brownian motion is vanishing at the boundary,

the effective strength coefficient ϕ becomes dramatically smaller when Xt gets closer to the

boundary. As a result, it is not a good idea to still approximate Xt by a Brownian motion.

And the original strength coefficient ϕ =

√
X̂δ

n(1− X̂δ
n) can dramatically overestimate the

probability of hitting the boundary. Estimating the hitting probability of this diffusion

bridge is a difficult problem that is well beyond the scope of this thesis. To the best of our

knowledge, it is not possible to explicitly calculate the conditional distribution of the diffusion
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bridge that starts from x := X̂δ
n and ends at y := X̂δ

n+1. Instead, we use an empirically found

strength coefficient ϕ2 = 1
3

min{x(1−x), y(1− y)} can fix this problem. We note that this is

not a simple ad-hoc solution because in a stochastic differential equation, the diffusion plays

a dominate role in a very short time interval. Hence a similar modification of the Brownian

bridge should work for many stochastic differential equations with
√
XtdBt noise terms. In

particular, the vanishing coefficient
√
XtdBt also appears in many ecological models. We

will implement this modified Brownian bridge correction when simulating these models.

Figure 3.3: Effect of Brownian Bridge and a correction of Brownian Bridge. Left: Monte
Carlo approximations without Brownian Bridge correction, with original Brownian Bridge
correction, and with modified Brownian Bridge correction, in comparison to the analytical
QSD. Right: Result from the data-driven QSD solver using the Monte Carlo simulation
data from Left panel.

The effect of Brownian bridge is shown in the left side of Figure 3.3. We compare the

solutions obtained via Monte Carlo method and the data-driven method with Brownian

Bridge by running 107 samples on [0, 1] with time step size δ = 0.01. The Monte Carlo

approximation is far from the true density function of Beta(1,2) near x = 0, while the use

of the original Brownian Bridge only makes things worse. The modified Brownian Bridge

solves this boundary effect problem reasonably well. The output of the data-driven QSD
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solver has a similar result (Figure 3.3 Right). Let x = X̂δ
n and y = X̂δ

n+1. One can see

that the numerical QSD is much closer to the true distribution if we replace the strength

coefficient of the Brownian bridge ϕ2 = x(1 − x) by the modified strength coefficient ϕ2 =

1
3

min{x(1− x), y(1− y)}.

3.3.2 Ring density function

Consider the following stochastic differential equation:

dX = (−4X(X2 + Y 2 − 1) + Y )dt + ϵdWX
t

dY = (−4X(X2 + Y 2 − 1)−X)dt + ϵdW Y
t ,

where WX
t and W Y

t are independent Wiener processes. In the simulation, we set the strength

of noise ϵ = 1.

We first look at the approximation obtained by Monte Carlo method with 256×256 mesh

points on the domain D = [−1.5, 1.5]× [−1.5, 1.5]. The simulation uses step size δ = 0.001

and N = 108 samples. (See upper left panel in Figure 3.4). The Monte Carlo approximation

has too much noise to be useful. The quality of this solution can be significantly improved

by using the data-driven QSD solver. See upper right panel in Figure 3.4.

The simulation result shows the estimated rate of killing λ = −0.176302. We use this

example to test the sensitivity of solution u against small change of the killing rate. We

compare the approximations obtained by setting the killing rate be λ, 1.1λ and 0.9λ respec-

tively. Heat maps of the difference between QSDs with “correct” and “wrong” killing rates

are shown in two middle panels in Figure 3.4. It shows that difference brought by “wrong”

rates is only ≈ O(10−4), which can be neglected. This result coincides with the analysis in

Theorem 3.2.1 in this dissertation.

Finally, we would like to emphasis that the data-driven QSD solver can tolerate very

high level of spatially uncorrelated noise in the reference solution v. For example, if we

use the same long trajectory with 108 samples that generates the top left panel of Figure
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3.4, but only select 105 samples with intervals of 103 steps of the numerical SDE solver, the

Monte Carlo data becomes very noisy (Bottom left panel of Figure 3.4). However, longer

intermittency between samples also reduces the spatial correlation between samples. As a

result, the output of the QSD solver has very little change except at the boundary grid

points, because the optimization problem (3.2.2) projects most of error to the boundary of

the domain. (See bottom right panel of Figure 3.4.) This result highlights the need of high

quality samplers. A Monte Carlo sampler with smaller spatial correlation between samples

can significantly reduce the number of samples needed in the data-driven QSD solver.
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Figure 3.4: (Ring density) Upper panel:The approximation by Monte Carlo simula-
tion(left) and the algorithm in Section 3.2(right) with 256×256 mesh points and 108 samples.
Middle panel: Sensitivity effect of small change to killing rate λ. Lower panel: The ap-
proximation by Monte Carlo simulation with smaller samples(left) and the output of the
data-driven QSD solver(right).
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CHAPTER 4

SENSITIVITY ANALYSIS OF QSDS

A stochastic differential equation has a QSD usually because it has a natural absorbing

state. For example, in ecological models, this absorbing state is the natural boundary of

the domain at which the population of some species is zero. Obviously invariant probability

measures are easier to study than QSDs. One interesting question is that if we slightly modify

the equation such that it does not have absorbing states any more, how can we quantify the

difference between QSD and the invariant probability measure after the modification? This

is called the sensitivity analysis of QSDs.

In this chapter, we focus on the difference between the QSD of a stochastic differential

equation X = {Xt, t ∈ R} and the invariant probability measure of a modification of X,

denoted by Y = {Yt, t ∈ R}. For the sake of simplicity, this thesis only compares the QSD

(resp. invariant probability measure) of the numerical trajectory of X (resp. Y ), denoted by

X̂ = {X̂δ
n, n ∈ Z+} (resp. Ŷ = {Ŷ δ

n , n ∈ Z+}). Denote the QSD (resp. invariant probability

measure) of X̂ (resp. Ŷ ) by µ̂X (resp. µ̂Y ) and the QSD (resp. invariant probability measure)

of the original SDE X (resp. Y ) by µX (resp. µY ). The sensitivity of invariant probability

measure against time discretization has been addressed in [15]. When the time step size of

the time discretization is small enough, the invariant probability measure µY is close to the

numerical invariant probability measure µ̂Y . The case of QSD is analogous. Hence d(µ̂X , µ̂Y )

is usually a good approximation of d(µX , µY ).

We are mainly interested in the following two different modifications of X.
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4.1 Modification of X

4.1.1 Case 1: Reflection at ∂X

One easy way to modify the numerical trajectory X̂ to eliminate the absorbing state is

to add a reflecting boundary. This method preserves the local dynamics but changes the

boundary condition. More precisely, the trajectory of X̂ follows that of Ŷ until it hits the

boundary ∂X . Without loss of generality assume ∂X is a smooth manifold embedded in Rd.

If Ŷ δ
n = X̂δ

n ∈ X a but X̂δ
n+1 /∈ X a, then Ŷ δ

n+1 is the mirror reflection of X̂δ
n+1 against the

boundary of X . Denote the intersection of ∂X and the line segment from X̂δ
n to X̂δ

n+1 by

Xa. Denote the unit normal vector of ∂X at Xa by n. Then some simple calculations give

Ŷ δ
n+1 = Xa + (Id− 2nnT )(X̂δ

n −Xa) .

In most ecological and epidemiological models the natural boundary is ∂X = {(x1, · · · , xn) |xi =

0 for some 1 ≤ i ≤ n, xj ≥ 0 for all 1 ≤ j ≤ n}. In this setting Ŷ δ
n+1 has an easy expression

Ŷ δ
n+1 = abs(X̂δ

n+1), where abs(·) means element-wise absolute value of a vector.

We remark that this reflection of the numerical trajectory is not consistent with the

stochastic differential equation with reflecting boundary conditions, which solves a Skoro-

hod’s equation [39]. The problem is that the noise vanishes at ∂X for most ecological models.

Hence ∂X remains to be absorbing even if the stochastic differential equation has reflect-

ing boundaries. The “reflection” we use here is only for the numerical trajectory. It can

be interpreted as a small random number of individuals are artificially added immediately

after the extinction of this species happens. The goal is to show that sometimes the quasi-

stationary distribution is not very sensitive against a change of the boundary condition. See

the summary at the end of Section 4.2.

4.1.2 Case 2: Demographic noise in ecological models.

We would also like to address the case of demographic noise in a class of ecological models,

such as population model and epidemic model. For the sake of simplicity consider an 1D
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birth-death process with some environment noise

dYt = f(Yt)dt + σYtdWt , (4.1.1)

where Yt ∈ R. Note that for the birth-death process model, {0} is an absorbing state. It

is known that for suitable f(Yt), the probability of Yt hitting zero in finite time is zero [21].

However, if we take the demographic noise, i.e., the randomness of birth/death events, into

consideration, the birth-death process becomes

dXt = f(Xt)dt + σ′XtdW
(1)
t + ϵ

√
XtdW

(2)
t , (4.1.2)

where ϵ ≪ 1 is a small parameter that is proportional to −1/2-th power of the scale of the

population size, σ′ is the new parameter that address the separation of environment noise

and demographic noise. For example, if the steady state of Xt is around 1, we can choose

σ′ =
√
σ2 − ϵ2.

Different from equation (4.1.1), the magnitude of random perturbation in equation (4.1.2)

near the boundary is much larger. As a result, equation (4.1.2) could hit the boundary in

finite time with strictly positive probability. (For example dXt = rXtdt + ϵ
√
XtdWt has

strictly positive extinction probability in finite time whenever ϵ > 0. This can be checked

by applying the Itô’s formula to a test function 1/Xt then take the expectation. Whether

equation (4.1.2) has finite time extinction depends on details of f(x) and ϵ. But most

ecological model has f(Xt) ≈ O(1) × Xt when Xt is small in order to model the intrinsic

growth of the population. That fits the setting of the example above.) Therefore, it is

common for equation (4.1.1) to admit an invariant probability measure while equation (4.1.2)

has a QSD. One very interesting question is that, if ϵ is sufficiently small, how different is the

invariant probability measure of equation (4.1.1) from the QSD of equation (4.1.2)? This is

very important in the study of ecological models because theoretically every model is subject

a small demographic noise. If the invariant probability measure is dramatically different from
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the QSD after adding a small demographic noise term, then the equation (4.1.1) is not a

good model due to high sensitivity, and we must study the equation (4.1.2) directly.

4.2 Methodology

We roughly follow [15] to carry out the sensitivity analysis of QSD. Here we slightly

modify X̂δ
n such that if X̂δ

n ∈ ∂X , instead of sampling from the occupation measure, we

immediately re-sample X̂δ
n from the QSD µ̂X . This new process, denoted by X̃δ

n, admits an

invariant probability measure µ̂X . Now denote the transition kernel of X̃δ
n and Ŷ δ

n by PX

and PY respectively. The following Proposition is motivated by [23].

Proposition 4.2.1. For any T > 0, if there exists a constant 0 < α < 1 such that

dw(µ̂XP
T
Y , µ̂Y P

T
Y ) ≤ αdw(µ̂X , µ̂Y ) ,

then we have

dw(µ̂X , µ̂Y ) ≤ dw(µ̂XP
T
X , µ̂XP

T
Y )

1− α
.

Proof. Let dw(·, ·) be the 1-Wasserstein distance defined in Section 2.4. We can decompose

dw(µ̂X , µ̂Y ) via the following triangle inequality:

dw(µ̂X , µ̂Y ) ≤ dw(µ̂XP
T
X , µ̂XP

T
Y ) + dw(µ̂XP

T
Y , µ̂Y P

T
Y ).

Since the transition kernel P T
Y has enough contraction such that

dw(µ̂XP
T
Y , µ̂Y P

T
Y ) ≤ αdw(µ̂X , µ̂Y )

for some α < 1, after some simplification, we have

dw(µ̂X , µ̂Y ) ≤ dw(µ̂XP
T
X , µ̂XP

T
Y )

1− α
.
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Therefore, in order to estimate dw(µ̂X , µ̂Y ), we need to look for suitable numerical esti-

mators of the finite time error and the speed of contraction of P T
Y . The finite time error can

be easily estimated in both cases. And the speed of contraction α comes from the geometric

ergodicity of the Markov process Ŷ . If our numerical estimation gives

dw(µP T
Y , νP

T
Y ) ≤ Ce−γT , (4.2.1)

then we set α = e−γT . As discussed in [15], this is a quick way to estimate α. In fact, in

all examples that we have tested, when starting from µ̂X and µ̂Y , the prefactor C of the

coupling probability in equation (4.2.1) is not far away from 1. Hence in practice it does not

differ from the “true upper bound” very much. The “true upper bound” of α in [15] comes

from the extreme value theory, which is much more expensive to compute.

4.2.1 Estimation of contraction rate

Motivated by [31], we use the following coupling method to estimate the contraction rate

α. Let Ẑδ
n = (Ŷ 1

n , Ŷ
2
n ) be a Markov process in R2d such that Ŷ 1

n and Ŷ 2
n are two copies of

Ŷ . Recall that τ c is the coupling time, which is also the first passage time to the “diagonal”

hyperplane {(x,y ∈ R2d)|y = x}. Then by Lemma 2.4.1

dw(µ̂XP
t
Y , µ̂Y P

t
Y ) ≤ P[τ c > t].

As discussed in [31], we need a hybrid coupling scheme to make sure that two numerical

trajectories can couple. Some coupling methods such as reflection coupling or synchronous

coupling are implemented in the first phase to bring two numerical trajectories together.

Then we compare the probability density function for the next step and couple these two

numerical trajectories with the maximal possible probability (called the maximal coupling).

After doing this for many times, we will have many samples of τ c denote by τ c. We use the
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exponential tail of P[τ c > t] to estimate the contraction rate α. More precisely, we look for

a constant γ > 0 such that

−γ = lim
t→∞

1

t
log(P[τ c > t])

if the limit exists. See Algorithm 3 for the detail of implementation of coupling. Note

that we cannot simply compute the contraction rate start from t = 0 because only the tail

of coupling time can be considered as exponential distributed. In practice, we apply the

same method as we compute the killing rate in section 3.1. After having τ c, it is easy to

choose a sequence of times t0, t1, · · · , tn and calculate ni = |{τ cm > ti | 0 ≤ m ≤M}| for each

i = 0, · · ·n. Then pi = ni/M is an estimator of Pµ[τ c > ti]. Now let pui (resp. pli) be the

upper (resp. lower) bound of the confidence interval of pi such that

pui = p̃ + z

√
p̃

ñi

(1− p̃) resp. pli = p̃− z

√
p̃

ñi

(1− p̃) ,

where z = 1.96, ñi = ni + z2 and p̃ = 1
ñi

(ni + z2

2
). Let tn be the largest time that we can still

collect available samples. If there exist constants C and i0 < n such that pli ≤ Ceγti ≤ pui for

each i0 ≤ i ≤ n, we say that the exponential tail starts at t = ti0 . We accept the estimate

of the exponential tail with rate e−γt if the confidence interval pui0 − pli0 is sufficiently small,

i.e., the estimate of coupling probability at t = dti0 is sufficiently trustable. Otherwise we

need to run Algorithm 1 for longer time to eliminate the initial bias in τ c.

4.2.2 Estimator of error terms

It remains to estimate the finite time error dw(µ̂XP
T
X , µ̂XP

T
Y ). As we mentioned in the

beginning of this section, we will consider two different cases and estimate the finite time

errors respectively.

4.2.2.1 Case 1: Reflection at ∂X

Recall that the modified Markov process Ŷ reflects at the boundary ∂X when it hits the

boundary. Hence two trajectories
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Algorithm 3 Estimation of contraction rate α

Input: Initial values x, y ∈ K
Output: An estimation of contraction rate α

Choose threshold d > 0
for i = 1 to Ns do
τ ci = 0, t = 0, (Ŷ 1

t , Ŷ
2
t ) = (x, y)

Flag = 0
while Flag=0 do
if |Ŷ 1

t − Ŷ 2
t | > d then

Compute (Ŷ 1
t+1, Ŷ

2
t+1) using reflection coupling or independent coupling

t← t + 1
else

Compute (Ŷ 1
t+1, Ŷ

2
t+1) using maximal coupling

if coupled successfully then
Flag=1
τ ci = t

else
t← t + 1

end if
end if

end while
end for
Use τ c1 , · · · , τ cNs

to compute P(τ c > t)
Fit the tail of logP(τ c > t) versus t by linear regression. Compute the slope γ.
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X̃δ
n+1 = X̃δ

n + f(X̃δ
n)δ + σ(X̃δ

n)(W(n+1)δ −Wnδ)

Ŷ δ
n+1 = Ŷ δ

n + f(Ŷ δ
n )δ + σ(Ŷ δ

n )(W(n+1)δ −Wnδ)

are identical if we set the same noise in the simulation process. X̃ only differs from Ŷ when

X̃ hits the boundary ∂X . When X̃ and Ŷ hit the boundary, X̃ is resampled from µ̂X , and

Ŷ reflects at the boundary. Hence the finite time error dw(µ̂XP
T
X , µ̂XP

T
Y ) is bounded from

above by the killing probability within the time interval [0, T ] when starting from µ̂X .

In order to sample initial value x from the numerical invariant measure µ̂X , we consider

a long trajectory {X̃δ
n}. The distance between X̃ and the modified trajectory Ŷ is recorded

after time T . Then we nm j m,let Ŷ δ
0 = X̃δ

0 = xi+1 and restart the simulation, where

xi+1 = X̃δ
T from the i−th iteration. See the Algorithm 4 for the detail.

Algorithm 4 Estimate finite time error for Case 1

Input: Initial value x1

Output: An estimator of dw(µ̂XP
T
X , µ̂XP

T
Y )

for i = 1 to Ns do
Using the same noise, simulate X̃ and Ŷ with initial value xi up to T
Set di = 0
if τ < T then

Regenerate X̃ as its empirical distribution
di = d(X̃δ

T , Ŷ
δ
T )

end if
Let xi+1 = X̃δ

T

end for
Return 1

Ns

∑Ns

i=1 di

When the number of samples is sufficiently large, x1, · · · ,xNs are from a long trajectory

of the time-T skeleton of X̃T . Hence they are approximately sampled from µ̂X . The error

term di = d(X̃δ
T , Ŷ

δ
T ) for X̃δ

0 = Ŷ δ
0 = xi estimates d(X̃T , ŶT ). Let µ̂2

X be the probability

measure on Rd×Rd that is supported by the hyperplane {(x, y) ∈ Rd×Rd |x = y} such that

µ̂2
X({(x, x) |x ∈ A}) = µ̂X(A) for any A ∈ B(X ). Since the pushforward map µ̂2

X(P T
X × P T

Y )

is a coupling, it is easy to see that the output of Algorithm 4 gives an upper bound of

dw(µ̂XP
T
X , µ̂XP

T
Y ).
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From the analysis above, we have the following lemma, which gives an upper bound of

the finite time error dw(µ̂XP
T
X , µ̂XP

T
Y ).

Lemma 4.2.1. For the Wasserstein distance induced by the distance given in (2.4.1), we

have

dw(µ̂XP
T
X , µ̂XP

T
Y ) ≤

∫
Rd

Px(τ < T )µ̂X(dx),

where x is the initial value with distribution µY .

Proof. Note that µ2
X(P T

X × P T
Y ) is a coupling of µXP

T
X and µXP

T
Y . From the definition of

Wasserstein distance, we have

dw(µ̂XP
T
X , µ̂XP

T
Y ) ≤

∫
Rd×Rd

d(x, y)µ̂2
X(P T

X × P T
Y )(dxdy)

=

∫
Rd

E(x,x)[d(X̃δ
T , Ŷ

δ
T )]µ̂X(dx)

=

∫
Rd

Px(τ < T )d(X̃δ
T , Ŷ

δ
T )µ̂X(dx)

≤
∫
Rd

Px(τ < T )µ̂X(dx),

the inequality in the last step comes from the definition d(x, y) = max(1, ∥x− y∥).

4.2.2.2 Case 2: Impact of a demographic noise ϵ
√
XtdWt

Another common way of modification in ecological models is to add a demographic noise.

Let X̂ be the numerical trajectory of the SDE with an additive demographic noise ϵ
√
XtdWt.

Let X̃ be the modification of X̂ that resample from µ̂X whenever hitting ∂X so that it

admits µ̂X as an invariant probability measure. Let Ŷ be the numerical trajectory of the

SDE without demographic noise so that Ŷ admits an invariant probability measure. We

have trajectories

X̃δ
n+1 = X̃δ

n + f(X̃δ
n)δ + σ(X̃δ

n)(W(n+1)δ −Wnδ) + ϵ

√
X̃δ

n(W ′
(n+1)δ −W ′

nδ)

Ŷ δ
n+1 = Ŷ δ

n + f(Ŷ δ
n )δ + σ′(Ŷ δ

n )(W(n+1)δ −Wnδ) .
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Here we assume that Ŷ has zero probability to hit the absorbing set ∂X in finite time.

Different from the Case 1, we will need to study the effect of the demographic noise. When

estimating the finite time error dw(µ̂XP
T
X , µ̂XP

T
Y ), we still need to sample the initial value

x from µ̂X and record the distance between these two trajectories X̃ and Ŷ up to time T .

The distance between X̃ and Ŷ can be decomposed into two parts: one is from the killing

and resampling, the other is from the demographic noise. The first term is the same as in

Case 1. The second term is due to the nonzero demographic noise that can separate X̃ and

Ŷ before the killing. In a population model, this effect is more obvious when one species has

small population, because
√
x ≫ x when 0 < x ≪ 1. See the description of Algorithm 5

for the full detail.

Algorithm 5 Estimate finite time error for Case 2

Input: Initial value x1

Output: An estimator of dw(µXP
T
X , µXP

T
Y )

for i = 1 to Ns do
Using the same noise, simulate X̃ and Ŷ with initial value xi up to T
Set Flag = 0, di = 0
if τ < T then

Regenerate X̃ as its empirical distribution
ηi = d(X̃δ

T , Ŷ
δ
T )

Flag = 1
else
θi = d(X̃δ

T , Ŷ
δ
T )

end if
di = θi + 1{Flag=1}(ηi − θi)

Let xi+1 = X̃δ
T

end for
Return 1

Ns

∑Ns

i=1 di

When Ns is sufficiently large, x1, · · · ,xNs are from a long trajectory of the time-T skeleton

of X̃T . Hence they are approximately sampled from µ̂X . The error term di for X̃δ
0 = Ŷ δ

0 = xi

estimates d(X̃T , ŶT ). A similar coupling argument shows that the output of Algorithm 5 is

an upper bound of dw(µ̂XP
T
X , µ̂XP

T
Y ).

For each initial value x ∈ Rd, denote
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θx = Ex[d(X̃δ
T , Ŷ

δ
T ) | X̃δ

0 = Ŷ δ
0 = x, τ > T ] . (4.2.2)

Similar as in Case 1, the following lemma gives an upper bound for the finite time error

dw(µXP
T
X , µXP

T
Y ).

Lemma 4.2.2. For the Wasserstein distance induced by the distance given in (2.4.1), we

have

dw(µ̂XP
T
X , µ̂XP

T
Y ) ≤

∫
Px(τ < T )µ̂X(dx) +

∫
θxµ̂X(dx),

where x is the initial value with distribution µ̂X and θx .

Proof. Note that µ̂2
X(P T

X ×P T
Y ) is a coupling of µ̂XP

T
X and µ̂XP

T
Y . From the definition of the

Wasserstein distance, we have

dw(µ̂Y P
T
X , µ̂Y P

T
Y ) ≤

∫
Rd×Rd

d(x, y)µ̂2
X(P T

X × P T
Y )(dxdy)

=

∫
Rd

E(x,x)[d(X̃δ
T , Ŷ

δ
T )]µ̂X(dx)

=

∫
Rd

Px(τ < T )d(X̃δ
T , Ŷ

δ
T )µ̂X(dx) +

∫
Rd

Px(τ > T )d(X̃δ
T , Ŷ

δ
T )µ̂X(dx)

≤
∫
Rd

Px(τ < T )µ̂X(dx) +

∫
θxµ̂X(dx)

according to the definition of θx.

In summary, the sensitivity of QSD depends on both mixing rate of the modified process

and the killing probability. Both higher mixing rate and lower killing probability per unit

time lead to a more robust QSD that is not sensitive against small change of the dynamics

or the boundary condition. More precisely, let T be the constant time we choose and α be

the contraction of operator P T
Y .

(1) If the modified process Ŷ only differs from X̂ with a reflection, then we have

dw(µ̂X , µ̂Y ) ≤ (1− α)−1

∫
Rd

Px[τ < T ]µ̂X(dx) .
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(2) If the demographic noise is removed from Ŷ , then

dw(µ̂X , µ̂Y ) ≤ (1− α)−1

{∫
Rd

Px(τ < T )µ̂X(dx) +

∫
Rd

θxµ̂X(dx)

}
,

where θx is defined in equation (4.2.2).

4.3 Numerical Results

4.3.1 Sensitivity of QSD: 1D examples

In this section, we use 1D examples to study the sensitivity of QSDs against changes on

boundary conditions. Consider an 1D gradient flow of the potential function V (x) with an

additive noise perturbation

Xt = −V ′(Xt)dt + σdWt. (4.3.1)

Let (−∞, 0] be the absorbing state of Xt. So if V (0) <∞, Xt admits a QSD, denoted by µX .

If we let the stochastic process reflect at x = 0, the modified stochastic process, denoted by

Yt, admits an invariant probability measure denoted by µY . We will compare the sensitivity

of µX against the change of boundary condition for two different cases whose speed of mixing

are different, namely a single well potential function and a double well potential function.

We choose a single well potential function V1(x) = (x − 1)2 and a double well potential

function V2(x) = x4 − 4
√

2x3 + 10x2 − 4
√

2x + 1. The values of minima of both V1 and V2

are zero. The values of V1 and V2 at the absorbing state are 1. And the height of the barrier

between two local minima of V2 is 1. The strength of noise is σ = 0.7 in both examples.

See Figure 4.1 middle column for plots of these two potential functions. In both cases, the

QSD and the invariant probability measure are computed on the domain D = [0, 3]. To

further distinguish these two cases, we denote the QSD of equation (4.3.1) with absorbing

state x = 0 and potential function V1(x) (resp. V2(x)) by µ1
X (resp. µ2

X) and the invariant

probability measure of equation (4.3.1) with reflection boundary at (−∞, 0] and potential

function V1(x) (resp. V2(x)) by µ1
Y (resp. µ2

Y ). Probability measures µ1
X and µ1

Y (resp. µ2
X
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and µ2
Y ) are compared in Figure 4.1 right column. We can see that the QSD and the invariant

probability measure have small difference for the single well potential function V1. But they

look very different for the double well potential function V2. With the double well potential

function, there is a visible difference between probability density functions of µ2
X and µ2

Y .

The density function of QSD is much smaller than the invariant probability measure around

the left local minimum x = 1−
√

2 because this local minimum is closer to the absorbing set,

which makes killing and regeneration more frequent when Xt is near this local minimum. In

other words, the QSD of equation (4.3.1) with respect to the double well potential is very

sensitive against the change at the boundary.

The reason of the high sensitivity is illustrated by the coupling argument. We first run

Algorithm 3 with 8 independent long trajectories with length of 106 and collect the coupling

times. The slope of exponential tail of the coupling time gives the rate of contraction

of P T
Y . The P(τ c > t) versus t plot is demonstrated in log-linear plot in Figure 4.1 left

column. The slope of exponential tail is γ = 2.031414 for the single well potential V1, and

γ = 0.027521 for the double well potential case. Then we run Algorithm 4 to estimate

the finite time error dw(µXP
T
X , µXP

T
Y ) for both cases. Since the single well potential case

has a much faster coupling speed, we can choose T = 0.5. The output of Algorithm 4

is dw(µXP
T
X , µXP

T
Y ) ≈ 0.00391083. This gives an estimate dw(µX , µY ) ≈ 0.0061. The

double well potential case converges much slower. We choose T = 20 to make sure that the

denominator 1 − e−γT is not too small. As a result, Algorithm 4 gives an approximation

dw(µXP
T
X , µXP

T
Y ) ≈ 0.06402, which means dw(µX , µY ) ≈ 0.1512. This is consistent with the

right column seen in Figure 4.1, the QSD of the double well potential is much more sensitive

against a change of the boundary condition than the single well potential case.

4.3.2 Lotka-Volterra Competitive Dynamics

In this example, we focus on the effect of demographic noise on the classical Lotka-

Volterra competitive system. The Lotka-Volterra competitive system with some environ-
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Figure 4.1: (Single well vs. Double well potential function) Left column: P(τ c > t) vs. t.
Middle column: Single well and double well potential functions. Right column: QSD vs.
invariant density function.

mental fluctuation has the form

dY1(t) = Y1(t)(l1 − a11Y1(t)− a12Y2(t))dt + σ′
1Y1(t)dW1(t),

dY2(t) = Y2(t)(l2 − a22Y1(t)− a21Y1(t))dt + σ′
2Y2(t)dW2(t).

(4.3.2)

Here li > 0 is the per-capita growth rate of species i and aij > 0 is the per-capita competition

rate between species i and j. More details can be found in [21]. Model parameters are chosen

to be l1 = 2, l2 = 4, a11 = 0.8, a12 = 1.6, a21 = 1, a22 = 5. Let ∂X be the union of x-axis and

y-axis. For suitable σ′
1 and σ′

2, Y1 and Y2 can coexist such that the probability of (Y1, Y2)

hits ∂X in finite time is zero. So equation (4.3.2) admits an invariant probability measure,

denoted by µY .

As a modification, we add a small demographic noise term to equation (4.3.3). The

equation becomes
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dX1(t) = X1(t)(l1 − a11X1(t)− a12X2(t))dt + σ1X1(t)dW1(t) + ϵ
√

X1(t)dW
′
1(t),

dX2(t) = X2(t)(l2 − a22X1(t)− a21X1(t))dt + σ2X2(t)dW2(t) + ϵ
√

X2(t)dW
′
2(t).

(4.3.3)

It is easy to see that equation (4.3.3) can exit to the boundary ∂X . It admits a QSD, denoted

by µX .

In order to study the effect of demographic noise, we compare µY , the numerical invariant

measure of equation (4.3.2), and µX , the QSD of equation (4.3.3). In our simulation, we fix

the strength of demographic noise as ϵ = 0.05 and compare µX and µY at two different levels

of the environment noise σ1 = σ2 = 0.75 and σ1 = σ2 = 1.1 respectively. The coefficient

σ′
1 and σ′

2 in equation (4.3.2) satisfies σ′
i =

√
σ2
i + ϵ2 for i = 1, 2 to match the effect of the

additional demographic noise. Compare Figure 4.2 and Figure 4.3, one can see that µY has

significant concentration at the boundary when σ1 = σ2 = 1.1.

The result for σ1 = σ2 = 0.75 is shown in Figure 4.2. Left bottom of Figure 4.2 shows

the invariant measure. The QSD is shown on right top of Figure 4.2. The total variation

distance between these two measures are shown at the bottom of Figure 4.2. The difference

is very small and it just appears around boundary. This is reasonable because with high

probability, the trajectories of equation (4.3.3) moves far from the absorbing set ∂X in both

cases, which makes the regeneration events happen less often. This is consistent with the

result of Lemma 4.2.2. We compute the distribution of the coupling time. The coupling time

distribution and its exponential tail are shown in Figure 4.2 Top Left. Then we use Algorithm

5 to compute the finite time error. To better match two trajectories given by equations

(4.3.2) and (4.3.3), we separate the noise term in equation (4.3.2) into σ′
iYi(t)dWi(t) =

σiYi(t)dW
(1)
i (t) + ϵYi(t)dW

(2)
i (t) for i = 1, 2, where W

(1)
i (t) and W

(2)
i (t) use the same Wiener

process trajectory as Wi(t) and W ′
i (t) in equation (4.3.3) for i = 1, 2. Let T = 4. The

finite time error caused by the demographic noise is 0.01773. As a result, the upper bound

given in Lemma 4.2.2 is 0.02835. Note that as seen in Figure 4.2, this upper bound actually

significantly overestimates the distance between the invariant probability measure and the
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QSD. The empirical total variation distance is much smaller that our theoretical upper

bound. This is because the way of matching σ′
iYidWi(t) and σiXi(t)dWi(t) + ϵ

√
Xi(t)dWi(t)

is very rough. A better approach of matching those noise terms will likely lead to a more

accurate estimation of the upper bound of the error.

The results for σ1 = σ2 = 1.1 are shown in Figure 4.3. The total variation distance

between these two measures are shown at the bottom of Figure 4.3. It is not hard to see

the difference is significantly larger than case σ = 0.75. The reason is that trajectories of

equation (4.3.3) have high probability moving along the boundary in this parameter setting.

This makes the probability of falling into the absorbing set ∂X much higher. Same as

above, we compute the distribution of the coupling time and demonstrate the coupling time

distribution (as well as the exponential tail) in Figure 4.3 Top Left. The coupling in this

example is slower so we choose T = 12 to run Algorithm 5. The probability of killing before

T is approximately 0.11186 and the total finite time error caused by the demographic noise

is 0.06230. As a result, the upper bound given in Lemma 4.2.2 is 0.1356. This is consistent

with the numerical finding shown in Figure 4.3 Bottom Right.

4.3.3 Chaotic attractor

In this section, we consider a non-trivial 3D example that has interactions between chaos

and random perturbations, called the Rossler oscillator. The random perturbation of the

Rossler oscillator is 
dx = (−y − z)dt + ϵdW x

t

dy = (x + ay)dt + ϵdW y
t

dz = (b + z(x− c))dt + ϵdW z
t ,

(4.3.4)

where a = 0.2, b = 0.2, c = 5.7, and W x
t ,W

y
t and W z

t are independent Wiener processes.

The strength of noise is chosen to be ϵ = 0.1. This system is a representative example of

chaotic ODE systems appearing in many applications of physics, biology and engineering.

We consider equation (4.3.4) restricted to the box D = [−15, 15] × [−15, 15] × [−1.5, 1.5].
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Figure 4.2: (Case σ1 = σ2 = 0.75) Upper panel: (Left) P(τ c > t) vs.t. (Right) QSD with
demographic noise coefficient ϵ = 0.05. Lower panel: (Left) Invariant density function for
σ = 0.75. (Right) Total variation of QSD and invariant density function.

Therefore, it admits a QSD supported by D. In this example, a grid with 1024× 1024× 128

mesh points is constructed on D.

It is very difficult to use traditional PDE solver to compute a large scale 3D problem. To

analyze the QSD of this chaotic system, we apply the blocked version of the Fokker-Planck

solver studied in [14]. More precisely, a big mesh is divided into many “blocks”. Then we

solve the optimization problem (3.2.2) in parallel. The collaged solution is then processed

by the “shifting block” technique to reduce the interface error, which means the blocks are

reconstructed such that the center of new blocks cover the boundary of old blocks. Then

we let the solution from the first found serve as the reference data, and solve optimization

problem (3.2.2) again based on new blocks. See [14] for the full details of implementation. In

this example, the grid is further divided into 32× 32× 4 blocks. We run the “shifting block”
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Figure 4.3: (Case σ1 = σ2 = 1.1) Upper panel: (Left) P(τ c > t) vs.t. (Right) QSD with
demographic noise coefficient ϵ = 0.05. Lower panel: (Left) Invariant density function for
σ = 1.1. (Right) Total variation of QSD and invariant density function.

solver for 3 repeats to eliminate the interface error. The reference solution is generated by a

Monte Carlo simulation with 109 samples. The killing rate is λ = −0.473011. Two “slices”

of the solution, as seen in Figure 4.4, are then projected to the xy-plane for the sake of easier

demonstration. See the caption of Figure 4.4 for the coordinates of these two “slices”. The

left picture in Figure 4.4 shows the projection of the solution has both dense and sparse

parts that are clearly divided. An outer ”ring” with high density appears and the density

decays quickly outside this ”ring.” The right picture in Figure 4.4 demonstrates the solution

has much lower density when z-coordinate is larger than 1.
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Figure 4.4: (Rossler) Projections of 2 ”slices” of the QSD of the Rossler system to the xy-
plane. z-coordinates of 2 slices are [-0.0352, 0.2578], [1.1367, 1.4297]. The solution is obtained
by a balf-block shift solver on [−15, 15]× [−15, 15]× [−1.5, 1.5] with 1024× 1024× 128 mesh
points, 32× 32× 4 blocks, and 109 samples.

4.4 Conclusion

In this chapter we provide some data-driven methods for the computation of quasi-

stationary distributions (QSDs) and the sensitivity analysis of QSDs. Both of them are

extended from the first author’s earlier work about invariant probability measures. When

using the Fokker-Planck equation to solve the QSD, we find that the idea of using a reference

solution with low accuracy to set up an optimization problem still works well for QSDs. And

the QSD is not very sensitively dependent on the killing rate, which is given by the Monte

Carlo simulation when producing the reference solution. The data-driven Fokker-Planck

solver studied in this dissertation is still based on discretization. But we expect the mesh-

free Fokker-Planck solver proposed in [14] to work for solving QSDs. In the sensitivity

analysis part, the focus is on the relation between a QSD and the invariant probability

measure of a “modified process”, because many interesting problems in applications fall

into this category. The sensitivity analysis needs both a finite time truncation error and a
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contraction rate of the Markov transition kernel. The approach of estimating the finite time

truncation error is standard. The contraction rate is estimated by using the novel numerical

coupling approach developed in [31]. The sensitivity analysis of QSDs can be extended

to other settings, such as the sensitivity against small perturbation of parameters, or the

sensitivity of a chemical reaction process against its diffusion approximation. We continue

to study sensitivity analysis related to QSDs in next chapter.
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CHAPTER 5

SENSITIVITY ANALYSIS OF MASS-ACTION SYSTEMS

5.1 Poisson processes and diffusion processes

Let X = {X(t)} and X̂ = {X̂n} (resp. Y = {Y (t)} and Ŷ = {Ŷn}) be the stochastic

process given by (2.5.3) (resp. (2.5.4)) and a numerical approximation with step size h,

respectively. Recall that two approximations are

X(t) = X(0) +
∑
k

lk
V
Pk(V

∫ t

0

fk(X(s))ds)

and

Y (t) = Y (0) +
∑
k

lk
V

[
V

∫ t

0

fk(Y (s))ds + Bk

(
V

∫ t

0

fk(Y (s))ds

)]
where where Pk(t), k = {1, · · · , K} are independent unit-rate Poisson processes, and lk =

c′k − ck ∈ Rd denotes the coefficient change of moleculars at reaction k and the Bk(·) are

independent standard Wiener processes.

Needless to say a diffusion process is much easier to study than a Poisson process with

jumps. One natural question here is that how much the long time dynamics of X is preserved

by its diffusion approximation. This problem is more complicated than it looks because both

X and Y have natural domain Rd
+. When the number of moleculars of one species reaches

0, the process exits from its domain due to extinction. It is common for equation (2.5.3)

or equation (2.5.4) to have finite time extinction. To see this, consider the 1D version of

equation (2.5.4):

dY (t) = f(Y (t))dt +
1√
V

√
f(Y (t))dBt . (5.1.1)
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Let H(x) = x−1 be a test function. Applying Ito’s formula then take the expectation, we

have

d

dt
E[H(Y (t))] = f(Y (t))

(
2

(Y (t))3
− 1

(Y (t))2

)
.

If f(Y (t)) = cY (t) for a constant c, we have

d

dt
E[H(Y (t))] ≥ 2c (E[H(Y (t))])2 ,

which blows up to ∞ in finite time. Hence Y (t) has strictly positive extinction probability

in finite time. The calculation above fits the setting of many mass-action systems.

Therefore, to prevent finite time extinction, usually one needs constant influx of each

species. That is why often we need to study the quasi-stationary distribution (QSD) instead

of the invariant probability distribution. Below we introduce the QSD and its sampling

method only for X, as the case of Y is analogous.

Let ∂X = Rd \ Rd
+ be the absorbing set of X. The quasi-stationary distribution (QSD)

is an invariant probability measure conditioning on X has not hit the absorbing set yet. We

further define

τ = inf{t > 0 : X(t) ∈ ∂X}

as the first passage time to ∂X .

Remark 5.1.1. If the first passage time of X to ∂X is∞ with probability one, {τ > t} is the

full probability space. As a result, QSD in equation (2.1.1) becomes the invariant probability

measure and QLD in equation (2.1.2) becomes the limiting probability measure (which is also

invariant). Therefore, when the mass action system admits an invariant probability measure

instead of a QSD, all our arguments and algorithms still apply.

When we define the numerical processes (2.5.6) and (2.5.7), we need to specify the rule of

regeneration such that they both sample from QSDs as the time approaches to infinity. To
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sample from QSD, we need to regenerate a sample once it hits the absorbing set. Therefore,

in addition to X̂n, we also need to update a temporal occupation measure

µn =
1

n

n−1∑
k=0

δX̂k
.

If the numerical scheme gives X̂n+1 ∈ ∂X , we immediately regenerate X̂n+1 from µn. More

precisely, let the transition kernel of the numerical scheme of X̂n (without resampling) be

Q̂. Then Q̂ has an absorbing set ∂X such that Q̂(∂X , ∂X ) = 1. The transition kernel of X̂n

is the sum of Q̂ and the regeneration measure such that

P[X̂n+1 ∈ A | X̂n = x] = Q̂(x,A) + Q̂(x, ∂X )µn(A) .

The following convergence result follows from [6].

Proposition 5.1.1 (Theorem 2.5 in [6]). Let µ̂ be the QSD of the numerical process X̂n.

Under suitable assumptions about X̂n, the occupation measure µn converges to the QSD µ̂ as

n→∞.

To study the sensitivity of diffusion approximation, we also need a theoretical process

X̃ = {X̃n} that directly regenerate from the QSD µ̂ once exit to the boundary. Recall that

Q̂ is the transition kernel of X̂n (without resampling). The transition kernel of X̃ is

P̃ (x, ·) = Q̂(x, ·) + Q̂(x, ∂X )µ̂(·)

for all x ∈ Rd
+. Note that X̂n is not a Markov process (but (X̂n, µn) is a Markov process).

But X̃ is a homogeneous Markov process with an invariant probability measure µ. The

case of Y (t) is analogous. We denote the numerical process that resample from a temporal

occupation measure by Ŷ = {Ŷn}, and the Markov process that directly resample from QSD

by Ỹ = {Ỹn}.
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5.2 Decomposition of error term

Let PX and P̃X be the transition kernels of X(t) and X̃n respectively. Let PY and P̃Y

be that of Y (t) and Ỹn respectively. Denote the QSDs of X(t), X̃n, Y (t) and Ỹn by πX , π̂X ,

πY , and π̂Y , respectively. The quantity that we are interested in is dw(πX , πY ).

Let T be a fixed constant. Motivated by [23], the following decomposition follows easily

by the triangle inequality and the invariance.

dw(πX , πY ) ≤ dw(πX , π̂X) + dw(π̂X , π̂Y ) + dw(π̂Y , πY ) (5.2.1)

The sensitivity of invariant probability against time discretization has been addressed in [15].

When the time step size of the time discretization is small enough, the invariant probability

measure πY is close to the numerical invariant probability measure π̂Y . The case of QSD is

analogous. Hence the third term dw(πY , π̂Y ) is proportional to step size h. The estimation

of the first term dw(πX , π̂X) can be obtained by some linear algebraic calculation.

Theorem 5.2.1. Let X(t) be a continuous time Markov chain with finite state space and X̂

be its τ -leaping approximation with step size h. Suppose that π and π̂ be the true QSD and

the numerical approximation of QSD respectively. Let h be the time step size of numerical

process. If the generating matrix of X(t) is irreducible, then

∥π − π̂∥ ∼ O(h)

for 0 < h≪ 1.

Proof. This proof follows the standard argument of eigenvector perturbation result. The

case of stationary distribution is proved in [34]. Here we follow the argument in [12] to prove
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a similar result for QSDs. Let Q be the generating matrix of X(t). Because π is true QSD

and π̂ is the numerical approximation of QSD, we have

πT ehQ = λπT , π̂T (I + hQ) = λ̂π̂T ,

where λ and λ̂ are simple eigenvalues. Define a function

A(t)
def
= I + hQ + tR(h),

where R(h) is an O(1) matrix given by the Taylor expansion ehQ = I + hQ + h2R(h). Then

we have A(0) = I + hQ and A(h2) = ehQ. Note that A(0) is irreducible for all sufficiently

small h because Q is also irreducible. Let π(t) be the first eigenvector of A(t) normalized to

1 in l1 norm. Then the sensitivity of π is reduced to the derivative of A(t).

Since π is normalized to 1 in l1 norm, it follows from [12] Section 3 that

π′(0) = S♯A′(0)π(0) ,

where S = λI −A(0), and S♯ is the group inverse of S. (We refer [12] for further discussion

of the group inverse and derivative of Perron vector.)

When h is small, we have 1 − λ = O(h). Hence S = I − O(h) − I − hQ is an O(h)

small matrix. This means S♯ = O(h−1). In addition A′(0) = R = O(1) by definition. Hence

π′(0) = O(h−1). Since π̂ = π(h2), we have

∥π − π̂∥ = O(h−1)×O(h2) = O(h).

This completes the proof.
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Therefore, we have that dw(πX , π̂X) = O(h) and dw(πY , π̂Y ) = O(h), which make the

second error term be the key part. The second error term is the difference between numerical

Poisson process of a mass-action system and its corresponding numerical diffusion process.

Proposition 5.2.1. Let T > 0 be a fixed constant. We can decompose dw(π̂X , π̂Y ) via the

following inequality:

dw(π̂X , π̂Y ) ≤ dw(π̂XP̃
T
X , π̂XP̃

T
Y ) + dw(π̂XP̃

T
Y , π̂Y P̃

T
Y ) (5.2.2)

The term dw(π̂XP̃
T
X , π̂XP̃

T
Y ) is the finite time error and the term dw(π̂XP̃

T
Y , π̂Y P̃

T
Y ) can be

bounded by coupling methods.

There are two different ways to think about the distance dw(π̂X , π̂Y ). One method is

considering π̂X and π̂Y as conditional distributions on set Rd
+/∂X , i.e. π̂X(A) = {X̂ ∈ A|t <

τX} and π̂Y (A) = {Ŷ ∈ A|t < τY }, where τX and τY are the killing time for processes X̂

and Ŷ, respectively. The other way is to use the X̃ and Ỹ that regenerate from QSDs. No

conditioning is needed as µ̂X and µ̂Y are now the invariant probability measures of X̃ and

Ỹ respectively. There are some fundamental difficulty when computing the finite time error

because it is hard to couple X̂n and Ŷn when one regenerates while the other does not. Hence

we choose to use X̃ and Ỹ instead.

5.3 Finite time error

We consider the modified processes X̃ and Ỹ, which are regenerated from the corre-

sponding QSDs when they hit the boundary. Let π̂X and π̂Y be the invariant measures of

X̃ and Ỹ. Let Γ̃(dx, dy) = π̂2
X(P̃ T

X × P̃ T
Y ), where π̂2

X is the coupled measure of π̂X on the

”diagonal” of Rd × Rd that is supported by the hyperplane {(x, y) ∈ R2d|y = x} such that

π̂2
X({(x, x)|x ∈ A}) = π̂X(A), and P̃ T

X × P̃ T
Y is any coupled process such that two marginal

processes are X̃ and Ỹ respectively. The following proposition follows easily.
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Proposition 5.3.1. Let (X̃n, Ỹn) be a coupling of X̃n and Ỹn with transition kernel P̃ T
X×P̃ T

Y ,

then

dw(π̂XP̃
T
X , π̂XP̃

T
Y ) ≤ Eπ̂X

[d(X̃T , ỸT )] .

Proof. By the definition of Wasserstein distance

dw(π̂XP̃
T
X , π̂XP̃

T
Y ) ≤

∫
Rd×Rd

d(x, y)π̂2
X(P̃ T

X × P̃ T
Y )(dx, dy)

=

∫
Rd

E(x,x)d(X̃T , ỸT )π̂X(dx) = Eπ̂X
[d(X̃T , ỸT )] .

The key of estimating the finite time error effectively is to create a good coupled process

(X̃n, Ỹn). That is why we need to use the KMT algorithm to generate matching Wiener

process and Poisson processes. Here it remains to define how X̃n and Ỹn couple when

they regenerate from QSDs. Since we do not have QSD in priori, we will use X̂n and

Ŷn to approximate X̃n and Ỹn. In other words, we regenerate samples from the temporal

occupation measure. To minimize error during sample regeneration, we define the following

coupled process (X̂n, µ
X
n ) and (Ŷn, µ

Y
n ), such that X̂n and Ŷn follows equations (2.5.6) and

(2.5.7) respectively by using paired processes Bk(t) and Pk(t) for each k, and µX
n , µY

n are

two occupation measures. S = (Z1, · · · , ZN) (N is large enough) is a finite sequence of

uniform random variables on (0, 1). Let NX and NY are the total number of regenerations

up to time n. In other words when X̃n+1 enters ∂X at step n and needs regeneration, we

increase NX by one and choose the NX-th element of S, ZNX
to regenerate X̃n+1, by letting

X̃n+1 = X̃⌊ZNX
n⌋. Then it is easy to see that (X̂n, µ

X
n ) and (Ŷn, µ

Y
n ) is a Markov coupling

and the marginal processes (X̂n, Ŷn) is a coupling of equations (2.5.6) and (2.5.7).

Details of computation are shown in Algorithm 6. When N is large, initial values

X̂1
1 , · · · , X̂M

1 in Algorithm 6 are from a trajectory of the time-T skeleton of X̂T . Hence
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Algorithm 6 Estimate finite time error

Input: Initial value X̂0

Output: An estimator of dw(π̂T
XP̃

T
X , π̂

T
Y P̃

T
Y )

Set initial value X̂1
1 = Ŷ 1

1

Generate a sequence of uniformly distributed random variable S
for m = 1 to M do

Using the KMT algorithm to generate paired trajectories {Pk} and {Bk}
If m ̸= 1, reset initial value X̂m

1 = Ŷ m
1 = X̂m−1

T

Let NX = NY = 0
for n = 1 to T do

Update X̂m
n+1 and Ŷ m

n+1 using equations (2.5.6) and (2.5.7) respectively

if X̂m
n+1 ∈ ∂X then

NX = NX + 1
Let X̂m

n+1 = X̂m
⌊ZNX

n⌋
end if
if Ŷ m

n+1 ∈ ∂X then
NY = NY + 1
Let Ŷ m

n+1 = Ŷ m
⌊ZNY

n⌋
end if

end for
Let d(X̂m

T , Ŷ m
T ) = min(1, ∥X̂m

T − Ŷ m
T ∥)

end for
return 1

M

∑M
m=1 d(X̂m

T , Ŷ m
T )
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X̂1
1 , X̂

2
1 , · · · , X̂M

1 are approximately sampled from π̂X . The error term d(X̂m
T , Ŷ m

T ) evolved

from the initial value pair X̂m
1 = Ŷ m

1 = X̂m−1
T is recorded. Therefore,

1

M

M∑
m=1

d(X̂m
T , Ŷ m

T ) (5.3.1)

is an estimator of

Eπ̂X
[d(X̃T , ỸT )] , (5.3.2)

which is an upper bound of dw(π̂T
XP̃

T
X , π̂

T
XP̃

T
Y ).

5.4 Coupling inequality and contraction rate

Similar to the coupling inequality of the total variation norm, the distance d we use in this

thesis also satisfies the coupling inequality. Let (Z
(1)
t , Z

(2)
t ) be a coupling of two stochastic

processes and let τc be the coupling time. The following Lemma follows easily.

Proposition 5.4.1. For a Markov coupling (Z
(1)
t , Z

(2)
t ), we have

dw(law(Z
(1)
T ), law(Z

(2)
T )) ≤ P(Z

(1)
T ̸= Z

(2)
T ) = P(τc > T ).

Proof. By the definition of the Wasserstein distance,

dw(law(Z
(1)
T ), law(Z

(2)
T )) ≤

∫
d(ξ, η)P((Z

(1)
T , Z

(2)
T ) ∈ (dξ, dη))

=

∫
ξ ̸=η

d(ξ, η)P((Z
(1)
T , Z

(2)
T ) ∈ (dξ, dη))

≤
∫
ξ ̸=η

P((Z
(1)
T , Z

(2)
T ) ∈ (dξ, dη))

= P(Z
(1)
T ̸= Z

(2)
T ).
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Proposition 5.4.2. Assume that dw(πX , π̂X) and dw(πY , π̂Y ) are in order O(h), then the

error

dw(πX , πY ) ≤ dw(π̂XP̃
T
X , π̂XP̃

T
Y )

1− α
+ O(h),

where α < 1 is the contraction rate of the transition kernel P̃ T
Y and dw(π̂XP̃

T
X , π̂XP̃

T
Y ) is the

finite time error.

Proof. By the triangle inequality,

dw(πX , πY ) ≤ dw(πX , π̂X) + dw(π̂X , π̂Y ) + dw(π̂Y , πY ).

Because both dw(πX , π̂X) and dw(πY , π̂Y ) are O(h), we only need to estimate the second

term dw(π̂X , π̂Y ). By the triangle inequality again, we have

dw(π̂X , π̂Y ) ≤ dw(π̂XP̃
T
X , π̂XP̃

T
Y ) + dw(π̂XP̃

T
Y , π̂Y P̃

T
Y ).

If the transition kernel P̃ T
Y has enough contraction such that

dw(π̂XP̃
T
Y , π̂Y P̃

T
Y ) ≤ αdw(π̂X , π̂Y )

for some α < 1, then we have

dw(π̂X , π̂Y ) ≤ dw(π̂XP̃
T
X , π̂XP̃

T
Y )

1− α
. (5.4.1)

Hence

dw(πX , πY ) ≤ dw(π̂XP̃
T
X , π̂XP̃

T
Y )

1− α
+ O(h).

Therefore, in order to estimate dw(πX , πY ), we need to look for suitable numerical es-

timators of the finite time error and the speed of contraction of P̃ T
Y . The finite time error
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can be easily estimated by Algorithm 6. And the speed of contraction α comes from the

geometric ergodicity of the Markov process Ŷ is approximated by that of Ŷ. If our numerical

estimation gives

dw(π̂XP̃
T
X , π̂XP̃

T
Y ) ≈ dw(π̂XP̂

T
Y , π̂Y P̂

T
Y ) ≤ Ce−γT ,

then we set α = e−γT . Similar as in [15], we use the following coupling method to estimate

the contraction rate α. Let Ẑ = (Ŷ (1), Ŷ (2)) be a Markov process in R2d such that Ŷ (1)

and Ŷ (2) are two copies of Ŷ . Let the first passage time to the ”diagonal” hyperplane

{(x,y) ∈ R2d|y = x} be the coupling time. Then by Proposition 5.4.1

dw(π̂XP̃
T
Y , π̂Y P̃

T
Y ) ≤ P(τc > T ).

As discussed in [31], we need a hybrid coupling scheme to make sure that two numerical

trajectories couple. Under the condition that two trajectories coupled before extinction time,

some coupling methods such as reflection coupling or synchronous coupling are implemented

in the first phase to bring two trajectories together. Then we compare the probability density

function for the next step and couple these two numerical trajectories with the maximal

possible probability (called maximal coupling). After doing this for many times, we have

many samples of τc denote by τc. We use the exponential tail of P(τc > t) to estimate the

contraction rate α. We look for a constant γ > 0 such that

−γ = lim
t→∞

1

t
log(P(τc > t)

if the limit exists. See Algorithm 7 for the details of implementation of coupling. Note that

we cannot simply compute the contraction rate start from t = 0 because only the tail of

coupling time can be considered as exponential distributed. Our approach is to check the

exponential tail in a log-linear plot. After having τc , it is easy to choose a sequence of

times t0, t1, · · · , tn and calculate ni = |{τmc > ti|0 ≤ m ≤ M}| for each i = 0, · · · , n. Then
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pi = ni/M is an estimator of Pπ̂Y
[τc > ti]. Now let pui (resp. pli) be the upper (resp. lower)

bound of the confidence interval of pi such that

pui = p̃ + z

√
p̃

ñi

(1− p̃) (resp. pli = p̃− z

√
p̃

ñi

(1− p̃)),

where z = 1.96, ñi = ni + z2 and p̃ = 1
ñ
(ni + z2

2
) [1]. If pli ≤ e−γti ≤ pui for each 0 ≤ i ≤ n, we

say that the exponential tail starts at t = ti0 . we accept the exponential tail with rate e−γT

if the confidence interval pui0 − pli0 is sufficient small. Otherwise we need to run Algorithm 7

for longer time to eliminate the initial bias in τc.

Algorithm 7 Estimation of contraction rate α

Input: Initial values x, y ∈ X/∂X
Output: An estimation of contraction rate α

Choose threshold d > 0
for m = 1 to M do
τmc = 0, t = 0, (Ŷ

(1)
0 , Ŷ

(2)
0 ) = (x, y)

Flag = 0
while Flag=0 do
if Ŷ

(1)
t and Ŷ

(2)
t ∈ X/∂X then

if |Ŷ (1)
t − Ŷ

(2)
t | > d then

Compute (Ŷ
(1)
t+1, Ŷ

(2)
t+1) using reflection coupling or independent coupling

t← t + 1
else

Compute (Ŷ
(1)
t+1, Ŷ

(2)
t+1) using maximal coupling

if coupled successfully then
Flag=1
τmc = t

else
t← t + 1

end if
end if

end if
end while

end for
Use τ 1c , · · · , τMc to compute P(τc > t|t < min(τY (1) , τY (2)))
Fit the tail of logP(τc > t|t < min(τY (1) , τY (2))) versus t by linear regression. Compute
the slope γ.
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5.5 Numerical Examples

5.5.1 SIR model

Consider an epidemic model in which the whole population is divided into three distinct

classes S(susceptible), I(infected) and R(recovered), respectively. After non-dimensionalization,

the ODE version of an SIR model reads

dS

dt
= (α− βSI − µS)

dI

dt
= (βSI − (µ + ρ + γ)I)

dR

dt
= (γI − µR)

(5.5.1)

where α is the birth rate, µ is the disease-free death rate,ρ is the excess death rate for the

infected class,γ is the recover rate for the infected population,and β is the effective contact

rate between the susceptible class and infected class [13]. Note R completely depends on S

and I. So we just consider the evolutions of S and I.

Now we let V be the total population and consider the corresponding stochastic mass

action network. There are four reactions are involved in this network. The stochastic mass

action network can be defined by a Poisson process Xn.

∅ α⇒ S, S + I
β⇒ 2I

S
µ⇒ ∅, I

µ+ρ+γ⇒ ∅
(5.5.2)

Applying the numerical representation in (2.5.6), we have the approximate rate functions

of Poisson process X̂n:

q1,n =
n−1∑
m=0

V hα, q2,n =
n−1∑
m=0

V hβSmIm,

q3,n =
n−1∑
m=0

V hµSm, q4,n =
n−1∑
m=0

V h(µ + ρ + γ)Im.
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Let Pi, i = 1, 2, 3, 4 be independent unit rate Poisson processes. Then X̂n is driven by

the discrete approximation of {Pi}4i=1. The rule of update of the numerical approximation

X̂n follows

X̂n+1 =

Sn+1

In+1

 =

Sn

In

+
1

V

f1(P1, · · · , P4, q1,n, · · · , q4,n)

f2(P1, · · · , P4, q1,n, · · · , q4,n)

 , (5.5.3)

where f1 and f2 comes from discrete approximation in equation (2.5.6). To improve the

readability of the present thesis, we move detailed expressions of f1 and f2 to the appendix.

As described in Section 2.1, each Poisson processes Pi, i = 1, 2, 3, 4 is path-wisely ap-

proximated by a Wiener process Bi, i = 1, 2, 3, 4. Further, the discrete approximation X̂n is

pathwisely approximated by a Euler-Maruyama scheme Ŷn reads

Ŷn+1 =

Sn+1

In+1

 =

Sn

In

+
1

V

g1(q1,n, · · · , q4,n)

g2(q1,n, · · · , q4,n)

+
1

V

σ1(B1, · · · , B4, q1,n, · · · , q4,n)

σ2(B1, · · · , B4, q1,n, · · · , q4,n)

 ,

(5.5.4)

where functions g1, g2,σ1, and σ2 follows the expression in equation (2.5.7). We refer the

appendix for the detailed form of these functions.

By the stationary increments property of standard Wiener process, we know that every

finite difference of Bi is normally distributed. In addition Wiener processes Bi, i = 1, 2, 3, 4

are independent. Therefore, equation (5.5.4) can be simplified to:

Ŷn+1 =

Sn+1

In+1

 =

Sn

In

+
1

V

g1(q1,n, · · · , q4,n)

g2(q1,n, · · · , q4,n)

+
1

V
M



W1

W2

W3

W4


(5.5.5)

where Wi, i = 1, · · · , 4 are independent standard normal random variables, and M is a matrix

that depends only on Sn and In. We refer readers to the appendix for the full expression of

M .
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In order to estimate the distance between two QSDs, we need to find the contraction

rate α for diffusion process Ŷ above. However, the diffusion matrix M in Ŷ is not square,

which makes a reflection coupling be difficult. Here we define an equivalent diffusion process

that is driven by a 2D Wiener process but has the same law as Ŷ . In our simulation, we

compute the 2 by 2 covariance matrix N = MMT , and set the square root of N to be the

new diffusion matrix. Then Ŷ can be re-written as

Ŷn+1 =

Sn

In

+
1

V

g1(q1,n, · · · , q4,n)

g2(q1,n, · · · , q4,n)


+

1√
tr(N) + 2

√
det(N)

(N + det(N)Id)

W1

W2

 ,

(5.5.6)

where tr(N) is the trace of N and det(N) is the determinant of N , and Id is the identity

matrix. It is easy to see that the diffusion process Ŷ in equations (5.5.5) and (5.5.6) are

equivalent. Hence we do not change its notation here. The modification of Ŷ allows us to

run Algorithm 7 to compute the coupling time distribution.

It remains to compute the finite time error. Let ∂X be the union of x-axis and y-axis.

The model parameters are set as α = 7, β = 3, µ = 1, ρ = 1, γ = 2. Processes X̂ and Ŷ admit

QSDs π̂X and π̂Y , respectively. Long trajectories P (i∆) and B(i∆) for i = {1, · · · , 220} and

∆ = 0.01 are constructed when we consider the trajectory-by-trajectory behaviour of two

processes. The time step size is h = 0.001 and the fixed time is set as T = 0.5.

The result for V = 1000 is demonstrated in Figure 5.1. Left bottom of Figure 5.1 shows

the QSD of diffusion process Ŷ . The QSD of the Poisson process is shown on right top of

Figure 5.1. The difference of these two QSDs is shown at the bottom of Figure 5.1. We

can see that the total variation distance between two QSDs is 0.0901, which is considered to

be small. This is reasonable because with high probability, the trajectories of both Poisson

process and the diffusion process moves far away from the absorbing set ∂X .

70



volume V finite time error contraction rate γ dw(π̂X , π̂Y )
1000 0.0026 1.2853 0.0054
400 0.0079 1.2418 0.0170
100 0.0279 1.1613 0.0634
10 0.1748 1.0912 0.3639

Table 5.1: SIR model. Numerical results for different volumes

The total variation distance between two QSDs is consistent with the prediction developed

in this thesis. We first use Algorithm 7 to compute the distribution of the coupling time,

which is shown in Figure 1 Top Left. Then we use Algorithm 6 to compute the finite time

error. The finite time error is 0.0026 for V = 1000. As a result, the upper bound given in

equation (5.4.1) is 0.0054 for V = 1000, which is smaller than the empirical total variation

error 0.0901 in this case.

Then we carry out similar computations for V = 10. The result is shown in Figure 5.2. To

compare with the case for V = 1000 on the same mesh, we re-scaled the probability density

function obtained from the Monte-Carlo simulation. The probability density in one bin in

the coarse mesh is evenly distributed into many bins in the refined mesh. The difference

between two QSDs are shown at the bottom of Figure 5.2. It is not hard to see the total

variation distance becomes significantly larger when the volume gets smaller. Same as above,

we use Algorithm 7 to compute the distribution of the coupling time distribution ( Figure

5.2 Top Left) and use Algorithm 6 to compute the finite time error. The finite time error is

0.1748 for V = 10. As a result, the upper bound given in (5.4.1) is 0.3639 for V = 10. This

is consistent with the numerical finding shown in Figure 5.2 Bottom Right.

As we consider the effect of the capacity volume, the finite time error and the contraction

rate for different volumes are compared in Table 5.1. The last column dw(π̂X , π̂Y ) is computed

using (5.4.1). Being consistent with Theorem 2.5.2, the 1-Wasserstein distance between two

QSDs is smaller as V getting larger.
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Figure 5.1: (Case V = 1000) Upper panel: (Left) P(τc > t|τ < t) vs.t. (Right) QSD of
Poisson process. Lower panel: (Left) QSD of diffusion process. (Right) Total variation of
two QSDs.

5.5.2 Oregonator system

In this example, we consider a well known example of chemical oscillator called the

Belousov-Zhabotinsky (BZ) reaction model or ”Oregonator” [7,16,20]. The ODE version of

an Oregnator system is given by

dS1

dt
= S1S2 − C2S1S2 + C3S1 − 2C4S

2
1

dS2

dt
= −C1S2 − C2S1S2 + C5hS3

dS3

dt
= 2C3S1 − C5S3.

We refer Figure 5.3 Top Left for a sample trajectories of the Oregonator on R3
+. The

parameter values are chosen as C1 = 2560, C2 = 800000, C3 = 16000, C4 = 2000, C5 =

9000, δ = 0.4.

Let V be the volume. Six reactions in this process are shown as following.
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Figure 5.2: (Case V = 10) Upper panel: (Left) P(τc > t|τ < t) vs.t. (Right) QSD of
Poisson process. Lower panel: (Left) QSD of diffusion process. (Right) Total variation of
two QSDs.

S2
C1⇒ S1, S1 + S2

C2⇒ ∅, S1
C3⇒ 2S1 + 2S3

2S1
C4⇒ ∅, S3

C5δ⇒ S2, S3
C5(1−δ)⇒ ∅

Applying the numerical representation in (2.5.6), we have the approximate rate functions of

Poisson process X̂n = (S1,n, S2,n, S3,n):

q1,n =
n−1∑
m=0

V hC1S2,m, q2,n =
n−1∑
m=0

V hC2S1,mS2,m, q3,n =
n−1∑
m=0

V hC3S1,m,

q4,n =
n−1∑
m=0

V hC4S
2
1,m, q5,n =

n−1∑
m=0

V hC5δS3,m, q6,n =
n−1∑
m=0

V hC5(1− δ)S3,m.

We remark terms S1,m is the numerical value of species S1 at time step m, and cases of other

terms are analogous. Hence the Poisson process X̂ of the Oregonator model can be written

as

X̂n+1 =


S1,n+1

S2,n+1

S3,n+1

 =


S1,n

S2,n

S3,n

+
1

V


f1(P1, · · · , P6, q1,n, · · · , q6,n)

f2(P1, · · · , P6, q1,n, · · · , q6,n)

f3(P1, · · · , P6, q1,n, · · · , q6,n)

 ,
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where Pi, i = {1, · · · , 6} are independent unite rate Poisson processes. f1, f2 and f3 comes

from discrete approximation in equation (2.5.6). To improve the readability of the present

thesis, we move detailed expressions of f1, f2 and f3 to the appendix.

The diffusion approximation Ŷ can be written as

Ŷn+1 =


S1,n+1

S2,n+1

S3,n+1

 =


S1,n

S2,n

S3,n

+
1

V


g1(q1,n, · · · , q6,n)

g2(q1,n, · · · , q6,n)

g3(q1,n, · · · , q6,n)

+
1

V


σ1(B1, · · · , B6, q1,n, · · · , q6,n)

σ2(B1, · · · , B6, q1,n, · · · , q6,n)

σ3(B1, · · · , B6, q1,n, · · · , q6,n)


(5.5.7)

where Bi, i = {1, · · · , 6} are independent standard Wiener processes, functions g1, g2, g3,

σ1, σ2 and σ3 follows the expression in equation (2.5.7). We refer the appendix for the

detailed form of these functions.

By the stationary increments property and independence of Wiener processes Bi, i =

{1, · · · , 6}, equation (5.5.7) can be simplified to:

Ŷn+1 =


S1,n+1

S2,n+1

S3,n+1

 =


S1,n

S2,n

S3,n

+
1

V


g1(q1,n, · · · , q6,n)

g2(q1,n, · · · , q6,n)

g3(q1,n, · · · , q6,n)

+
1

V
M



W1

W2

W3

W4

W5

W6


(5.5.8)

where Wi, i = 1, · · · , 6 are independent standard normal random variables, and M is a matrix

that depends only on Sn and In. We refer readers to the appendix for the full expression of

M .

Let ∂X be union of x-axis, y-axis and z-axis. Processes X̂ and Ŷ admit QSDs π̂X and

π̂Y , respectively. Long trajectories P (i∆) and B(i∆) for i = {1, · · · , 229} and ∆ = 0.001 are

constructed when we consider the trajectory-by-trajectory behaviour of two processes. The

time step size is h = 10−8 and the fixed time is set as T = 0.0002. Large rate coefficients Ci

74



make the numerical results easily to beyond the length of long trajectory B(i∆), so we pick

small time step size h and the fixed finite time T .

Figure 5.3 Top Left shows the solution of the ordinary differential equation. For any initial

point, the trajectory eventually converges to the limit cycle. In terms of thermodynamics,

the oscillation is induced through dissipation of energy and is often called a self-sustained

oscillator [35]. The trajectories of Poisson process and the diffusion process up to fixed time

T = 0.0002 are shown on the Top Right and Bottom Left. It looks that the trajectories are

close and this is reasonable because with high probability, the trajectories of both Poisson

process and the diffusion process moves far away from the absorbing set ∂X . There are only

a few regeneration events (the lines crossing the limit cycle). We compute the distribution

of the coupling time. The coupling time distribution and its exponential tail are shown in

Figure 5.3 Top Left. Then we use Algorithm 6 to compute the finite time error. The finite

time error is 0.0057 for V = 1000. As a result, the upper bound given in (5.4.1) is 0.0116 for

V = 1000. For V = 10, the finite time error is 0.4531 and the upper bound given in (5.4.1)

is 0.4531.

To compare the different situations for volume V = 1000 and V = 10, we plot the

trajectories for both processes for each species. Trajectories for V = 1000 is shown in the

upper row of Figure 5.4 and lower row shows the case for V = 10. It is not hard to see

the Poisson process is quite close to the diffusion process when V = 1000. But when the

volume is too small, not much Poisson jumps can be observes in the Poisson process, while

significant noise can be seen in the diffusion approximation. As a result, the finite time error

for V = 10 is 0.0563, which is around ten times larger than that for V = 1000. Same as above,

we compute the contraction rate γ of the coupling time distribution to be 2.0927×105. This

is due to the large magnitude of noise in the diffusion approximation. As a result, the upper

bound given in (5.4.1) is 0.4531 for V = 10. We conclude that the diffusion approximation

does not approximate the QSD well when the volume is not large enough.
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Figure 5.3: (Case V = 1000) Upper panel: (Left) ODE trajectories. (Right) Trajectories
of Poisson process. Lower panel: (Left) Trajectories of diffusion process. (Right) P(τc >
t|τ < t) vs.t.

volume V finite time error contraction rate γ dw(π̂X , π̂Y )
1000 0.0057 3.3616*103 0.0116
400 0.0205 2.0599*104 0.0208
100 0.1322 6.0150*104 0.1322
10 0.4531 2.0927*105 0.4531

Table 5.2: Oregonator model: Numerical results for different volumes

As we consider the effect of the capacity volume, the finite time error and the contraction

rate for different volumes are compared in Table 5.2. The last column dw(π̂X , π̂Y ) is computed

via (5.4.1). It is not hard to see that upper bound of dw(π̂X , π̂Y ) is quite larger when V = 10.

This is consistent with Theorem 2.5.2, the supreme distance between two processes will be

smaller as V is getting larger.

5.5.3 4D Lotka-Volterra Competitive Dynamics

Originally derived by Volterra in 1926 to describe the interaction between a predator

species and a prey species [33] and independently by Lotka to describe a chemical reaction
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Figure 5.4: (V = 1000 vs. V = 10) Upper panel: (Left) Trajectories of Poisson process
for V = 1000. (Right)Trajectories of diffusion process for V = 1000 . Lower panel: (Left)
Trajectories of Poisson process for V = 10. (Right) Trajectories of diffusion process for
V = 10.

[44], the general Lotka-Volterra model is widely used in ecology, biology, chemistry, physics,

etc [37]. In this example we consider here a chaotic system in which 4 species with whole

population V compete for a finite set of resources. The ODE version of the system reads.

dSi

dt
= riSi(1−

4∑
j=1

aijSj), i = 1, 2, 3, 4.

Here ri represents the growth rate of species i and aij represents the extent to which species

j competes for resources used by species i. The parameter values are

r = (ri)
4
i=1 =



1

0.72

1.53

1.27


, A = (aij)

4
i,j=1 =



1 1.09 1.52 0

0 1 0.44 1.36

2.33 0 1 0.47

1.21 0.51 0.35 1
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For i = 1, · · · , 4, all reactions in this system are shown as follows.

Si
ri⇒ 2Si, S1 + Si

ai1ri⇒ S1, S2 + Si
ai2ri⇒ S2, S3 + Si

ai3ri⇒ S3, S4 + Si
ai4ri⇒ S4

The corresponding rate functions are

qni,1 =
n−1∑
m=0

V hriSi,m

qni,2 =
n−1∑
m=0

V hriai1S1,mSi,m

qni,3 =
n−1∑
m=0

V hriai2S2,mSi,m

qni,4 =
n−1∑
m=0

V hriai3S3,mSi,m

qni,5 =
n−1∑
m=0

V hriai4S4,mSi,m

As three zeros appear in coefficient matrix A, this system actually include 17 reactions.

Therefore, the Poisson process X̂ = (S1,n, S2,n, S3,n, S4,n) can be written as

X̂n+1 =



S1,n+1

S2,n+1

S3,n+1

S4,n+1


=



S1,n

S2,n

S3,n

S4,n


+

1

V



f1(P1, · · · , P17, q
n
i,1, · · · , qni,5)

f2(P1, · · · , P17, q
n
i,1, · · · , qni,5)

f3(P1, · · · , P17, q
n
i,1, · · · , qni,5)

f4(P1, · · · , P17, q
n
i,1, · · · , qni,5)


,

where i = 1, · · · , 4, Pj, j = {1, · · · , 17} are independent unit rate Poisson processes, f1, f2,

f3 and f4 comes from discrete approximation in equation (2.5.6). To improve the readability

of the present thesis, we move detailed expressions of f1 to f4 to the appendix.

78



The diffusion approximation Ŷ can be written as

Ŷn+1 =



S1,n+1

S2,n+1

S3,n+1

S4,n+1


=



S1,n

S2,n

S3,n

S4,n


+

1

V



g1(qni,1, · · · , qni,5)

g2(qni,1, · · · , qni,5)

g3(qni,1, · · · , qni,5)

g4(qni,1, · · · , qni,5)


+

1

V



σ1(B1, · · · , B17, q
n
i,1, · · · , qni,5)

σ2(B1, · · · , B17, q
n
i,1, · · · , qni,5)

σ3(B1, · · · , B17, q
n
i,1, · · · , qni,5)

σ4(B1, · · · , B17, q
n
i,1, · · · , qni,5)


,

(5.5.9)

where i = 1, · · · , 4, Bj, j = {1, · · · , 17} are independent standard Wiener process, functions

g1, g2, g3, g4, σ1, σ2, σ3 and σ4 follows the expression in equation (2.5.7). We refer the

appendix for the detailed form of these functions.

By the stationary increments property and independence of Wiener processes Bi, i =

{1, · · · , 6}, equation (5.5.9) can be simplified to:

Ŷn+1 =



S1,n+1

S2,n+1

S3,n+1

S4,n+1


=



S1,n

S2,n

S3,n

S4,n


+

1

V

g1(q1, · · · , q4)

g2(q1, · · · , q4)

+
1

V
M



W1

W2

...

W16

W17


(5.5.10)

where Wi, i = 1, · · · , 17 are independent standard normal random variables, and M is a

matrix that depends only on Sn and In. We refer readers to the appendix for the full

expression of M .

Let ∂X be union of 4 axes. Processes X̂ and Ŷ admit QSDs π̂X and π̂Y , respectively.

Long trajectories P (i∆) and B(i∆) for i = {1, · · · , 222} and ∆ = 0.01 are constructed when

we consider the trajectory-by-trajectory behaviour of two processes. The time step size is

h = 0.001 and the fixed time is set as T = 1.

Figure 5.5 Top Left shows the solution of the ordinary differential equation projected

onto x1x2x3 space. The trajectories of Poisson process and the diffusion process are shown

on the Top Right and Bottom Left. It looks that the trajectories are close and this is
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reasonable because with high probability, the trajectories of both Poisson process and the

diffusion process moves far away from the absorbing set ∂X . We compute the distribution

of the coupling time. The coupling time distribution and its exponential tail are shown in

Figure 5.5 Top Left, that gives the contraction rate γ = 0.0849. Then we apply Algorithm

6 to compute the finite time error. The finite time error is 0.0030 for V = 1000. As a result,

the upper bound given in (5.4.1) is 0.0375 for V = 1000.

To compare the different situations for volume V = 1000 and V = 10, we plot trajectories

of each species for V = 1000 in Figure 5.6, and the case for V = 10 is shown in Figure 5.7. It

is not hard to see the trajectory-by-trajectory behavior between Poisson process and diffusion

process is quite remarkable when V = 1000. However, more regeneration happens in Poisson

process when V = 10. So it’s not surprised us that the finite time error for V = 10 is 0.1286,

that around 40 times larger than the case for V = 1000. Trajectories of the Poisson process

have high probability moving along the boundary in this case. Same as above, we compute

the contraction rate γ of the coupling time distribution to be 1.7905. As a result, the upper

bound given in (5.4.1) is 0.1543 for V = 10.

Figure 5.5: (Case V = 1000) Upper panel: (Left) ODE trajectories. (Right) Poisson
process. Lower panel: (Left) Diffusion process. (Right) P(τc > t|τ < t) vs.t.
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volume V finite time error contraction rate γ dw(π̂X , π̂Y )
1000 0.0030 0.0849 0.0375
400 0.0110 0.1831 0.0659
100 0.0502 0.3110 0.1878
10 0.1286 1.7905 0.1543

Table 5.3: 4D Lotka-Volterra model: Numerical results for different volumes

Figure 5.6: (Case V = 1000) Poisson trajectories and diffusion trajectories for 4 species .

As we consider the effect of the capacity volume, the finite time error and the contraction

rate for different volumes are compared in Table 5.3. The last column dw(π̂X , π̂Y ) is computed

via (5.4.1). It is not hard to see that upper bound of dw(π̂X , π̂Y ) is quite larger when V = 10.

This is consistent with Theorem 2.5.2, the supreme distance between two processes will be

smaller as V is getting larger.

5.6 Conclusion

we develop a coupling-based approach to quantitatively estimate the distance between

the QSD of a stochastic mass-action process and that of its diffusion approximation. The

dependence of QSDs in terms of the volume of the mass-action system is studied. To address
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Figure 5.7: (Case V = 10) Poisson trajectories and diffusion trajectories for 4 species.

the challenge of QSDs, we use the idea of regeneration from QSDs after exiting to construct

a process with stationary distribution. This is the the main change from our previous

work [15,31]. Both the coupling algorithm and the path-wise matching of a stochastic mass-

action system and its diffusion approximation need to be adapted to the regeneration from

QSDs. We compare the finite time error and the rate of contraction for different population

size V . All numerical results shows that the distance between two QSDs is smaller for larger

population. In general, the effect of demographic noise must be seriously addressed when

the population is small.

The study of path-wise approximation of stochastic mass-action systems by diffusion

processes and the coupling of diffusion processes motivates a very interesting question. All

our existing work relies on the reflection coupling of diffusion processes, which is known to be

highly effective. Then how can one effectively couple two continuous-time Markov processes

on a lattice? A successful coupling of two trajectories of a mass-action system will extend our

framework of sensitivity analysis to many more applications. We believe it is very difficult to

couple the exact stochastic mass-action system because random events occur at continuous
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time. However, there may be some way of building a ”discrete reflection” and coupling two

tau-leaping trajectories, i.e., two trajectories of equation (2.5.6) effectively. This will be

addressed in our future work.
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APPENDIX

EXPRESSIONS OF MASS-ACTION SYSTEMS AND THEIR
DIFFUSION APPROXIMATIONS

To improve the readability, we put the explicit formulas of the Poisson approximation

and the diffusion approximation for each model in this section.

A.1 SIR model

There are four reactions are involved in the SIR system, so we have 4 pairs of Poisson
process Pi and Wiener process Bi appear in the evolution of each class. The rule of update
of the numerical approximation X̂n follows

X̂n+1 =

(
Sn+1
In+1

)
=

(
Sn
In

)
+

1

V

([
P1(q1,n+1) − P1(q1,n)

]
−

[
P2(q2,n+1) − P2(q2,n

]
−

[
P3(q3,n+1 − P3(q3,n)

][
P2(q2,n+1) − P2(q2,n)

]
−

[
P4(q4,n+1) − P4(q4,n)

] )
,

:=

(
Sn
In

)
+

1

V

(
f1(P1, · · · , P4, q1,n, · · · , q4,n)
f2(P1, · · · , P4, q1,n, · · · , q4,n)

)

where Pi, i = {1, 2, 3, 4} are independent unit rate Poisson processes.

The rule of update of the numerical approximation Ŷn follows

Ŷn+1 =

(
Sn+1
In+1

)
=

(
Sn
In

)
+

1

V

(
[q1,n+1 − q1,n] − [q2,n+1 − q2,n] − [q3,n+1 − q3,n]

[q2,n+1 − q2,n] − [q4,n+1 − q4,n]

)
+

1

V

([
B1(q1,n+1) − B1(q1,n)

]
−

[
B2(q2,n+1) − B2(q2,n)

]
−

[
B3(q3,n+1 − B3(q3,n

][
B2(q2,n+1) − B2(q2,n)

]
−

[
B4(q4,n+1) − B4(q4,n)

] )
,

:=

(
Sn
In

)
+

1

V

(
g1(q1,n, · · · , q4,n)
g2(q1,n, · · · , q4,n)

)
+

1

V

(
σ1(B1, · · · , B4, q1,n, · · · , q4,n)
σ2(B1, · · · , B4, q1,n, · · · , q4,n)

)
,

where Bi, i = {1, 2, 3, 4} are independent standard Wiener processs.
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As two classes Sn and In and four reactions are considered in this SIR model, the corre-
sponding diffusion matrix M should be a 2× 4 matrix. Specifically, the diffusion matrix M
reads as

Ŷn+1 =

(
Sn+1
In+1

)
=

(
Sn
In

)
+

1

V

(
[q1,n+1 − q1,n] − [q2,n+1 − q2,n] − [q3,n+1 − q3,n]

[q2,n+1 − q2,n] − [q4,n+1 − q4,n]

)

+
1

V

(√
q1,n+1 − q1,n −

√
q2,n+1 − q2,n −

√
q3,n+1 − q3,n 0

0
√

q2,n+1 − q2,n 0 −
√

q4,n+1 − q4,n

)
W1
W2
W3
W4


=

(
Sn
In

)
+

1

V

(
V hα − V hβSnIn − V hµSn

V hβSnIn − V h(µ + ρ + γ)In

)

+
1

V

(√
V hα −

√
V hβSnIn −

√
V hµSn 0

0
√
V hβSnIn 0 −

√
V h(µ + ρ + γ)In

)
W1
W2
W3
W4



:=

(
Sn
In

)
+

1

V

(
g1(q1,n, · · · , q4,n)
g2(q1,n, · · · , q4,n)

)
+

1

V
M


W1
W2
W3
W4


where Wi, i = {1, 2, 3, 4} are independent standard normal distributed random variables.

A.2 Oregnator model

For the Oregnator model, there are six reactions involved. So we have 6 pairs of Poisson
process Pi and Bi in the approximations. The rule of update of the numerical approximation
X̂n follows

X̂n+1 =

S1,n+1
S2,n+1
S3,n+1

 =

S1,n
S2,n
S3,n


+

1

V

[P1(q1,n+1) − P1(q1,n)] − [P2(q2,n+1) − P2(q2,n)] + [P3(q3,n+1) − P3(q3,n)] − 2[P4(q4,n+1) − P4(q4,n)]
−[P1(q1,n+1) − P1(q1,n)] − [P2(q2,n+1) − P2(q2,n)] + [P5(q5,n+1) − P5(q5,n)]
2[P3(q3,n+1) − P3(q3,n)] − [P5(q5,n+1) − P5(q5,n)] − [P6(q6,n+1) − P6(q6,n)]


:=

S1,n
S2,n
S3,n

 +
1

V

f1(P1, · · · , P6, q1,n, · · · , q6,n)
f2(P1, · · · , P6, q1,n, · · · , q6,n)
f3(P1, · · · , P6, q1,n, · · · , q6,n)



where Pi, i = {1, · · · , 6} are independent unite rate Poisson processes.

The diffusion approximation Ŷ can be written as

Ŷn+1 =

S1,n+1
S2,n+1
S3,n+1


=

S1,n
S2,n
S3,n

 +
1

V

[q1,n+1 − q1,n] − [q2,n+1 − q2,n] + [q3,n+1 − q3,n] − 2[q4,n+1 − q4,n]
−[q1,n+1 − q1,n] − [q2,n+1 − q2,n] + [q5,n+1 − q5,n]
2[q3,n+1 − q3,n] − [q5,n+1 − q5,n] − [q6,n+1 − q6,n]


+

1

V

[B1(q1,n+1) − B1(q1,n)] − [B2(q2,n+1) − B2(q2,n)] + [B3(q3,n+1) − B3(q3,n)] − 2[B4(q4,n+1) − B4(q4,n)]
−[B1(q1,n+1) − B1(q1,n)] − [B2(q2,n+1) − B2(q2,n)] + [B5(q5,n+1) − B5(q5,n)]
2[B3(q3,n+1) − B3(q3,n)] − [B5(q5,n+1) − B5(q5,n)] − [B6(q6,n+1) − B6(q6,n)]


:=

S1,n
S2,n
S3,n

 +
1

V

g1(q1,n, · · · , q6,n)
g2(q1,n, · · · , q6,n)
g3(q1,n, · · · , q6,n)

 +
1

V

σ1(B1, · · · , B6, q1,n, · · · , q6,n)
σ2(B1, · · · , B6, q1,n, · · · , q6,n)
σ3(B1, · · · , B6, q1,n, · · · , q6,n)

 ,

where Bi, {i = 1, · · · , 6} are independent Wiener processes.
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As we focus on three classes S1,n, S2,n, S3,n and six reactions, we can confirm that the
diffusion matrix M is a 3 × 6 matrix. Specifically, the diffusion matrix M is defined as
follows.

Ŷn+1 =

S1,n+1
S2,n+1
S3,n+1


=

S1,n
S2,n
S3,n

 +
1

V

[q1,n+1 − q1,n] − [q2,n+1 − q2,n] + [q3,n+1 − q3,n] − 2[q4,n+1 − q4,n]
−[q1,n+1 − q1,n] − [q2,n+1 − q2,n] + [q5,n+1 − q5,n]
2[q3,n+1 − q3,n] − [q5,n+1 − q5,n] − [q6,n+1 − q6,n]



+
1

V


√

q1,n+1 − q1,n −
√

q2,n+1 − q2,n
√

q3,n+1 − q3,n −
√

2[q4,n+1 − q4,n] 0 0

−
√

q1,n+1 − q1,n −
√

q2,n+1 − q2,n 0 0
√

q5,n+1 − q5,n 0

0 0
√

2[q3,n+1 − q3,n] 0 −
√

q5,n+1 − q5,n −
√

q6,n+1 − q6,n




W1
W2
W3
W4
W5
W6



=

S1,n
S2,n
S3,n

 +
1

V

V hC1S2,n − V hC2S1,nS2,n + V hC3S1,n − 2V hC4S
2
1,n

V hC1S2,n − V hC2S1,nS2,n + V hC5δS3,n
2V hC3S1,n − V hC5δS3,n − V hC5(1 − δ)S3,n



+
1

V


√

V hC1S2,n −
√

V hC2S1,nS2,n
√

V hC3S1,n 2
√

V hC4S
2
1,n 0 0

−
√

V hC1S2,n −
√

V hC2S1,nS2,n 0 0
√

V hC5δS3,n 0

0 0 2
√

V hC3S1,n 0 −
√

V hC5δS3,n −
√

V hC5(1 − δ)S3,n




W1
W2
W3
W4
W5
W6



:=

S1,n
S2,n
S3,n

 +
1

V

g1(q1,n, · · · , q6,n)
g2(q1,n, · · · , q6,n)
g3(q1,n, · · · , q6,n)

 +
1

V
M


W1
W2
W3
W4
W5
W6

 ,

where Wi, {i = 1, · · · , 6} are independent standard normal distributed random variables.

A.3 4D Lotka-Volterra model

For the 4D Lotka-Volterra system, there are 17 reactions involved, so we have 17 pairs of
Poisson process Pi and Wiener process Bi. The rule of update of the numerical approximation
X̂n follows

X̂n+1 =


S1,n+1
S2,n+1
S3,n+1
S4,n+1

 =


S1,n
S2,n
S3,n
S4,n



+
1

V


[P1(q1,n+1)−P1(q1,n)]−[P2(q2,n+1)−P2(q2,n)]−[P3(q1,n+1)−P3(q1,n)]−[P4(q4,n+1)−P4(q4,n)]

[P5(q5,n+1)−P5(q5,n)]−[P6(q6,n+1)−P6(q6,n)]−[P7(q7,n+1)−P7(q7,n)]−[P8(q8,n+1)−P8(q8,n)]

[P9(q9,n+1)−P9(q9,n)]−[P10(q10,n+1)−P10(q10,n)]−[P11(q11,n+1)−P11(q11,n)]−[P12(q12,n+1)−P12(q12,n)]

[P13(q13,n+1)−P13(q13,n)]−[P14(q14,n+1)−P14(q14,n)]−[P15(q15,n+1)−P15(q15,n)]−[P16(q16,n+1)−P16(q16,n)]−[P17(q17,n+1)−P17(q17,n)]



:=


S1,n
S2,n
S3,n
S4,n

 +
1

V


f1(P1, · · · , P17, q

n
i,1, · · · , qni,5)

f2(P1, · · · , P17, q
n
i,1, · · · , qni,5)

f3(P1, · · · , P17, q
n
i,1, · · · , qni,5)

f4(P1, · · · , P17, q
n
i,1, · · · , qni,5)

 ,

where i = 1, · · · , 4 and Pj, {j = 1, · · · , 17} are independent unit rate Poisson processes.

The diffusion approximation Ŷ can be written as
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Ŷn+1 =


S1,n+1
S2,n+1
S3,n+1
S4,n+1

 =


S1,n
S2,n
S3,n
S4,n

 +
1

V


[q1,n+1−q1,n]−[q2,n+1−q2,n]−[q3,n+1−q3,n]−[q4,n+1−q4,n]

[q5,n+1−q5,n]−[q6,n+1−q6,n]−[q7,n+1−q7,n]−[q8,n+1−q8,n]

[q9,n+1−q9,n]−[q10,n+1−q10,n]−[q11,n+1−q11,n]−[q12,n+1−q12,n]

[q13,n+1−q13,n]−[q14,n+1−q14,n]−[q15,n+1−q15,n]−[q16,n+1−q16,n]−[q17,n+1−q17,n]



+
1

V


[B1(q1,n+1)−B1(q1,n)]−[B2(q2,n+1)−B2(q2,n)]−[B3(q3,n+1)−B3(q3,n)]−[B4(q4,n+1)−B4(q4,n)]

[B5(q5,n+1)−B5(q5,n)]−[B6(q6,n+1)−B6(q6,n)]−[B7(q7,n+1)−B7(q7,n)]−[B8(q8,n+1)−B8(q8,n)]

[B9(q9,n+1)−B9(q9,n)]−[B10(q10,n+1)−B10(q10,n)]−[B11(q11,n+1)−B11(q11,n)]−[B12(q12,n+1)−B12(q12,n)]

[B13(q13,n+1)−B13(q13,n)]−[B14(q14,n+1)−B14(q14,n)]−[B15(q15,n+1)−B15(q15,n)]−[B16(q16,n+1)−B16(q16,n)]−[B17(q17,n+1)−B17(q17,n)]



:=


S1,n
S2,n
S3,n
S4,n

 +
1

V


g1(q

n
i,1, · · · , qni,5)

g2(q
n
i,1, · · · , qni,5)

g3(q
n
i,1, · · · , qni,5)

g4(q
n
i,1, · · · , qni,5)

 +
1

V


σ1(B1, · · · , B17, q

n
i,1, · · · , qni,5)

σ2(B1, · · · , B17, q
n
i,1, · · · , qni,5)

σ3(B1, · · · , B17, q
n
i,1, · · · , qni,5)

σ4(B1, · · · , B17, q
n
i,1, · · · , qni,5)

 ,

where i = 1, · · · , 4, Bj, {j = 1, · · · , 17} are independent Wiener processes.
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