82,540 research outputs found

    Strong Stationarity Conditions for Optimal Control of Hybrid Systems

    Full text link
    We present necessary and sufficient optimality conditions for finite time optimal control problems for a class of hybrid systems described by linear complementarity models. Although these optimal control problems are difficult in general due to the presence of complementarity constraints, we provide a set of structural assumptions ensuring that the tangent cone of the constraints possesses geometric regularity properties. These imply that the classical Karush-Kuhn-Tucker conditions of nonlinear programming theory are both necessary and sufficient for local optimality, which is not the case for general mathematical programs with complementarity constraints. We also present sufficient conditions for global optimality. We proceed to show that the dynamics of every continuous piecewise affine system can be written as the optimizer of a mathematical program which results in a linear complementarity model satisfying our structural assumptions. Hence, our stationarity results apply to a large class of hybrid systems with piecewise affine dynamics. We present simulation results showing the substantial benefits possible from using a nonlinear programming approach to the optimal control problem with complementarity constraints instead of a more traditional mixed-integer formulation.Comment: 30 pages, 4 figure

    Optimal designs for active controlled dose finding trials with efficacy-toxicity outcomes

    Get PDF
    Nonlinear regression models addressing both efficacy and toxicity outcomes are increasingly used in dose-finding trials, such as in pharmaceutical drug development. However, research on related experimental design problems for corresponding active controlled trials is still scarce. In this paper we derive optimal designs to estimate efficacy and toxicity in an active controlled clinical dose finding trial when the bivariate continuous outcomes are modeled either by polynomials up to degree 2, the Michaelis- Menten model, the Emax model, or a combination thereof. We determine upper bounds on the number of different doses levels required for the optimal design and provide conditions under which the boundary points of the design space are included in the optimal design. We also provide an analytical description of the minimally supported DD-optimal designs and show that they do not depend on the correlation between the bivariate outcomes. We illustrate the proposed methods with numerical examples and demonstrate the advantages of the DD-optimal design for a trial, which has recently been considered in the literature.Comment: Keywords and Phrases: Active controlled trials, dose finding, optimal design, admissible design, Emax model, Equivalence theorem, Particle swarm optimization, Tchebycheff syste

    Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization

    Get PDF
    We study the extension of the Chambolle--Pock primal-dual algorithm to nonsmooth optimization problems involving nonlinear operators between function spaces. Local convergence is shown under technical conditions including metric regularity of the corresponding primal-dual optimality conditions. We also show convergence for a Nesterov-type accelerated variant provided one part of the functional is strongly convex. We show the applicability of the accelerated algorithm to examples of inverse problems with L1L^1- and L∞L^\infty-fitting terms as well as of state-constrained optimal control problems, where convergence can be guaranteed after introducing an (arbitrary small, still nonsmooth) Moreau--Yosida regularization. This is verified in numerical examples

    On the policy function in continuos time economic models

    Get PDF
    In this paper, I consider a general class of continuous-time economic models with unbounded horizon. I study the sets of conditions under which the policy function is continuous, Lipschitz continuous, and Cl differentiable. 1 also single out certain postulates which may prevent higher-order differentiability. The analysis provides, therefore, a fmn foundation to the use of dynamic programming methods in continuous time models with unbounded horizo
    • …
    corecore