1,243 research outputs found

    A Spinorial Formulation of the Maximum Clique Problem of a Graph

    Get PDF
    We present a new formulation of the maximum clique problem of a graph in complex space. We start observing that the adjacency matrix A of a graph can always be written in the form A = B B where B is a complex, symmetric matrix formed by vectors of zero length (null vectors) and the maximum clique problem can be transformed in a geometrical problem for these vectors. This problem, in turn, is translated in spinorial language and we show that each graph uniquely identifies a set of pure spinors, that is vectors of the endomorphism space of Clifford algebras, and the maximum clique problem is formalized in this setting so that, this much studied problem, may take advantage from recent progresses of pure spinor geometry

    Cliques in rank-1 random graphs: the role of inhomogeneity

    Get PDF
    We study the asymptotic behavior of the clique number in rank-1 inhomogeneous random graphs, where edge probabilities between vertices are roughly proportional to the product of their vertex weights. We show that the clique number is concentrated on at most two consecutive integers, for which we provide an expression. Interestingly, the order of the clique number is primarily determined by the overall edge density, with the inhomogeneity only affecting multiplicative constants or adding at most a loglog(n)\log\log(n) multiplicative factor. For sparse enough graphs the clique number is always bounded and the effect of inhomogeneity completely vanishes.Comment: 29 page

    On hypergraph Lagrangians

    Full text link
    It is conjectured by Frankl and F\"uredi that the rr-uniform hypergraph with mm edges formed by taking the first mm sets in the colex ordering of N(r){\mathbb N}^{(r)} has the largest Lagrangian of all rr-uniform hypergraphs with mm edges in \cite{FF}. Motzkin and Straus' theorem confirms this conjecture when r=2r=2. For r=3r=3, it is shown by Talbot in \cite{T} that this conjecture is true when mm is in certain ranges. In this paper, we explore the connection between the clique number and Lagrangians for rr-uniform hypergraphs. As an implication of this connection, we prove that the rr-uniform hypergraph with mm edges formed by taking the first mm sets in the colex ordering of N(r){\mathbb N}^{(r)} has the largest Lagrangian of all rr-uniform graphs with tt vertices and mm edges satisfying (t1r)m(t1r)+(t2r1)[(2r6)×2r1+2r3+(r4)(2r7)1]((t2r2)1){t-1\choose r}\leq m \leq {t-1\choose r}+ {t-2\choose r-1}-[(2r-6)\times2^{r-1}+2^{r-3}+(r-4)(2r-7)-1]({t-2\choose r-2}-1) for r4.r\geq 4.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1312.7529, arXiv:1211.7057, arXiv:1211.6508, arXiv:1311.140
    corecore