The Maximum Clique Problem in Spinorial Form

Marco Budinich^{*} and Paolo Budinich[†]

*University of Trieste and INFN – Trieste, Italy – marco.budinich@ts.infn.it [†]SISSA/ISAS – Trieste, Italy

Abstract. We present a formulation of the Maximum Clique problem of a graph as a geometrical problem of null vectors in complex space. This problem is then translated in spinorial language.

Keywords: Graph, clique, spinor, NP-complete PACS: 02.10.Ox, 04.20.Gz, 89.75.Đk

THE MAXIMUM CLIQUE PROBLEM

Given a graph of size *n* and adjacency matrix *A*, a clique is a subgraph with pairwise adjacent vertices and the Maximum Clique (MC) problem asks for the *size* $\omega(A)$ of the largest clique. It is an old, well studied, NPcomplete problem and there are reviews with hundreds references [1].

Any symmetric matrix like A may be expressed in the form

$$A = B'B = BB = B^2 \tag{1}$$

where *B* is a complex, symmetric matrix that we can think as formed by *n* complex vectors $\mathbf{z}_i \in \mathbb{C}^n$ called *null vectors* since they have zero length: $\mathbf{z}_j^2 = a_{jj} = 0$. It is well known [1] that the MC problem of *A* is

It is well known [1] that the MC problem of *A* is identical to the problem of the maximum independent set of the conjugate graph $\bar{A} = J - \mathbb{1} - A$ and a formulation with appealing properties is

$$\max_{\mathbf{x} \in \{\{0,1\}^n : \mathbf{x}' \bar{A} \mathbf{x} = 0\}} \mathbf{x}' \mathbf{x} = \omega(A) .$$
(2)

This problem has the following geometrical interpretation: the null vectors $\bar{\mathbf{z}}$ span the space $V \subseteq \mathbb{C}^n$ and any couple of linearly independent vectors $\bar{\mathbf{z}}_j$ and $\bar{\mathbf{z}}_k$ span a two-dimensional space contained in *V*. If $\bar{\mathbf{z}}'_j \bar{\mathbf{z}}_k = \bar{a}_{jk} = 0$ it is easy to verify that this space has the property that all of its elements are null vectors and are all mutually orthogonal: this space is called a Totally Null Plane (TNP). If \bar{A} contains at least one nondiagonal zero element, then *V* contains at least one two dimensional TNP.

The solution of the MC problem provides the largest subset $\bar{\mathbf{z}}_{j_1}, \bar{\mathbf{z}}_{j_2}, \dots, \bar{\mathbf{z}}_{j_k}$ of $\bar{\mathbf{z}}$'s which define a TNP contained in *V*; [2].

SPINORS, WITT AND FOCK BASIS

Cartan was the first to show [3] that the geometry of null vectors can be treated elegantly with spinors; we

will follow this road. A spinor Φ is a vector belonging to the spaces *S* of endomorphism of Cl(2n) = EndS and is defined by the Cartan's equation:

$$v\Phi = \left(\sum_{j=1}^{2n} v_j \gamma_j\right) \Phi = 0 \tag{3}$$

where $v\Phi$ is a Clifford product $v\Phi = v \ \Box \Phi + v \land \Phi$. Let us define the null, or Witt, basis of Cl(2n):

$$p_{j} = \frac{1}{2} \left(\gamma_{2j-1} + i \gamma_{2j} \right)$$
 and $q_{j} = \frac{1}{2} \left(\gamma_{2j-1} - i \gamma_{2j} \right)$
(4)

for j = 1, 2, ..., n with the properties

$$\left[p_j,p_k\right]_+ = \left[q_j,q_k\right]_+ = 0 \quad \text{and} \quad \left[p_j,q_k\right]_+ = \delta_{jk}\mathbbm{1} \; .$$

With this basis \mathbb{C}^{2n} is easily seen as the direct sum of two maximal TNP *P* and *Q* spanned by null vectors $\{\mathbf{p}_j\}$ and $\{\mathbf{q}_i\}$ respectively:

$$\mathbb{C}^{2n}=P\oplus Q\,,$$

since $P \cap Q = \emptyset$ each vector $\mathbf{v} \in \mathbb{C}^{2n}$ may be expressed in the form $\mathbf{v} = \sum_{i=1}^{n} (\alpha_i \mathbf{p}_i + \beta_i \mathbf{q}_i)$ with $\alpha_i, \beta_i \in \mathbb{C}$. A spinor $\Phi \in S$, defined by Cartan equation (3), may

A spinor $\Phi \in S$, defined by Cartan equation (3), may be represented by Minimal Left Ideals (MLI) of Cl(2n)[4]. Consider the 2^n MLI that form the Fock basis in spinor space [5]

$$\omega_{2^n-1} = q_1 q_2 \dots q_n \omega_0$$

When we write the Cartan equation (3) in the basis, defined in (4) and (5), we get

$$v\Phi = \left(\sum_{i=1}^{n} \alpha_i p_i + \beta_i q_i\right) \left(\sum_{s=0}^{2^n - 1} \xi_s \omega_s\right) = 0 \qquad (6)$$

and this equation can be read in two ways depending on wether v or Φ plays the role of the unknown. In [6] we have proved the

Proposition 1 Given $v := Span(x_1, ..., x_k)$, there exists a spinor Φ , satisfying the Cartan equation (6) if, and only if, v is a TNP.

MC PROBLEM IN SPINOR LANGUAGE

We are now ready to give a spinorial formulation of the MC problem and start by introducing new vectors $\bar{\mathbf{z}}_i$ in the Witt basis of Cl(2n):

$$\bar{\mathbf{z}}_i = \mathbf{p}_i + \sum_{j=1}^n \bar{a}_{ij} \mathbf{q}_j$$
 $i = 1, 2, \dots, n$.

These vectors have the properties (immediate to prove):

- belong to \mathbb{C}^{2n} and are linearly independent;
- are null, i.e. $\bar{\mathbf{z}}'_i \bar{\mathbf{z}}_i = 0$ since $\bar{a}_{ii} = 0$;
- satisfy $\bar{\mathbf{z}}_i' \bar{\mathbf{z}}_i = \bar{a}_{ii}$.

To fully exploit the spinorial formulation we will consider the $\bar{\mathbf{z}}_i$ vectors as representative of the subspace they induce i.e. $Span(\mathbf{p}_i, \bar{a}_{i1}\mathbf{q}_1, \dots, \bar{a}_{in}\mathbf{q}_n)$ of dimension $\sum_{j=1}^{n} \bar{a}_{ij} + 1$. We do this introducing in the definition arbitrary coefficients α

$$\bar{\mathbf{z}}_i = \alpha_i \mathbf{p}_i + \sum_{j=1}^n \bar{a}_{ij} \alpha_j \mathbf{q}_j \qquad i = 1, 2, \dots, n$$
(7)

The equation $\mathbf{x}' \bar{A} \mathbf{x} = (\bar{B} \mathbf{x})^2 = 0$, representing the constraints of the MC problem in (2), may be linearized formulating the problem in spinorial form:

$$\bar{B}\mathbf{x}\Phi = \left(\sum_{i=1}^{n} x_i \bar{\mathbf{z}}_i\right) \Phi = 0 \tag{8}$$

or with $\bar{\mathbf{z}}_i$ from (7)

$$\left[\sum_{i=1}^{n} x_i \left(\alpha_i \mathbf{p}_i + \sum_{j=1}^{n} \alpha_j \bar{a}_{ij} \mathbf{q}_j \right) \right] \Phi = 0 \tag{9}$$

of the form (6). In this equation, in general, x_i must be interpreted as complex variables, restricted to values in $\{0,1\}$ in formulation (2) of the MC problem.

We thus have a set of *n* vectors $\bar{\mathbf{z}}_i$ defining an *n*-dimensional subspace of \mathbb{C}^{2n} and we will look for the spinors Φ that satisfy (8).

We study solutions of (9) with an example: let us suppose that $\bar{a}_{12} = 0$, this means that \bar{z}_1 and \bar{z}_2 form a TNP and, setting $x_3 = x_4 = \ldots = x_n = 0$, with (7) we get

$$\left(x_1\bar{\mathbf{z}}_1 + x_2\bar{\mathbf{z}}_2\right)\Phi(\bar{\mathbf{z}}_1\bar{\mathbf{z}}_2) = 0$$

where $\Phi(\bar{\mathbf{z}}_1 \bar{\mathbf{z}}_2)$ represent the TNP $Span(\bar{\mathbf{z}}_1, \bar{\mathbf{z}}_2)$. This example shows that it is simple to get particular solutions to (9) the real problem being to find the *set of all solutions*, for which in [6] we proved the following

Proposition 2 The set of nonzero spinors that solve the Cartan equation (9) is isomorphic to the set of cliques of *A*.

We can now reformulate our initial MC problem (2): it will correspond to that solution of (9) with the maximum intersection with P, i.e.

$$\omega(A) = \max_{\Phi: \left(\sum_{i=1}^{n} x_i \bar{\mathbf{z}}_i\right) \Phi = 0} \dim \left(P \cap M(\Phi) \right)$$

where $M(\Phi)$ represent the TNP corresponding to Φ .

CONCLUSIONS

We have thus shown that:

- the MC problem can be formulated in spinorial language;
- the problem of finding all possible spinor solutions of (9) is NP-complete since, given the set of all solutions, one gets also the solution of the MC problem.
- With respect to the MC formulation (2) we remark two main differences:
 - the demanding restriction x ∈ {0,1}ⁿ can be relaxed since all solutions of (9) necessarily have binary x_i.
 - The quadratic constraint $\mathbf{x}'\bar{A}\mathbf{x} = 0$ of (2) is linearized here to $\bar{B}\mathbf{x}\Phi = 0$.

REFERENCES

- I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, "The Maximum Clique Problem," in *Handbook of Combinatorial Optimization*, edited by D.-Z. Du, and P. M. Pardalos, Kluwer Academic Publishers, Boston, MA (U.S.A.), 1999, vol. Supp. Vol. A, p. 656.
- M. Budinich, Discrete Applied Mathematics 127, 535– 543 (2003), URL http://www.ts.infn.it/\$\ sim\$mbh/MC_Bounds.ps.Z.
- 3. É. Cartan, *The Theory of Spinors*, Hermann, Paris, 1966, first edition 1937 (in french) edn.
- C. C. Chevalley, *Algebraic Theory of Spinors*, Columbia University Press, New York (N.Y.), 1954.
- P. Budinich, and A. Trautman, *Journal of Mathematical Physics* 30, 2125–2131 (1989).
- M. Budinich, and P. Budinich, *Journal of Mathematical Physics* 47, 043502 (2006), arXiv:math-ph/0603068, 27 March 2006.