106 research outputs found

    Deep Multi-Model Fusion for Human Activity Recognition Using Evolutionary Algorithms

    Get PDF
    Machine recognition of the human activities is an active research area in computer vision. In previous study, either one or two types of modalities have been used to handle this task. However, the grouping of maximum information improves the recognition accuracy of human activities. Therefore, this paper proposes an automatic human activity recognition system through deep fusion of multi-streams along with decision-level score optimization using evolutionary algorithms on RGB, depth maps and 3d skeleton joint information. Our proposed approach works in three phases, 1) space-time activity learning using two 3D Convolutional Neural Network (3DCNN) and a Long Sort Term Memory (LSTM) network from RGB, Depth and skeleton joint positions 2) Training of SVM using the activities learned from previous phase for each model and score generation using trained SVM 3) Score fusion and optimization using two Evolutionary algorithm such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. The proposed approach is validated on two 3D challenging datasets, MSRDailyActivity3D and UTKinectAction3D. Experiments on these two datasets achieved 85.94% and 96.5% accuracies, respectively. The experimental results show the usefulness of the proposed representation. Furthermore, the fusion of different modalities improves recognition accuracies rather than using one or two types of information and obtains the state-of-art results

    Error Action Recognition on Playing The Erhu Musical Instrument Using Hybrid Classification Method with 3D-CNN and LSTM

    Get PDF
    Erhu is a stringed instrument originating from China. In playing this instrument, there are rules on how to position the player's body and hold the instrument correctly. Therefore, a system is needed that can detect every movement of the Erhu player. This study will discuss action recognition on video using the 3DCNN and LSTM methods. The 3D Convolutional Neural Network method is a method that has a CNN base. To improve the ability to capture every information stored in every movement, combining an LSTM layer in the 3D-CNN model is necessary. LSTM is capable of handling the vanishing gradient problem faced by RNN. This research uses RGB video as a dataset, and there are three main parts in preprocessing and feature extraction. The three main parts are the body, erhu pole, and bow. To perform preprocessing and feature extraction, this study uses a body landmark to perform preprocessing and feature extraction on the body segment. In contrast, the erhu and bow segments use the Hough Lines algorithm. Furthermore, for the classification process, we propose two algorithms, namely, traditional algorithm and deep learning algorithm. These two-classification algorithms will produce an error message output from every movement of the erhu player

    End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

    Get PDF
    The use of hand gestures can be the most intuitive human-machine interaction medium. The early approaches for hand gesture recognition used device-based methods. These methods use mechanical or optical sensors attached to a glove or markers, which hinders the natural human-machine communication. On the other hand, vision-based methods are not restrictive and allow for a more spontaneous communication without the need of an intermediary between human and machine. Therefore, vision gesture recognition has been a popular area of research for the past thirty years. Hand gesture recognition finds its application in many areas, particularly the automotive industry where advanced automotive human-machine interface (HMI) designers are using gesture recognition to improve driver and vehicle safety. However, technology advances go beyond active/passive safety and into convenience and comfort. In this context, one of America’s big three automakers has partnered with the Centre of Pattern Analysis and Machine Intelligence (CPAMI) at the University of Waterloo to investigate expanding their product segment through machine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition for autonomous car parking. In this thesis, we leverage the state-of-the-art deep learning and optimization techniques to develop a vision-based multiview dynamic hand gesture recognizer for self-parking system. We propose a 3DCNN gesture model architecture that we train on a publicly available hand gesture database. We apply transfer learning methods to fine-tune the pre-trained gesture model on a custom-made data, which significantly improved the proposed system performance in real world environment. We adapt the architecture of the end-to-end solution to expand the state of the art video classifier from a single image as input (fed by monocular camera) to a multiview 360 feed, offered by a six cameras module. Finally, we optimize the proposed solution to work on a limited resources embedded platform (Nvidia Jetson TX2) that is used by automakers for vehicle-based features, without sacrificing the accuracy robustness and real time functionality of the system

    Indian Sign Language Recognition through Hybrid ConvNet-LSTM Networks

    Get PDF
    Dynamic hand gesture recognition is a challenging task of Human-Computer Interaction (HCI) and Computer Vision. The potential application areas of gesture recognition include sign language translation, video gaming, video surveillance, robotics, and gesture-controlled home appliances. In the proposed research, gesture recognition is applied to recognize sign language words from real-time videos. Classifying the actions from video sequences requires both spatial and temporal features. The proposed system handles the former by the Convolutional Neural Network (CNN), which is the core of several computer vision solutions and the latter by the Recurrent Neural Network (RNN), which is more efficient in handling the sequences of movements. Thus, the real-time Indian sign language (ISL) recognition system is developed using the hybrid CNN-RNN architecture. The system is trained with the proposed CasTalk-ISL dataset. The ultimate purpose of the presented research is to deploy a real-time sign language translator to break the hurdles present in the communication between hearing-impaired people and normal people. The developed system achieves 95.99% top-1 accuracy and 99.46% top-3 accuracy on the test dataset. The obtained results outperform the existing approaches using various deep models on different datasets

    Non-contact measures to monitor hand movement of people with rheumatoid arthritis using a monocular RGB camera

    Get PDF
    Hand movements play an essential role in a person’s ability to interact with the environment. In hand biomechanics, the range of joint motion is a crucial metric to quantify changes due to degenerative pathologies, such as rheumatoid arthritis (RA). RA is a chronic condition where the immune system mistakenly attacks the joints, particularly those in the hands. Optoelectronic motion capture systems are gold-standard tools to quantify changes but are challenging to adopt outside laboratory settings. Deep learning executed on standard video data can capture RA participants in their natural environments, potentially supporting objectivity in remote consultation. The three main research aims in this thesis were 1) to assess the extent to which current deep learning architectures, which have been validated for quantifying motion of other body segments, can be applied to hand kinematics using monocular RGB cameras, 2) to localise where in videos the hand motions of interest are to be found, 3) to assess the validity of 1) and 2) to determine disease status in RA. First, hand kinematics for twelve healthy participants, captured with OpenPose were benchmarked against those captured using an optoelectronic system, showing acceptable instrument errors below 10°. Then, a gesture classifier was tested to segment video recordings of twenty-two healthy participants, achieving an accuracy of 93.5%. Finally, OpenPose and the classifier were applied to videos of RA participants performing hand exercises to determine disease status. The inferred disease activity exhibited agreement with the in-person ground truth in nine out of ten instances, outperforming virtual consultations, which agreed only six times out of ten. These results demonstrate that this approach is more effective than estimated disease activity performed by human experts during video consultations. The end goal sets the foundation for a tool that RA participants can use to observe their disease activity from their home.Open Acces
    • …
    corecore