The Maximum Clique Problem in Spinorial Form

Marco Budinich* and Paolo Budinich ${ }^{\dagger}$
*University of Trieste and INFN - Trieste, Italy - marco.budinich@ts.infn.it
${ }^{\dagger}$ SISSA/ISAS - Trieste, Italy

Abstract

We present a formulation of the Maximum Clique problem of a graph as a geometrical problem of null vectors in complex space. This problem is then translated in spinorial language.

Keywords: Graph, clique, spinor, NP-complete
PACS: 02.10.Ox, 04.20.Gz, 89.75.Đk

THE MAXIMUM CLIQUE PROBLEM

Given a graph of size n and adjacency matrix A, a clique is a subgraph with pairwise adjacent vertices and the Maximum Clique (MC) problem asks for the size $\omega(A)$ of the largest clique. It is an old, well studied, NPcomplete problem and there are reviews with hundreds references [1].

Any symmetric matrix like A may be expressed in the form

$$
\begin{equation*}
A=B^{\prime} B=B B=B^{2} \tag{1}
\end{equation*}
$$

where B is a complex, symmetric matrix that we can think as formed by n complex vectors $\mathbf{z}_{i} \in \mathbb{C}^{n}$ called null vectors since they have zero length: $\mathbf{z}_{j}^{2}=a_{i j}=0$.

It is well known [1] that the MC problem of A is identical to the problem of the maximum independent set of the conjugate graph $\bar{A}=J-\mathbb{1}-A$ and a formulation with appealing properties is

$$
\begin{equation*}
\max _{\mathbf{x} \in\left\{\{0,1\}^{n}: \mathbf{x}^{\prime} \bar{A} \mathbf{x}=0\right\}} \mathbf{x}^{\prime} \mathbf{x}=\omega(A) . \tag{2}
\end{equation*}
$$

This problem has the following geometrical interpretation: the null vectors $\overline{\mathbf{z}}$ span the space $V \subseteq \mathbb{C}^{n}$ and any couple of linearly independent vectors $\overline{\mathbf{z}}_{j}$ and $\overline{\mathbf{z}}_{k}$ span a two-dimensional space contained in V. If $\overline{\mathbf{z}}_{j}^{\prime} \overline{\mathbf{z}}_{k}=\bar{a}_{j k}=0$ it is easy to verify that this space has the property that all of its elements are null vectors and are all mutually orthogonal: this space is called a Totally Null Plane (TNP). If \bar{A} contains at least one nondiagonal zero element, then V contains at least one two dimensional TNP.

The solution of the MC problem provides the largest subset $\overline{\mathbf{z}}_{j_{1}}, \overline{\mathbf{z}}_{j_{2}}, \ldots, \overline{\mathbf{z}}_{j_{k}}$ of $\overline{\mathbf{z}}$'s which define a TNP contained in V; [2].

SPINORS, WITT AND FOCK BASIS

Cartan was the first to show [3] that the geometry of null vectors can be treated elegantly with spinors; we
will follow this road. A spinor Φ is a vector belonging to the spaces S of endomorphism of $C l(2 n)=E n d S$ and is defined by the Cartan's equation:

$$
\begin{equation*}
v \Phi=\left(\sum_{j=1}^{2 n} v_{j} \gamma_{j}\right) \Phi=0 \tag{3}
\end{equation*}
$$

where $v \Phi$ is a Clifford product $v \Phi=v _\Phi+v \wedge \Phi$.
Let us define the null, or Witt, basis of $C l(2 n)$:

$$
\begin{equation*}
p_{j}=\frac{1}{2}\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) \quad \text { and } \quad q_{j}=\frac{1}{2}\left(\gamma_{2 j-1}-i \gamma_{2 j}\right) \tag{4}
\end{equation*}
$$

for $j=1,2, \ldots, n$ with the properties

$$
\left[p_{j}, p_{k}\right]_{+}=\left[q_{j}, q_{k}\right]_{+}=0 \quad \text { and } \quad\left[p_{j}, q_{k}\right]_{+}=\delta_{j k} \mathbb{1} .
$$

With this basis $\mathbb{C}^{2 n}$ is easily seen as the direct sum of two maximal TNP P and Q spanned by null vectors $\left\{\mathbf{p}_{j}\right\}$ and $\left\{\mathbf{q}_{j}\right\}$ respectively:

$$
\mathbb{C}^{2 n}=P \oplus Q
$$

since $P \cap Q=\emptyset$ each vector $\mathbf{v} \in \mathbb{C}^{2 n}$ may be expressed in the form $\mathbf{v}=\sum_{i=1}^{n}\left(\alpha_{i} \mathbf{p}_{i}+\beta_{i} \mathbf{q}_{i}\right)$ with $\alpha_{i}, \beta_{i} \in \mathbb{C}$.

A spinor $\Phi \in S$, defined by Cartan equation (3), may be represented by Minimal Left Ideals (MLI) of $\mathrm{Cl}(2 n)$ [4]. Consider the 2^{n} MLI that form the Fock basis in spinor space [5]

$$
\begin{align*}
& \omega_{0}=p_{1} p_{2} \ldots p_{n} \\
& \omega_{1}=q_{1} \omega_{0}, \quad \omega_{2}=q_{2} \omega_{0}, \ldots, \quad \omega_{2^{n-1}}=q_{n} \omega_{0} \\
& \omega_{3}=q_{1} q_{2} \omega_{0}, \quad \omega_{5}=q_{1} q_{3} \omega_{0}, \quad \ldots \tag{5}\\
& \ldots \ldots \\
& \omega_{2^{n}-1}=q_{1} q_{2} \ldots q_{n} \omega_{0}
\end{align*}
$$

When we write the Cartan equation (3) in the basis, defined in (4) and (5), we get

$$
\begin{equation*}
v \Phi=\left(\sum_{i=1}^{n} \alpha_{i} p_{i}+\beta_{i} q_{i}\right)\left(\sum_{s=0}^{2^{n}-1} \xi_{s} \omega_{s}\right)=0 \tag{6}
\end{equation*}
$$

and this equation can be read in two ways depending on wether v or Φ plays the role of the unknown. In [6] we have proved the
Proposition 1 Given $v:=\operatorname{Span}\left(x_{1}, \ldots, x_{k}\right)$, there exists a spinor Φ, satisfying the Cartan equation (6) if, and only if, v is a TNP.

MC PROBLEM IN SPINOR LANGUAGE

We are now ready to give a spinorial formulation of the MC problem and start by introducing new vectors $\overline{\mathbf{z}}_{i}$ in the Witt basis of $C l(2 n)$:

$$
\overline{\mathbf{z}}_{i}=\mathbf{p}_{i}+\sum_{j=1}^{n} \bar{a}_{i j} \mathbf{q}_{j} \quad i=1,2, \ldots, n
$$

These vectors have the properties (immediate to prove):

- belong to $\mathbb{C}^{2 n}$ and are linearly independent;
- are null, i.e. $\overline{\mathbf{z}}_{i}^{\prime} \overline{\mathbf{z}}_{i}=0$ since $\bar{a}_{i i}=0$;
- satisfy $\overline{\mathbf{z}}_{i}^{\prime} \overline{\mathbf{z}}_{j}=\bar{a}_{i j}$.

To fully exploit the spinorial formulation we will consider the $\overline{\mathbf{z}}_{i}$ vectors as representative of the subspace they induce i.e. $\operatorname{Span}\left(\mathbf{p}_{i}, \bar{a}_{i 1} \mathbf{q}_{1}, \ldots, \bar{a}_{i n} \mathbf{q}_{n}\right)$ of dimension $\sum_{j=1}^{n} \bar{a}_{i j}+1$. We do this introducing in the definition arbitrary coefficients α

$$
\begin{equation*}
\overline{\mathbf{z}}_{i}=\alpha_{i} \mathbf{p}_{i}+\sum_{j=1}^{n} \bar{a}_{i j} \alpha_{j} \mathbf{q}_{j} \quad i=1,2, \ldots, n \tag{7}
\end{equation*}
$$

The equation $\mathbf{x}^{\prime} \bar{A} \mathbf{x}=(\bar{B} \mathbf{x})^{2}=0$, representing the constraints of the MC problem in (2), may be linearized formulating the problem in spinorial form:

$$
\begin{equation*}
\bar{B} \mathbf{x} \Phi=\left(\sum_{i=1}^{n} x_{i} \overline{\mathbf{z}}_{i}\right) \Phi=0 \tag{8}
\end{equation*}
$$

or with $\overline{\mathbf{z}}_{i}$ from (7)

$$
\begin{equation*}
\left[\sum_{i=1}^{n} x_{i}\left(\alpha_{i} \mathbf{p}_{i}+\sum_{j=1}^{n} \alpha_{j} \bar{a}_{i j} \mathbf{q}_{j}\right)\right] \Phi=0 \tag{9}
\end{equation*}
$$

of the form (6). In this equation, in general, x_{i} must be interpreted as complex variables, restricted to values in $\{0,1\}$ in formulation (2) of the MC problem .

We thus have a set of n vectors $\overline{\mathbf{z}}_{i}$ defining an n dimensional subspace of $\mathbb{C}^{2 n}$ and we will look for the spinors Φ that satisfy (8).

We study solutions of (9) with an example: let us suppose that $\bar{a}_{12}=0$, this means that $\overline{\mathbf{z}}_{1}$ and $\overline{\mathbf{z}}_{2}$ form a TNP and, setting $x_{3}=x_{4}=\ldots=x_{n}=0$, with (7) we get

$$
\left(x_{1} \overline{\mathbf{z}}_{1}+x_{2} \overline{\mathbf{z}}_{2}\right) \Phi\left(\overline{\mathbf{z}}_{1} \overline{\mathbf{z}}_{2}\right)=0
$$

where $\Phi\left(\overline{\mathbf{z}}_{1} \overline{\mathbf{z}}_{2}\right)$ represent the TNP $\operatorname{Span}\left(\overline{\mathbf{z}}_{1}, \overline{\mathbf{z}}_{2}\right)$. This example shows that it is simple to get particular solutions to (9) the real problem being to find the set of all solutions, for which in [6] we proved the following

Proposition 2 The set of nonzero spinors that solve the Cartan equation (9) is isomorphic to the set of cliques of A.

We can now reformulate our initial MC problem (2): it will correspond to that solution of (9) with the maximum intersection with P, i.e.

$$
\omega(A)=\max _{\Phi:\left(\sum_{i=1}^{n} x_{i} \overline{\bar{z}}_{i}\right) \Phi=0} \operatorname{dim}(P \cap M(\Phi))
$$

where $M(\Phi)$ represent the TNP corresponding to Φ.

CONCLUSIONS

We have thus shown that:

- the MC problem can be formulated in spinorial language;
- the problem of finding all possible spinor solutions of (9) is NP-complete since, given the set of all solutions, one gets also the solution of the MC problem.
- With respect to the MC formulation (2) we remark two main differences:
- the demanding restriction $\mathbf{x} \in\{0,1\}^{n}$ can be relaxed since all solutions of (9) necessarily have binary x_{i}.
- The quadratic constraint $\mathbf{x}^{\prime} \bar{A} \mathbf{x}=0$ of (2) is linearized here to $\bar{B} \mathbf{x} \Phi=0$.

REFERENCES

1. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, "The Maximum Clique Problem," in Handbook of Combinatorial Optimization, edited by D.-Z. Du, and P. M. Pardalos, Kluwer Academic Publishers, Boston, MA (U.S.A.), 1999, vol. Supp. Vol. A, p. 656.
2. M. Budinich, Discrete Applied Mathematics 127, 535543 (2003), URL http://www.ts.infn.it/\$\} sim\$mbh/MC_Bounds.ps.z.
3. É. Cartan, The Theory of Spinors, Hermann, Paris, 1966, first edition 1937 (in french) edn.
4. C. C. Chevalley, Algebraic Theory of Spinors, Columbia University Press, New York (N.Y.), 1954.
5. P. Budinich, and A. Trautman, Journal of Mathematical Physics 30, 2125-2131 (1989).
6. M. Budinich, and P. Budinich, Journal of Mathematical Physics 47, 043502 (2006), arXiv:math-ph/0603068, 27 March 2006.
