2 research outputs found

    Computing (R, S) policies with correlated demand

    Get PDF
    This paper considers the single-item single-stocking non-stationary stochastic lot-sizing problem under correlated demand. By operating under a nonstationary (R, S) policy, in which R denote the reorder period and S the associated order-up-to-level, we introduce a mixed integer linear programming (MILP) model which can be easily implemented by using off-theshelf optimisation software. Our modelling strategy can tackle a wide range of time-seriesbased demand processes, such as autoregressive (AR), moving average(MA), autoregressive moving average(ARMA), and autoregressive with autoregressive conditional heteroskedasticity process(AR-ARCH). In an extensive computational study, we compare the performance of our model against the optimal policy obtained via stochastic dynamic programming. Our results demonstrate that the optimality gap of our approach averages 2.28% and that computational performance is good

    Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework

    Full text link
    The Markov-modulated Poisson process is utilised for count modelling in a variety of areas such as queueing, reliability, network and insurance claims analysis. In this paper, we extend the Markov-modulated Poisson process framework through the introduction of a flexible frequency perturbation measure. This contribution enables known information of observed event arrivals to be naturally incorporated in a tractable manner, while the hidden Markov chain captures the effect of unobservable drivers of the data. In addition to increases in accuracy and interpretability, this method supplements analysis of the latent factors. Further, this procedure naturally incorporates data features such as over-dispersion and autocorrelation. Additional insights can be generated to assist analysis, including a procedure for iterative model improvement. Implementation difficulties are also addressed with a focus on dealing with large data sets, where latent models are especially advantageous due the large number of observations facilitating identification of hidden factors. Namely, computational issues such as numerical underflow and high processing cost arise in this context and in this paper, we produce procedures to overcome these problems. This modelling framework is demonstrated using a large insurance data set to illustrate theoretical, practical and computational contributions and an empirical comparison to other count models highlight the advantages of the proposed approach.Comment: For simulated data sets and code, please go to https://github.com/agi-lab/reserving-MMNP
    corecore