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Abstract. We present a formulation of the Maximum Clique problem of a graph as a geometrical problem of null vectors in
complex space. This problem is then translated in spinorial language.
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THE MAXIMUM CLIQUE PROBLEM

Given a graph of size n and adjacency matrix A, a clique
is a subgraph with pairwise adjacent vertices and the
Maximum Clique (MC) problem asks for the size ω�A�
of the largest clique. It is an old, well studied, NP-
complete problem and there are reviews with hundreds
references [1].

Any symmetric matrix like A may be expressed in the
form

A � B�B � BB � B2 (1)

where B is a complex, symmetric matrix that we can
think as formed by n complex vectors z i � �

n called null
vectors since they have zero length: z2

j � a j j � 0.
It is well known [1] that the MC problem of A is

identical to the problem of the maximum independent set
of the conjugate graph Ā � J���A and a formulation
with appealing properties is

max
x���0�1�n:x�Āx�0�

x�x � ω�A� � (2)

This problem has the following geometrical interpreta-
tion: the null vectors z̄ span the space V � �n and any
couple of linearly independent vectors z̄ j and z̄k span a
two-dimensional space contained in V . If z̄�jz̄k � ā jk � 0
it is easy to verify that this space has the property that all
of its elements are null vectors and are all mutually or-
thogonal: this space is called a Totally Null Plane (TNP).
If Ā contains at least one nondiagonal zero element, then
V contains at least one two dimensional TNP.

The solution of the MC problem provides the largest
subset z̄ j1

� z̄ j2
� � � � � z̄ jk

of z̄’s which define a TNP con-
tained in V ; [2].

SPINORS, WITT AND FOCK BASIS

Cartan was the first to show [3] that the geometry of
null vectors can be treated elegantly with spinors; we

will follow this road. A spinor Φ is a vector belonging
to the spaces S of endomorphism of Cl�2n� � EndS and
is defined by the Cartan’s equation:

vΦ�

�
2n

∑
j�1

v jγ j

�
Φ� 0 (3)

where vΦ is a Clifford product vΦ� v __ Φ� v�Φ.
Let us define the null, or Witt, basis of Cl�2n�:

p j �
1
2

�
γ2 j�1� iγ2 j

�
and q j �

1
2

�
γ2 j�1� iγ2 j

�
(4)

for j � 1�2� � � � �n with the properties�
p j� pk

�
�

�
�
q j�qk

�
�

� 0 and
�
p j�qk

�
�

� δ jk� �

With this basis �2n is easily seen as the direct sum of two
maximal TNP P and Q spanned by null vectors �p j� and
�q j� respectively:

�
2n � P�Q �

since P�Q � /0 each vector v � �2n may be expressed in

the form v �
n
∑

i�1
�αipi�βiqi� with αi�βi � �.

A spinor Φ � S, defined by Cartan equation (3), may
be represented by Minimal Left Ideals (MLI) of Cl�2n�
[4]. Consider the 2n MLI that form the Fock basis in
spinor space [5]

ω0 � p1 p2 � � � pn;

ω1 � q1ω0� ω2 � q2ω0� � � � � ω
2n�1 � qnω0;

ω3 � q1q2ω0� ω5 � q1q3ω0� � � � ; (5)

� � � � � �

ω2n�1 � q1q2 � � �qnω0

When we write the Cartan equation (3) in the basis,
defined in (4) and (5), we get

vΦ�

�
n

∑
i�1

αi pi�βiqi

��
2n�1

∑
s�0

ξsωs

�
� 0 (6)



and this equation can be read in two ways depending on
wether v or Φ plays the role of the unknown. In [6] we
have proved the

Proposition 1 Given v :� Span�x1� � � � �xk�, there exists
a spinorΦ, satisfying the Cartan equation (6) if, and only
if, v is a TNP.

MC PROBLEM IN SPINOR LANGUAGE

We are now ready to give a spinorial formulation of the
MC problem and start by introducing new vectors z̄i in
the Witt basis of Cl�2n�:

z̄i � pi�
n

∑
j�1

āi jq j i � 1�2� � � � �n �

These vectors have the properties (immediate to prove):

• belong to �2n and are linearly independent;
• are null, i.e. z̄�iz̄i � 0 since āii � 0;
• satisfy z̄�iz̄ j � āi j.

To fully exploit the spinorial formulation we will con-
sider the z̄i vectors as representative of the subspace
they induce i.e. Span�p i� āi1q1� � � � � āinqn� of dimension

n
∑
j�1

āi j �1. We do this introducing in the definition arbi-

trary coefficients α

z̄i � αipi�
n

∑
j�1

āi jα jq j i � 1�2� � � � �n (7)

The equation x�Āx � �B̄x�2 � 0, representing the con-
straints of the MC problem in (2), may be linearized for-
mulating the problem in spinorial form:

B̄xΦ�

�
n

∑
i�1

xiz̄i

�
Φ� 0 (8)

or with z̄i from (7)�
n

∑
i�1

xi

�
αipi�

n

∑
j�1

α j āi jq j

��
Φ� 0 (9)

of the form (6). In this equation, in general, x i must be
interpreted as complex variables, restricted to values in
�0�1� in formulation (2) of the MC problem .

We thus have a set of n vectors z̄i defining an n-
dimensional subspace of �2n and we will look for the
spinors Φ that satisfy (8).

We study solutions of (9) with an example: let us
suppose that ā12 � 0, this means that z̄1 and z̄2 form a
TNP and, setting x3 � x4 � � � � � xn � 0, with (7) we get�

x1z̄1� x2z̄2

	
Φ�z̄1z̄2� � 0

where Φ�z̄1z̄2� represent the TNP Span�z̄1� z̄2�. This ex-
ample shows that it is simple to get particular solutions to
(9) the real problem being to find the set of all solutions,
for which in [6] we proved the following

Proposition 2 The set of nonzero spinors that solve the
Cartan equation (9) is isomorphic to the set of cliques of
A.

We can now reformulate our initial MC problem (2): it
will correspond to that solution of (9) with the maximum
intersection with P, i.e.

ω�A� � max
Φ:

�
n
∑

i�1
xi z̄i

�
Φ�0

dim�P�M�Φ��

where M�Φ� represent the TNP corresponding to Φ.

CONCLUSIONS

We have thus shown that:

• the MC problem can be formulated in spinorial
language;

• the problem of finding all possible spinor solutions
of (9) is NP-complete since, given the set of all
solutions, one gets also the solution of the MC
problem.

• With respect to the MC formulation (2) we remark
two main differences:

– the demanding restriction x � �0�1�n can be
relaxed since all solutions of (9) necessarily
have binary xi.

– The quadratic constraint x �Āx � 0 of (2) is
linearized here to B̄xΦ� 0.
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