20,935 research outputs found

    Continuity theorems for the M/M/1/nM/M/1/n queueing system

    Full text link
    In this paper continuity theorems are established for the number of losses during a busy period of the M/M/1/nM/M/1/n queue. We consider an M/GI/1/nM/GI/1/n queueing system where the service time probability distribution, slightly different in a certain sense from the exponential distribution, is approximated by that exponential distribution. Continuity theorems are obtained in the form of one or two-sided stochastic inequalities. The paper shows how the bounds of these inequalities are changed if further assumptions, associated with specific properties of the service time distribution (precisely described in the paper), are made. Specifically, some parametric families of service time distributions are discussed, and the paper establishes uniform estimates (given for all possible values of the parameter) and local estimates (where the parameter is fixed and takes only the given value). The analysis of the paper is based on the level crossing approach and some characterization properties of the exponential distribution.Comment: Final revision; will be published as i

    Verification Theorems for Stochastic Optimal Control Problems via a Time Dependent Fukushima - Dirichlet Decomposition

    Get PDF
    This paper is devoted to present a method of proving verification theorems for stochastic optimal control of finite dimensional diffusion processes without control in the diffusion term. The value function is assumed to be continuous in time and once differentiable in the space variable (C0,1C^{0,1}) instead of once differentiable in time and twice in space (C1,2C^{1,2}), like in the classical results. The results are obtained using a time dependent Fukushima - Dirichlet decomposition proved in a companion paper by the same authors using stochastic calculus via regularization. Applications, examples and comparison with other similar results are also given.Comment: 34 pages. To appear: Stochastic Processes and Their Application

    Stochastic representation of solutions to degenerate elliptic and parabolic boundary value and obstacle problems with Dirichlet boundary conditions

    Full text link
    We prove existence and uniqueness of stochastic representations for solutions to elliptic and parabolic boundary value and obstacle problems associated with a degenerate Markov diffusion process. In particular, our article focuses on the Heston stochastic volatility process, which is widely used as an asset price model in mathematical finance and a paradigm for a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate, elliptic partial differential operator whose coefficients have linear growth in the spatial variables and where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to terminal/boundary value or obstacle problems for the parabolic Heston operator correspond to value functions for American-style options on the underlying asset.Comment: 47 pages; to appear in Transactions of the American Mathematical Societ

    A probabilistic weak formulation of mean field games and applications

    Full text link
    Mean field games are studied by means of the weak formulation of stochastic optimal control. This approach allows the mean field interactions to enter through both state and control processes and take a form which is general enough to include rank and nearest-neighbor effects. Moreover, the data may depend discontinuously on the state variable, and more generally its entire history. Existence and uniqueness results are proven, along with a procedure for identifying and constructing distributed strategies which provide approximate Nash equlibria for finite-player games. Our results are applied to a new class of multi-agent price impact models and a class of flocking models for which we prove existence of equilibria

    Lyapunov stabilizability of controlled diffusions via a superoptimality principle for viscosity solutions

    Full text link
    We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of Lyapunov function to study the stochastic open loop stabilizability in probability and the local and global asymptotic stabilizability (or asymptotic controllability). Finally we illustrate the theory with some examples.Comment: 22 page
    corecore