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Abstract

This paper is devoted to presenting a method of proving verification theorems for stochastic optimal
control of finite dimensional diffusion processes without control in the diffusion term. The value function
is assumed to be continuous in time and once differentiable in the space variable (C0,1) instead of once
differentiable in time and twice in space (C1,2), like in the classical results. The results are obtained using
a time dependent Fukushima–Dirichlet decomposition proved in a companion paper by the same authors
using stochastic calculus via regularization. Applications, examples and a comparison with other similar
results are also given.
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1. Introduction

In this paper we want to present a method for obtaining verification theorems for stochastic
optimal control problems of finite dimensional diffusion processes without control in the
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diffusion term. The method is based on a generalized Fukushima–Dirichlet decomposition
proved in the companion paper [22]. Since this Fukushima–Dirichlet decomposition holds for
functions u : [0, T ] × Rn

→ R that are C0 in time and C1 in space (C0,1 in symbols), our
verification theorem has the advantage of requiring less regularity of the value function V than
the classical ones which need C1 regularity in time and C2 in space of V (C1,2 in symbols), see
e.g. [13, pp. 140,163,172].

There are also other verification theorems that work in cases when the value function is
nonsmooth: e.g. it is possible to prove a verification theorem in the case when V is only
continuous (see [23,27], [39, Section 5.2]) in the framework of viscosity solutions. However all
these results applied to our cases are weaker than ours, for reasons that are clarified in Section 8.

Since the method is relatively complex we present first in Section 2 the statement of
our verification Theorems 2.7 and 2.8 in a model case with simplified assumptions (which
substantially yield nondegeneracy of the diffusion coefficient). In the same section we also
include Section 2.1 where we give some comments on the theorem, its applicability and its
relationship with other similar results.

Below we pass to the body of the paper giving first some notation in Section 3 and then
presenting the general statements (including also possible degeneracy of the diffusion coefficient)
and their proof in Section 4. Section 5 is devoted to necessary conditions and optimal feedbacks.

Sections 6 and 7 contain applications of our technique to more specific classes of problems
where other techniques are more difficult to use. The first is a case of an exit time problem where
the HJB equation is nondegenerate but C1,2 regularity is not known to hold due to the lack of
regularity of the coefficients; the second is a case where the HJB equation is degenerate parabolic.
Finally in Section 8 we compare our results with those of other verification techniques.

2. The statement of the verification theorems in a model case

To clarify our results we describe briefly and informally below the framework and the
statement of the verification theorem that we are going to prove in a model case. The precise
statements and proofs are given in Section 4; then in Sections 6 and 7 applications to more
specific (and somewhat more difficult) classes of problems are given. We decided on this structure
since it is difficult to provide a single general result: we can say that we introduce a technique,
based on the Fukushima–Dirichlet decomposition and on its representation given in [22], that
can be adapted with some work to different settings each time with a different adaptation.

First we take a given stochastic basis (�, (Fs)s≥0,P) that satisfies the so-called usual
conditions, a finite dimensional Hilbert space A = Rn (the state space), a finite dimensional
Hilbert space E = Rm (the noise space), a set U ⊆ Rk (the control space). We fix then a
terminal time T ∈ [0,+∞] (the horizon of the problem, that can be finite or infinite but is fixed),
an initial time and state (t, x) ∈ [0, T ]×A (which will vary as usual in the dynamic programming
approach). The state equation is (recall that Tt = [t, T ] ∩ R)

dy(s) = [F0(s, y(s))+ F1 (s, y(s), z(s))] ds + B (s, y(s)) dW (s), s ∈ Tt ,

y(t) = x,
(1)

where the following holds (for a matrix B, by ‖B‖ we mean
∑

i, j |bi j | and, given E, F finite
dimensional spaces, by L(E, F), we mean the set of linear operators from E to F).

Hypothesis 2.1. 1. z : Tt × � → U (the control process) is measurable, locally integrable in t
for a.e. ω ∈ �, adapted to the filtration (Fs)s≥0.
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2. F0 : T0 × Rn
→ Rn , F1 : T0 × Rn

× U → Rn and B : T0 × Rn
→ L(E,Rn) are continuous.

3. There exists C > 0 such that ∀t ∈ T0, ∀x1, x2 ∈ Rn ,

|〈F0(t, x1)− F0 (t, x2) , x1 − x2〉| + ||B(t, x1)− B (t, x2)||
2

≤ C |x1 − x2|
2 ,

|〈F0(t, x), x〉| + ||B(t, x)||2 ≤ C
[
1 + |x |

2
]

and there exists a constant K such that, ∀t ∈ T0, ∀x ∈ Rn , ∀z ∈ U ,

|F1 (t, x1, z)− F1 (t, x2, z)| ≤ K |x1 − x2|

|〈F1(t, x, z), x〉| ≤ K (1 + |x | + |z|) .

4. For every x ∈ Rn∫ T

0

[
|F0(t, x)| + ||B(t, x)||2

]
dt < +∞.

We name as Zad(t) the set of admissible control strategies when the initial time and state is
(t, x) defined as

Zad(t) =

{
z : Tt ×� → U, z measurable, adapted to (Fs)s≥0 ,

locally integrable in s for a.e. ω ∈ �

}
and name as y(s; t, x, z) the state process associated with a given z ∈ Zad(t); this is the strong
solution of the Eq. (1) which exists and is unique for any given z thanks to Theorem 1.2 in [25,
p. 2].

Consider now the case T < +∞. We try to minimize the functional

J (t, x; z) = E
{∫ T

t
l (s, y (s; t, x, z) , z(s)) ds + φ (y (T ; t, x, z))

}
(2)

over all control processes z ∈ Zad(t). For the coefficients we assume the following.

Hypothesis 2.2. l : [0, T ] × Rn
× U → R and φ : Rn

→ R are continuous and such that
for each z ∈ Zad(t) the function (s, ω) → l(s, y(s, ω), z(s, ω)) is lower semiintegrable in
[t, T ]×� (recall that a real valued function f is lower semiintegrable in a measure space (M, µ)
if

∫
M f −dµ < +∞, where f − stands for the negative part of f , i.e. f −

= (− f ) ∨ 0).

Remark 2.3. The above requirement implies that J (t, x; z) is well defined and >−∞ for
each z ∈ Zad(t). It is assumed explicitly to cover a more general class of problems. This
is obvious under additional assumptions, e.g. if l and φ are bounded below. However some
interesting problems arising in economics contain functions l like − ln z and in this case the lower
semiintegrability of (s, ω) → − ln z(s, ω) for each z ∈ Zad(t) follows by ad hoc arguments.
These are problems with state constraints that are not explicitly treated in this paper but we want
to set our framework so as to be able to treat such a class of problems. �

The value function is defined as

V (t, x) = inf
z∈Zad(t)

J (t, x; z) (3)

and a control z∗
∈ Zad(t) is optimal at (t, x) if V (t, x) = J (t, x; z∗). The current value

Hamiltonian is defined, for (t, x, p, z) ∈ [0, T ] × Rn
× Rn

× U , as

HCV (t, x, p; z) = 〈F0(t, x), p〉 + 〈F1(t, x, z), p〉 + l(t, x, z)
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and the (minimum value) Hamiltonian as

H(t, x, p) = inf
z∈U

HCV (t, x, p; z) .

Since the first term of HCV(t, x, p; z) does not depend on the control z we will usually define

H0
CV (t, x, p; z) = 〈F1(t, x, z), p〉 + l(t, x, z)

and

H0(t, x, p) = inf
z∈U

H0
CV (t, x, p; z) , (4)

so we can write

HCV (t, x, p; z) =: 〈F0(t, x), p〉 + H0
CV (t, x, p; z) (5)

and

H(t, x, p) =: 〈F0(t, x), p〉 + H0(t, x, p). (6)

When T < +∞ the Hamilton–Jacobi–Bellman (HJB) equation for the value function is a
semilinear parabolic PDE ((t, x) ∈ [0, T ] × Rn)

−∂tv(t, x) =
1
2

Tr
[
B∗(t, x)∂xxv(t, x)B(t, x)

]
+ 〈F0(t, x), ∂xv(t, x)〉

+ H0 (t, x, ∂xv(t, x)) , (7)

with the final condition

v(T, x) = φ(x), x ∈ Rn . (8)

To ensure finiteness and continuity of the Hamiltonian we need also to add the following
assumption.

Hypothesis 2.4. The functions l, F1 and the set U are such that the value function is always
finite and the Hamiltonian H0(t, x, p) is well defined, finite and continuous for every (t, x, p) ∈

[0, T ] × Rn
× Rn .

Remark 2.5. The above Hypothesis 2.4 is satisfied e.g. when l, φ are continuous and U is
compact. Another possibility is to take U unbounded, F1 sublinear, l(t, x, z) = g(x) + h(z)
with g continuous and bounded, h continuous and such that

|h(z)|/|z| −→ +∞ as |z| → +∞;

this case was studied e.g. in [6,18,21] even in the infinite dimensional case (see on this the
Sections 6 and 7). �

The statement of the classical verification theorem for this model problem when T < +∞ is
the following, see Definition 4.5 for the definition of strict solution for Eqs. (7) and (8).

Theorem 2.6. Assume that Hypotheses 2.1, 2.2 and 2.4 hold true. Let v ∈ C1,2([0, T ] × Rn) be
a polynomially growing strict solution of the HJB equations (7) and (8) on [0, T ]×Rn . Then the
following two properties hold true.
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(i) v ≤ V on [0, T ] × Rn;
(ii) fix (t, x) ∈ [0, T ] × Rn; if z ∈ Zad(t) is such that, defining y(s) = y(s; t, x, z),

H0 (s, y(s), ∂xv (s, y(s))) = H0
CV (s, y(s), ∂xv (s, y(s)) , z(s)) , P-a.s.,

for a.e. s ∈ [t, T ], then z is optimal at (t, x) and v(t, x) = V (t, x).

This theorem states a sufficient optimality condition and its proof is based on Itô’s formula, see
e.g. [39, p. 268]. In the classical context also necessary conditions and the existence of optimal
feedback can be proved, see again [39, p. 268].

The statement of our Verification Theorem in the model problem described above is very
similar. We give it in the case when the following nondegeneracy hypothesis holds

B−1(t, x)F1(t, x, z) is bounded on [0, T ] × Rn
× U, (9)

leaving the discussion for the general case to Section 4 (strong solutions of the HJB equations
(7) and (8) are defined in Definition 4.6).

Theorem 2.7. Assume that Hypotheses 2.1, 2.2, 2.4 and (9) hold true. Let v ∈ C0,1([0, T ]×Rn)

be a polynomially growing strong solution of the HJB equations (7) and (8) on [0, T ]×Rn . Then
(i) and (ii) of Theorem 2.6 above hold.

In fact we will go further:

• proving a result in the case when (9) does not hold;
• showing that in our setting we can obtain a necessary condition and the existence of optimal

feedback controls along the same lines as the classical results, see Section 5.

Moreover in a paper in preparation we will show that also some cases where the drift is a
distribution can be treated and also cases where the solution of HJB enjoys weaker regularity.

When T = +∞, F0, F1 and B do not depend on time, we consider the problem of minimizing

J (t, x; z) = E
{∫

+∞

t
e−λt l1 (y (s; t, x, z) , z(s)) ds

}
,

where l(t, x, z) = e−λt l1(x, z), with λ > 0, l1 continuous and bounded. In this case the value
function V is defined as in (3) but its dependence on t becomes trivial as V (t, x) = eλt V (0, x)
for every t and x . Then we set t = 0 and define V0(x) = V (0, x). The HJB equation for V0(x)
becomes an elliptic PDE (x ∈ Rn)

λv(x) =
1
2

Tr
[
B∗ (x) ∂xxv(x)B(x)

]
+ 〈F0(t, x), ∂xv(t, x)〉 + H1 (x, ∂xv(t, x)) , (10)

where

H1 (x, p) = inf
z∈U

{〈F1 (x, z) , p〉 + l1 (x, z)} =: inf
z∈U

H1
CV (x, p; z) . (11)

In this elliptic case the statement of our verification theorem is the following (for the definition
of the strong solution of the HJB equation (10) see Definition 4.14).

Theorem 2.8. Assume that Hypothesis 2.1 and (9) hold. Assume also that l1 is continuous and
bounded and that Hypothesis 2.4 holds true with H1 in place of H0. If v is a bounded strong
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solution of the HJB equation (10) and v ∈ C1(Rn) then v ≤ V0. Moreover fix x ∈ Rn; if
z ∈ Zad(0) is such that, defining y(s) = y(s; 0, x, z),

H1 (y(s), ∂xv (s, y(s))) = H1
CV (y(s), ∂xv (s, y(s)) , z(s)) , for a.e. s ≥ 0,P-a.s.,

then z is optimal at (0, x) and v(x) = V0(x).

2.1. Other verification theorems for stochastic optimal control problems

We recall that in the literature on stochastic optimal control other verification theorems for not
C1,2 functions were proved. Roughly speaking we can say that each of them (and the technique
of proof, too) is strictly connected with the concept of weak solution of the HJB equation that is
considered. We have in fact the following.

• (Strong solutions). In [18,21] (see also [7,11,17]) in a setting similar to ours but in infinite
dimension, a verification theorem is proved assuming that there exists a strong solution v of
HJB which is C1 in space. In fact the method outlined here goes in the same direction, but
improves and generalizes in the finite dimensional case the ideas contained there. Such an
improvement is not a straightforward one, as we need to use completely different tools to get
our results and we get more powerful theorems. Refer to Sections 6 and 7 for examples and
to Section 8 for explanations.

• (Viscosity solutions). In [27,39,23] a verification technique for viscosity solutions is
introduced and studied. Such a technique adapts to the case when v is only continuous and so
is very general and applicable to cases when the control enters in the diffusion coefficients B.
However in the case of interest to us, i.e. when v is C1 in space, such a technique gives weaker
results as it requires more assumptions on the coefficients F0, F1, B and on the candidate
optimal strategy; see Section 8 for explanations.

• (Mild solutions). In [14, Theorem 7.2] a verification theorem is given when the HJB equation
admits mild solutions which are C1 in space (see Definition 6.13 or Remark 7.2) and when
the solution can be represented using the solution of a suitable backward SDE. The results
available with this technique are limited to infinite dimensional cases where mild solutions
exist and the Girsanov theorem can be applied in a suitable way. Such restrictions prevent
the use of this technique (at least at the present state of the art) e.g. in the cases described in
Sections 6 and 7, see Section 8 for explanations.

Moreover we want to stress the fact that the Fukushima–Dirichlet decomposition we obtained
in [22] is in fact stronger than what we need to prove the verification theorems above. In fact
for such a purpose it would be enough to prove a Dynkin-type formula (roughly speaking an
Itô formula after expectation) which is in general easier. We decided to state and prove such a
Fukushima–Dirichlet decomposition since it can help to deal with stochastic control problems
where the criterion to minimize does not contain expectation (e.g. pathwise optimality and
optimality in probability). In such a context the HJB equation becomes a stochastic PDE and
to get a verification theorem, Dynkin-type formulae cannot be used. See e.g. [10,28,29,33] on
this subject.

To sum up we think that the interest of our verification results lies in the facts that

• we obtain them using only the fact that the solution v of HJB belongs to C0,1 and not
necessarily to C1,2 obtaining better results than other techniques,

• they can be applied also to problems with pathwise optimality and optimality in probability.
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Remark 2.9. As a first step of our work, we consider here the case of a stochastic optimal control
problem in finite dimension with no state constraints. We are aware of the fact that in many cases,
the HJB equation associated with the control problem admits a C1,2 solution, so that our method
does not give a real advantage in this case. However

• In some cases, mainly degenerate ones (see Sections 6 and 7), it is known that the solution of
HJB is C0 (or Cα with Hölder exponent α > 0) in time and C1 in space but C1,2 regularity is
not known at this stage. In particular we show an explicit example where the value function is
C1 but cannot be C2 in space.

• We think that such a technique could be extended also to cases where the HJB equation
is intended in a generalized sense; in a paper in preparation, we investigate a verification
theorem related to an SDE whose drift is the derivative of a continuous function and therefore
a Schwartz distribution, see for instance [12]. That state equation models a stochastic particle
moving in a random (irregular) medium.

• We consider problems without state constraints; again we think that some state constraint
problems can be treated with our approach but we do not handle them here: we provide an
example with exit time which usually presents similar difficulties.

• We think that our method can be extended to the infinite dimensional case, where C1,2

regularity results for the solution of the HJB equation are much less known while C1 regularity
can be found in a variety of cases (see e.g. [6,18,21,7]). We do not perform this extension here,
leaving it for further work. �

Remark 2.10. Ideas similar to those in this work have been expressed with a different formalism
in [8]. There the authors have implemented a generalized Itô formula in the Krylov spirit for
proving an existence and uniqueness result for a generalized solution of the Bellman equation
for controlled processes, in a nondegeneracy situation. �

3. Notation

Throughout this paper we will denote by (�,F,P) a given stochastic basis, where F stands
for a given filtration (Fs)s≥0 satisfying the usual conditions. Given a finite dimensional real
Hilbert space E , W will denote a cylindrical Brownian motion with values in E and adapted to
(Fs)s≥0. Given 0 ≤ t ≤ T ≤ +∞ and setting Tt = [t, T ] ∩ R the symbol CF (Tt × �; E), will
denote the space of all continuous processes adapted to the filtration F with values in E . This is
a Fréchet space if endowed with the topology of the uniform convergence in probability (u.c.p.
from now on). To be more precise this means that, given a sequence (Xn) ⊆ CF (Tt ×�; E) and
X ∈ CF (Tt ×�; E), we have

Xn
→ X

if and only if for every ε > 0, t1 ∈ Tt ,

lim
n→+∞

sup
s∈[t,t1]

P
(∣∣Xn

s − Xs
∣∣
E > ε

)
= 0.

Given a random time τ ≥ t and a process (Xs)s∈Tt , we denote by X τ the stopped process
defined by X τs = Xs∧τ . The space of all processes in [t, T ], adapted to F and square integrable
with values in E , is denoted by L2

F (t, T ; E). Sn will denote the space of all symmetric matrices
of dimension n.
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Let k ∈ N. As usual Ck(Rn) is the space of all functions : Rn
→ R that are continuous

together with their derivatives up to the order k. This is a Fréchet space equipped with the
seminorms

sup
x∈K

|u(x)|R + sup
x∈K

|∂x u(x)|Rn + sup
x∈K

|∂xx u(x)|Rn×n + . . . (12)

for every compact set K ⊂⊂ Rn . This space will be denoted simply by Ck when no confusion
may arise. If K is a compact subset of Rn then Ck(K ) is a Banach space with the norm (12). The
symbol Ck

b (R
n) will denote the Banach space of all functions from Rn to R that are continuous

and bounded together with their derivatives up to the order k. This space is endowed with the
usual sup norm. Passing to parabolic spaces we denote by C0(Tt ×Rn) the space of all functions

u : Tt × Rn
→ R, (s, x) 7→ u (s, x)

that are continuous. This space is a Fréchet space equipped with the seminorms

sup
(s,x)∈[t,t1]×K

|u (s, x)|R

for every t1 > 0 and every compact set K ⊂⊂ Rn . Moreover we will denote by C1,2(Tt × Rn)

(respectively C0,1(Tt × Rn)) the space of all functions

u : Tt × Rn
→ R, (s, x) 7→ u (s, x)

that are continuous together with their derivatives ∂t u, ∂x u, ∂xx u (respectively ∂x u). This space
is a Fréchet space equipped with the seminorms

sup
(s,x)∈[t,t1]×K

|u (s, x)|R + sup
(s,x)∈[t,t1]×K

|∂su (s, x)|Rn

+ sup
(s,x)∈[t,t1]×K

|∂x u (s, x)|Rn + sup
(s,x)∈[t,t1]×K

|∂xx u (s, x)|Rn×n

(respectively

sup
(s,x)∈[t,t1]×K

|u (s, x)|R + sup
(s,x)∈[t,t1]×K

|∂x u (s, x)|Rn )

for every t1 > 0 and every compact set K ⊂⊂ Rn . This space will be denoted simply by C1,2

(respectively C0,1) when no confusion may arise.
Similarly, for α, β ∈ [0, 1] one defines Cα,1+β(Tt ×Rn) (or simply Cα,1+β ) as the subspace of

C0,1(Tt ×Rn) of functions u : Tt ×Rn
7→ R such that u(·, x) is α-Hölder continuous and ∂x u(s, ·)

is β-Hölder continuous (with the agreement that 0-Hölder continuity means just continuity). If
such properties hold just locally then such a space is denoted by Cα,1+β

loc (Tt × Rn). Similarly,

given an open subset of O of Rn one can define Cα,1+β(Tt × O) and Cα,1+β

loc (Tt × O). If K is
a compact subset of Tt × Rn we define Ck(K ) or Cα,1+β(K ) as above. We define similarly to
Ck

b (R
n) the Banach spaces C0

b(Tt × Rn)C1,2
b (Tt × Rn), Cα,1+β

b (Tt × Rn), C0,1
b (Tt × Rn).

4. Proof of the verification theorems in the model case

In this section we give the precise statement and the proof of the verification Theorems 2.7
and 2.8 for the model problem described in Section 2. Then in Sections 6 and 7 we will consider
two families of problems to which our technique applies.
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Consider first the parabolic case fixing the horizon T < +∞. Under Hypotheses 2.1, 2.2 and
2.4 we seek to minimize the cost J (t, x; z) given in (2) over all admissible z ∈ Zad(t) where the
state equation is given by (1).

We define the operator

L0 : D (L0) ⊆ C0 (
[0, T ] × Rn)

−→ C0 (
[0, T ] × Rn)

,

D (L0) = C1,2 (
[0, T ] × Rn)

,

L0v(t, x) = ∂tv(t, x)+ 〈F0(t, x), ∂xv(t, x)〉 +
1
2

Tr
[
B∗(t, x)∂xxv(t, x)B(t, x)

]
.

The HJB equation associated with the problem (1) and (2) can then be written as

L0v(t, x)+ H0 (t, x, ∂xv (t, x)) = 0, v (T, x) = φ(x), (13)

where H0 is given in (4).
Now we want to apply the representation result proved in [22] Section 4, which we recall

below for the reader’s convenience. First we consider the following Cauchy problem for h ∈

C0([0, T ] × Rn).

L0u (s, x) = h (s, x) , u (T, x) = φ(x), (14)

with the following definitions of solutions.

Definition 4.1. We say that u ∈ C0([0, T ] × Rn) is a strict solution to the backward Cauchy
problem (14) if u ∈ D(L0) and (14) holds.

Definition 4.2. We say that u ∈ C0([0, T ] × Rn) is a strong solution to the backward Cauchy
problem (14) if there exists a sequence (un) ⊂ D(L0) and two sequences (φn) ⊆ C0(Rn),
(hn) ⊆ C0([0, T ] × Rn), such that

1. For every n ∈ N un is a strict solution of the problem

L0un(t, x) = hn(t, x), un(T, x) = φn(x).

2. The following limits hold

un −→ u in C0 (
[0, T ] × Rn)

,

hn −→ h in C0 (
[0, T ] × Rn)

,

φn −→ φ in C0 (
Rn)

.

The representation result is the following (Corollaries 4.6 and 4.8 of [22]).

Theorem 4.3. Let

b1 : [0, T ] × Rn
×� → Rn,

be a continuous progressively measurable field (continuous in (s, x)) and

b : [0, T ] × Rn
→ Rn, σ : [0, T ] × Rn

→ L
(
Rm,Rn)

,

be continuous functions. Let u ∈ C0,1([0, T ] × Rn) be a strong solution of the Cauchy problem
(14).

Fix t ∈ [0, T ], x ∈ Rn , and let (Ss) be a solution to the SDE

dSs = b1 (s, Ss) ds + σ (s, Ss) dWs, St = x .
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Then

u (s, Ss) = u (t, St )+

∫ s

t
h (r, Sr ) dr +

∫ s

t
〈∂x u (r, Sr ) , b1 (r, Sr )− b (r, Sr )〉 dr

+

∫ s

0
∂x u (r, Sr ) σ (r, Sr ) dWr

provided that: either we can choose the approximating sequence (un) of Definition 4.2 so that
for every 0 ≤ t ≤ s ≤ T

lim
n→+∞

∫ s

t
〈∂x un (r, Sr )− ∂x u (r, Sr ) , b1 (r, Sr )− b (r, Sr )〉 dr = 0, u.c.p., (15)

or the function

(t, x, ω) → σ−1(t, x) [b1 (r, x, ω)− b (r, x)] ,

where σ−1 stands for the pseudo-inverse of σ , is well defined and bounded on [0, T ] × Rn
×�.

Remark 4.4. If

lim
n→+∞

∂x un = ∂x u, in C0 (
[0, T ] × Rn)

,

then assumption (15) is verified. This means that the result of Theorem 4.3 above applies if we
know that u is a strong solution in a more restrictive sense, i.e. replacing point 2 of Definition 4.2
with

un −→ u in C0 (
[0, T ] × Rn)

,

∂x un −→ ∂x u in C0 (
[0, T ] × Rn)

,

hn −→ h in C0 (
[0, T ] × Rn)

,

φn −→ φ in C0 (
Rn)

.

This is a particular case of our setting and it is the one used e.g. in [18,21] to get the verification
result. We can say that in these papers a result like Theorem 4.3 is proved under the assumption
that u is a strong solution in this more restrictive sense. It is worth noting that in such a simplified
setting the proof of Theorem 4.3 follows simply by using standard convergence arguments. In
particular there one does not need to use the Fukushima–Dirichlet decomposition presented in
Section 3 of [22]. So, from the methodological point of view there is a serious difference from
the result of Theorem 4.3, see Section 8 for comments. �

To apply Theorem 4.3 to our case we need first to adapt the notion of strong solution and to
rewrite the main assumptions. Let us give the following definitions.

Definition 4.5. We say that v ∈ C0([0, T ] × Rn) is a strict solution of the HJB equation (13) if
v ∈ D(L0) and (13) holds on [0, T ] × Rn .

Definition 4.6. A function v ∈ C0,1([0, T ]×Rn) is a strong solution of the HJB equation (13) if,
setting h(t, x) = −H0(t, x, ∂xv(t, x)), v is a strong solution of the backward Cauchy problem

L0v(t, x) = h(t, x), v (T, x) = φ(x),

in the sense of Definition 4.2.

We now present our verification theorem in the extended version, as announced in Section 2.
We need the following assumption.
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Hypothesis 4.7. There exists a function v ∈ C0,1([0, T ] × Rn) which is a strong solution of
the HJB equation (13) in the sense of Definition 4.6 and is polynomially growing with its space
derivative in the variable x . Moreover:

(i) either we can choose the approximating sequence (vn) of Definition 4.6 so that for every
0 ≤ t ≤ s ≤ T and for every admissible control z ∈ Zad(t)

lim
n→+∞

∫ s

t
〈∂xvn (r, y (r))− ∂xv (r, y (r)) , F1 (r, y (r) , z (r))〉 dr = 0, u.c.p.,

(ii) or the function

(t, x, z) → B−1(t, x)F1 (t, x, z) ,

where B−1 stands for the pseudo-inverse of B, is well defined and bounded on [0, T ]×Rn
×

U .

Remark 4.8. All the results below still hold true with suitable modifications if we assume that:

• the strong solution v belongs to C0([0, T ] × Rn) ∩ C0,1([ε, T ] × Rn) for every small ε > 0;
• for some β ∈ (0, 1) the map (t, x) → tβ∂xv(t, x) belongs to C0([0, T ] × Rn).

The proof of Theorem 4.9 in this case is a straightforward generalization of the one presented
here: we do not give it here to avoid technicalities since here we deal with a model problem. In
Section 6 we will treat a case with such difficulty. See also Remark 4.10 of [22] on this. �

We give now here the precise statement of Theorem 2.7.

Theorem 4.9. Assume that Hypotheses 2.1, 2.2, 2.4 and 4.7 hold. Let H0
CV, H0 be as in (4) and

(5). Let v ∈ C0,1([0, T ] × Rn) be a strong solution of (13) and fix (t, x) ∈ [0, T ] × Rn which is
polynomially growing with its space derivative in the variable x. Then

(i) v ≤ V on [0, T ] × Rn .
(ii) If z is an admissible control at (t, x) that satisfies (setting y(s) = y(s; t, x, z))

H0 (s, y(s), ∂xv (s, y(s))) = H0
CV (s, y(s), ∂xv (s, y(s)) ; z(s)) , (16)

for a.e. s ∈ [t, T ], P-almost surely, then z is optimal at (t, x) and v(t, x) = V (t, x).

The proof of this theorem follows by the following fundamental identity that we state as a
lemma.

Lemma 4.10. Assume that Hypotheses 2.1, 2.2, 2.4 and 4.7 hold. Let v ∈ C0,1([0, T ] × Rn)

be a strong solution of (13). Then, for every (t, x) ∈ [0, T ] × Rn and z ∈ Zad(t) such that
J (t, x; z) < +∞ the following identity holds

J (t, x; z) = v(t, x)

+ E
∫ T

t

[
−H0 (s, y(s), ∂xv (s, y(s)))+ H0

CV (s, y(s), ∂xv(s, y(s)); z(s))
]

ds (17)

where y(s)
def
= y(s; t, x, z) is the solution of (1) associated with the control z.
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Proof. For the sake of completeness we first show how the proof goes in the case when
v ∈ C1,2([0, T ] × Rn) and is a strict solution of (13). We use Itô’s formula applied to the
function v(t, x) by obtaining, for every (t, x) ∈ [0, T ] × Rn ,

v (T, y (T ))− v (t, y(t)) =

∫ T

t
〈∂xv(s, y(s)), B(s, y(s))dW (s)〉

+

∫ T

t
〈F0(s, y(s)), ∂xv(s, y(s))〉 ds

+

∫ T

t
〈F1 (s, y(s), z(s)) , ∂xv(s, y(s))〉 ds

+

∫ T

t
∂sv(s, y(s))ds

+
1
2

∫ T

t
Tr

[
B∗ (s, y(s)) ∂xxv(s, y(s))B (s, y (s))

]
ds, (18)

(which is exactly the decomposition of Proposition 2.4 of [22]) so, by taking the expectation of
both sides (this is finite since we have the polynomial growth assumption), we get the so-called
Dynkin formula

E v (T, y (T )) = E v (t, y(t))+ E
∫ T

t
L0v (s, y (s)) ds

+ E
∫ T

t
〈F1 (s, y(s), z(s)) , ∂xv(s, y(s))〉 ds.

Now by (13) we get, for every s ≥ 0,

L0v(s, y(s)) = −H0 (s, y (s) , ∂xv(s, y(s))) ,

which yields

E v (T, y (T )) = E v (t, y(t))

+ E
∫ T

t

[
−H0 (s, y(s), ∂xv(s, y(s)))+ 〈F1 (s, y(s), z(s)) , ∂xv (s, y (s))〉

]
ds.

Now since we assumed that J (t, x; z) < +∞ and since Hypothesis 2.2 implies J (t, x; z) > −∞

(this also follows on observing that the last line is not smaller than −J (t, x; z) and that the
first line is finite by the polynomial growth of v), we add J (t, x; z) to both terms, use that
v(T, y(T )) = φ(y(T )) and that y(t) = x to get

J (t, x; z) = v(t, x)+ E
∫ T

t
−H0 (s, y(s), ∂xv(s, y(s))) ds

+ E
∫ T

t
[〈F1 (s, y(s), z(s)) , ∂xv(s, y(s))〉 + l (s, y(s), z(s))] ds

which is the claim (17).
We now show how the proof goes when v ∈ C0,1([0, T ] × Rn). The difference is due to the

fact that the term

I :=

∫ T

t
∂sv(s, y(s))ds +

1
2

∫ T

t
Tr

[
B∗(s, y(s))∂xxv(s, y(s))B(s, y(s))

]
ds
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in the third and fourth line of equation (18) is not well defined now. However by Hypothesis 4.7
we know that v is a strong solution (in the sense of Definition 4.2) of

L0v(t, x) = h0(t, x), v (T, x) = φ(x),

where we have set h0(t, x) = −H0(t, x, ∂xv(t, x)). Then applying now Theorem 4.3 for the
operator L0 (setting b = F0, σ = B and b1 = F0 + F1) we get that

v (T, y (T )) = v (t, y(t))+

∫ T

t
〈∂xv(s, y(s)), B(s, y(s))dW (s)〉

+

∫ T

t

[
−H0 (s, y(s), ∂xv (s, y(s)))+ 〈F1 (s, y (s) , z(s)) , ∂xv (s, y(s))〉

]
ds.

Now, taking the expectation, adding and subtracting J (t, x; z) (which is a.s. finite using the same
argument as for the smooth case), using that v(T, y(T )) = φ(y(T )) and that y(t) = x , we get

E
[∫ T

t
l (s, y(s), z(s)) ds + φ (y (T ))

]
= v(t, x)

+ E
∫ T

t

[
−H0 (s, y(s), ∂xv(s, y(s)))+ H0

CV (s, y (s) , ∂xv(s, y(s)); z(s))
]

ds

and the claim again follows. �

Proof of Theorem 4.9. By the definition of H0 and H0
CV, for every (t, x) ∈ [0, T ] × Rn ,

z ∈ Zad(t) and for a.e. s ∈ Tt , the following inequality holds P-almost surely (setting
y(s) = y(s; t, x, z))

−H0 (s, y(s), ∂xv (s, y(s)))+ H0
CV (s, y(s), ∂xv (s, y(s)) ; z(s)) ≥ 0, (19)

and then by the fundamental identity (17) it follows that v(t, x) ≤ J (t, x; z) for every admissible
z. This gives v ≤ V and so part (i) of the theorem.

Now consider an admissible control z such that, for a.e. s ∈ [t, T ], P-a.s.,

H0 (s, y(s), ∂xv (s, y(s))) = H0
CV (s, y(s), ∂xv (s, y(s)) ; z(s)) . (20)

By the fundamental identity (17) we have

v(t, x) = J (t, x; z) ,

which implies optimality and v(t, x) = V (t, x). �

Remark 4.11. To get the methodological novelty in the above proof it is crucial to note the
following. Since we know that u is the limit of classical solutions, the first idea for approaching
the above proof (and that has been used e.g. in the papers [18,21]) is probably proving the
fundamental identity for the approximating solutions un and then passing to the limit for n → ∞.
However if one tries to do this one needs to use the uniform convergence of the space derivatives
∂x un to ∂x u. This is not needed with our method, see also on this Remark 4.4. �

Let us go now to the proof of verification Theorem 2.8 for the infinite horizon case. Set
T = +∞, assume that F0, F1 and B do not depend on time and that l(t, x, z) = eλt l1(x, z)
(λ > 0), φ = 0; then we can set t = 0 (since the dependence of the value function V on t
becomes trivial in this case) and the HJB equation for V0 becomes an elliptic PDE.
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We define the operator

L0 : D (L0) ⊆ C0 (
Rn)

−→ C0 (
Rn)

, D (L0) = C2 (
Rn)

,

L0u(x) = 〈F0(x), ∂x u(x)〉 +
1
2

Tr
[
B∗(x)∂xx u(x)B(x)

]
and we rewrite the HJB equation (10) as

λu(x)+ L0u(x)+ H1 (x, ∂x u(x)) = 0, x ∈ Rn (21)

where H1 is defined in (11). We now define strong solutions for such equations. Consider first,
for h ∈ C0(Rn), the inhomogeneous elliptic problem

λu(x)+ L0u(x)+ h(x) = 0, ∀x ∈ Rn . (22)

Definition 4.12. We say that u is a strict solution to the elliptic problem (22) if u ∈ D(L0) and
(22) holds.

Definition 4.13. We say that u is a strong solution to the elliptic problem (22) if there exists a
sequence (un) ⊆ D(L0) and a sequence (hn) ⊆ C0(Rn), such that

1. For every n ∈ N un is a strict solution of the problem

λun(x)− L0un(x) = hn (x) , ∀x ∈ Rn .

2. The following limits hold

un −→ u in C0 (
Rn)

,

hn −→ h in C0 (
Rn)

.

For functions u ∈ C1(Rn) that are strong solutions of the Cauchy problem (22) the result of
Theorem 4.3 still holds: it is indeed a simpler case. Now we go to strong solutions of the HJB
equation (21).

Definition 4.14. A function v ∈ C1(Rn) is a strong solution of the HJB equation (21) if, setting
h0(x) = −H1(x, ∂xv(x)), v is a strong solution of the linear problem

λv(x)+ L0v(x) = h0(x),

in the sense of Definition 4.13.

Assume the following.

Hypothesis 4.15. There exists a function v ∈ C1(Rn) which is a strong solution of the HJB
equation (21) in the sense of Definition 4.14. Moreover:

(i) either we can choose the approximating sequence (vn) of Definition 4.14 so that for every
s ≥ 0 and for every admissible control z ∈ Zad(0)

lim
n→+∞

∫ s

0
〈∂xvn (y (r))− ∂xv (y (r)) , F1 (y (r) , z (r))〉 dr = 0, u.c.p.,

(ii) or the function

(x, z) → B−1(x)F1 (x, z) ,

where B−1 stands for the pseudo-inverse of B, is well defined and bounded on Rn
× U .
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The precise statement of the verification theorem is the following.

Theorem 4.16. Assume that Hypotheses 2.1 and 4.15 hold. Assume also that l1 is continuous
and bounded and that Hypothesis 2.4 holds true with H1 in place of H0. If v is a bounded
strong solution of the HJB equation (21) and v ∈ C1(Rn) then v ≤ V0 on Rn . Moreover if z is
an admissible control at (0, x) that satisfies (setting y(s) = y(s; 0, x, z))

H1 (y(s), ∂xv (y(s))) = H1
CV (y(s), ∂xv (y (s)) ; z(s))

for a.e. s ∈ [0,+∞), P-almost surely, then z is optimal and v(x) = V0(x).

Proof. The proof goes along the same lines as for the finite horizon case. First we observe that
the boundedness of the datum l1 implies that also V0 is bounded and that for every x ∈ Rn ,
z ∈ Zad(0) the functional J (0, x; z) is finite. Then we prove the following fundamental identity

J (0, x; z) = v(x)

+ E
∫

+∞

0
e−λs

[
−H1 (y(s), ∂xv (y(s)))+ H1

CV (y(s), ∂xv (y(s)) ; z(s))
]

ds.

To do this we apply Theorem 4.3 for the operator L0 = ∂t + L0 (so b = F0, σ = B and
b1 = F0 + F1) but taking t = 0 and replacing v(s, x) by e−λsv(x) for s ≥ 0. Observe first that,
if v ∈ C2(Rn), then the function w(t, x) = e−λtv(x) solves, for t ≥ 0, x ∈ Rn , the equation

wt (t, x)+ L0w(t, x) = −e−λt H1 (x, ∂xv(x)) . (23)

Moreover if v ∈ C1(Rn) is a strong solution of (21), also w(t, x) is a strong solution of (23) and
satisfies the assumptions of Theorem 4.3. So we get for every T1 > 0

e−λT1v (y (T1)) = v (y (0))+

∫ T1

0
e−λs

〈∂xv (y(s)) , B (y(s)) dW (s)〉

+

∫ T1

0
e−λs

[
−H1 (s, y(s), ∂xv(s, y(s)))+ 〈F1 (s, y(s), z(s)) , ∂xv(s, y(s))〉

]
ds.

Now, taking the expectation, adding and subtracting E
∫ T1

0 e−λsl1(y(s), z(s))ds (which is
a.s. finite by the boundedness of l1) and using that y(0) = x we get

E
[∫ T1

0
e−λsl1 (y (s) , z(s)) ds + e−λT1v (y (T1))

]
= v(x)+ E

∫ T1

0
e−λs

[
−H1 (y(s), ∂xv (y(s)))+ H1

CV (y(s), ∂xv (y (s)) ; z(s))
]

ds

and the claim again follows on taking the limit for T1 → +∞ and using the boundedness of v.

The rest of the proof is exactly the same as in the finite horizon case. �

Remark 4.17. It must be noted that the assumption on the boundedness of l1 and v is made
for simplicity of exposition. What is really needed in this infinite horizon case is that J is well
defined for each z ∈ Zad(0) and that limT1→+∞ e−λT1v(y(T1)) = 0 for every z ∈ Zad(0). This
allows one to pass to the limit in the latter formula. In some cases this can be checked directly,
in other cases much weaker conditions can be imposed (e.g. sublinearity of l1 and estimates on
the solution y as T1 → +∞). �
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5. Necessary conditions and optimal feedback controls

Here we want simply to show that under additional assumptions (mainly about the existence
and/or uniqueness of the maximum of the Hamiltonian and of the solution of the closed loop
equation) we can get necessary conditions and optimal feedback controls. This is a consequence
of the verification Theorems 4.9 and 4.16 which has some importance for applications. For the
sake of brevity we give the results only for the finite horizon case observing that completely
analogous results hold true for the infinite horizon case. We start by making a remark about the
so-called “weak formulation” of a stochastic control problem.

Remark 5.1. The setting introduced in Section 2 corresponds to the so-called “strong
formulation” of a stochastic control problem. For certain purposes (namely the existence of
optimal feedbacks) it is convenient to consider the “weak formulation”, letting the stochastic
basis vary. In such a formulation one considers as the set Z ad(t) of admissible controls the set of
5-tuples (�,F,P,W, z) such that

• (�,F,P) is a complete filtered probability space with the filtration F satisfying the usual
conditions,

• W is an E valued m dimensional Brownian motion on [t, T ],
• the process z is measurable, (Fs)-adapted and a.s. locally integrable.

We will use the notation (�,F,P,W, z) ∈ Z ad(t) and we will call these control strategies
weakly admissible (weakly optimal when they are optimal). When no ambiguity arises we will
leave aside the probability space and the white noise (regarding it as fixed) and simply consider
z ∈ Zad(t). We will specify when the weak concept of admissible control is needed. The same
will be done in Sections 6 and 8. One can see e.g. [39, p. 64], [13, pp. 141,160] for comments on
these formulations. �

We start by recalling a case when the sufficient condition of the verification Theorem 4.9
becomes also necessary.

Proposition 5.2. Assume that the hypotheses of Theorem 4.9 hold true. We also assume that the
value function V is a strong solution of the HJB equation. Then an admissible control z ∈ Zad(t)
is optimal at (t, x) ∈ [0, T ] × Rn if and only if (16) holds with V in place of v.

Proof. The fundamental identity in this case gives

J (t, x; z) = V (t, x)

+ E
∫ T

t

[
H0 (s, y(s), ∂x V (s, y(s)))− H0

CV (s, y (s) , ∂x V (s, y(s)); z(s))
]

ds

and this immediately gives the claim. �

Remark 5.3. One case where the above Proposition 5.2 can be applied is when:

• it is known that V is the unique viscosity solution of the HJB equation;
• it is known that strong solutions are also viscosity solutions.

This happens e.g. in the example of Section 7. �

We now pass to the existence of feedbacks. First we recall the definition of the (weakly)
admissible feedback map.
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Definition 5.4. A measurable map G : [0, T ] × Rn
7−→ U is a (weakly) admissible feedback

map if for every (t, x) ∈ [0, T ] × Rn the closed loop equation (s ∈ [t, T ])

y(s) = x +

∫ s

t
F1 (r, y (r) ,G (r, y (r))) dr

+

∫ s

t
F0 (r, y (r)) dr +

∫ s

t
B (r, y (r)) dW (r), (24)

admits a (weak) solution y = yG,t,x for every (t, x) ∈ [0, T ] × Rn and the control strategy
zG,t,x (s) = G(s, yG,t,x (s)) is (weakly) admissible.

If we have a (weakly) admissible feedback map G then the control strategy zG,t,x (s) =

G(s, yG,t,x (s)) is by definition (weakly) admissible and so, given G, we have, for every (t, x) ∈

[0, T ] × Rn , an admissible (weak) couple (zG,t,x , yG,t,x ). Our goal is to find an admissible
feedback map G such that, for every (t, x) ∈ [0, T ]×Rn , the strategy zG,t,x is (weakly) optimal.
Such a G will be called a (weakly) optimal feedback map.

Proposition 5.5. Assume that the Hypotheses of Theorem 4.9 hold true. Assume also that:

(i) the maximum of the Hamiltonian (4) exists and it is possible to define a measurable map

G0 : [0, T ] × Rn
× Rn

7−→ U

such that G0(t, x, p) ∈ arg minz HCV(t, x, p; z) for every (t, x, p) ∈ [0, T ] × Rn
× Rn;

(ii) the map G(t, x) = G0(t, x, ∂xv(t, x)) is a (weakly) admissible feedback map.

Then for every (t, x) ∈ [0, T ] × Rn , zG,t,x is a (weakly) optimal control, yG,t,x is the
corresponding (weakly) optimal state and v = V .

Finally if arg minz∈U HCV(t, x, vx (t, x); z) is always a singleton and the closed loop equation
(24) admits a unique (weak) solution, then the optimal control is (weakly) unique.

Proof. This is an obvious consequence of the verification Theorem 4.9. �

Remark 5.6. We observe that if we have existence of the (weak) solution of the closed loop
equation (24) for every strong solution of the HJB equation (13), then we automatically have that
the strong solution is unique. �

Remark 5.7. We finally observe that Propositions 5.2 and 5.5 hold also in the infinite horizon
case with obvious changes. We will use the infinite horizon version of Proposition 5.5 in the
study of the one dimensional example in Section 7. �

6. Application 1: A class of exit time control problems with nondegenerate diffusion

Here we show that our technique for proving verification theorems works for a family
of stochastic optimal control problems with exit time and nondegenerate diffusion where the
solutions of the associated HJB equation are not known to be C1,2.

6.1. The problem

Let first Rn be the state space, Rn be the space of noises and U (a given subset of a Polish
space) be the control space. Let T be a fixed finite horizon, (�,F,P) be a given stochastic
basis (where F stands for a given filtration (Fs)s∈[0,T ] satisfying the usual conditions), W be
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a cylindrical Brownian motion with values in Rn adapted to (Fs)s∈[0,T ]. Consider a stochastic
controlled system in Rn with fixed finite horizon T and initial time t ∈ [0, T ) governed by the
state equation{

dy(s) = [F0(s, y(s))+ F1 (s, y(s), z(s))] ds + B (y(s)) dW (s), s ∈ [t, T ]
y(t) = x .

(25)

We consider an open bounded domain O ⊆ Rn with uniformly C2 boundary (see e.g. [30, pp.
2–3] for the definition). The initial datum x belongs to O and we name as τO the first time of
exit of the process y from this open set, i.e.

τO (ω) = inf
{
s > t : y (s;ω) ∈ Oc} .

Moreover F0 : [0, T ] × Ō → Rn , F1 : [0, T ] × Ō × U → Rn , B : [0, T ] × Ō → L(Rn
; Rn)

(Ō stands for the closure of the set O) satisfy

Hypothesis 6.1. F0 and F1 are continuous and bounded.

Hypothesis 6.2. B is time independent, uniformly continuous and bounded and nondegenerate,
i.e. there exists λ0 > 0 such that

λ−1
0 ||ξ || ≥

n∑
i, j=1

[
B(x)BT (x)

]
i, j
ξiξ j ≥ λ0 ||ξ || ∀ (t, x) ∈ [0, T ] × Ō,∀ξ ∈ Rn .

Remark 6.3. First note that the above Hypothesis 6.2 implies that B is invertible with bounded
inverse, so we fall in the Hypothesis 4.7(ii). Moreover it is possible to extend our results to
the case when B is time dependent, provided suitable regularity conditions are satisfied. Such
conditions are needed to apply the results of semigroup theory in the subsection below and
substantially require that the domain of the operator

L(t)u =
1
2

Tr
[
B∗(t, x)B(t, x)∂xx u

]
be constant and the coefficient B be Hölder continuous in time, see on this [3,4] and [30, Section
3.1.2]. We leave aside these assumptions to keep a more simplified setting where, anyway, C1,2

regularity does not hold in general. �

As regards the control strategy z : [t, T ] × � → U , we assume that it belongs to a given set
Zad(t) of stochastic processes defined on [t, T ] ×� with values in a fixed Polish space U . More
precisely we will assume the following.

Hypothesis 6.4. The control space U is a Polish space, while Zad(t) is the space of all
measurable processes z : [t, T ] ×� → U adapted to the filtration F .

Remark 6.5. The above setting corresponds to the so-called “strong formulation” of a stochastic
control problem. In this problem, since the state equation admits only weak solutions in general
(see the next proposition), we need to consider the “weak formulation”, letting the stochastic
basis vary, see Remark 5.1. To avoid heavy notation we will keep the same symbols as in the
strong formulation, as we did in Section 5. �
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The following proposition can be proved in the same way as in [37], even if the drift is random.
In fact Theorem 6.4.3 therein makes use of Girsanov transformation to eliminate the drift; the
same can be done here. Then we can apply Corollary 6.4.4 and Theorem 7.2.1 of [37].

Proposition 6.6. Assume that Hypotheses 6.1 and 6.2 hold. Then, for all z ∈ Zad(t), Eq. (25)
has a weak solution

y(·; t, x, z) ∈ C0
F (t, T ; X) .

This solution is unique in the sense of probability law.

Remark 6.7. In the case of dimension 1, no continuity on the diffusion coefficients is required,
see [37] Exercise 7.3.3 on page 192. �

We now consider the following stochastic optimal control problem with exit time. Minimize
the cost functional

J (t, x; z) = E
[∫ τO∧T

t
l (s, y (s; t, x, z) , z(s)) ds

+ I{τO<T }ψ (τO, y (τO; t, x, z))+ I{τO≥T }φ (y (T ; t, x, z))

]
, (26)

over all controls z ∈ Zad(t). Here y(·; t, x, z) is the solution of the Eq. (25) and we assume that
l, ψ, φ satisfy

Hypothesis 6.8. l ∈ C0([0, T ]× Ō), φ ∈ C0(Ō)ψ ∈ C
1+β

2 ,1+β([0, T ]×∂O) (for some β > 0),
ψ(T, x) = φ(x) on ∂O.

Remark 6.9. The above hypothesis is needed to apply the results of semigroup theory in the
subsection below. In particular, under Hypothesis 6.8 the operator

Lu =
1
2

Tr
[
B∗(x)B(x)∂xx u

]
(with zero Dirichlet boundary conditions) generates an analytic semigroup and the associated
boundary value problem in O is well posed (see [30, Ch. 5]). �

The value function of this problem is defined as

V (t, x) = inf {J (t, x; z) : z ∈ Zad (t)} (27)

and a control z∗
∈ Zad(t) and such that V (t, x) = J (t, x; z∗) is said to be optimal with respect

to the initial time and state (t, x). The corresponding HJB equation is
v(t, x)+

1
2

Tr
[
B(x)∂xxv(t, x)B∗(x)

]
= 〈F0 (t, x) , ∂xv(t, x)〉 + H0 (t, x, ∂xv(t, x)) ,

t ∈ [0, T ] , x ∈ O,
v (T, x) = φ(x), x ∈ O,
v(t, x) = ψ(t, x), t ∈ [0, T ] , x ∈ ∂O,

(28)

where

H0(t, x, p) = inf
z∈U

H0
CV(t, x, p; z), (29)
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with

H0
CV(t, x, p; z) = 〈F1(t, x, z), p〉 + l(t, x, z),

being the current value Hamiltonian.

Proposition 6.10. Under Hypotheses 6.1, 6.2, 6.4 and 6.8, the Hamiltonian H0(t, x, p) defined
in (29) is continuous in [0, T ] × Ō × Rn . Moreover there exists a constant C > 0 such that∣∣∣H0(t, x, p)− H0 (t, x, q)

∣∣∣ ≤ C |p − q|∣∣∣H0(t, x, p)
∣∣∣ ≤ C (1 + |p|) .

(30)

Proof. It is enough to apply the definition of the Hamiltonian and use the continuity and the
boundedness of F1 and l. �

6.2. Strong solutions of the HJB equation

The HJB equation (28) above is a semilinear parabolic equation with continuous coefficients.
Since the second order term is nondegenerate (Hypothesis 6.2) one expects interior regularity
results for the solution even if the boundary data are merely continuous, as under our
assumptions. In particular the following result, taken from [9], Theorems 9.1 and 9.2, applies.

Theorem 6.11. Under Hypotheses 6.1, 6.2, 6.4 and 6.8, there exists a viscosity solution u of (28)

and u belongs to the space C
1+α

2 ,1+α

loc ([0, T )×O) ∩ C0([0, T ] × Ō) for some α ∈ (0, 1).

We note also that it is not known whether the solution is classical in the interior. This is known,
using theorems of [5], if the data are supposed to be Hölder continuous in (t, x), which we do not
assume here. Moreover even in the linear case, if the coefficients are only continuous, solutions
are only W 2,p, so they are also C1,α . An example in this direction is in [16, Ch. 4].

This means that we are exactly in the case where it makes sense to apply our technique to
prove verification theorems: no classical solution but solutions (in a generalized sense) with at
least C0,1 regularity. Once this is clear, we need to check whether our solutions (that exist at least
in the viscosity sense thanks to the above Theorem 6.11) are also strong solutions in the sense
of Definition 4.6 (suitably modified to take care of the boundary datum ψ). Such a result is not
available in the literature in this form but it can be easily deduced using the results on analytic
semigroups contained e.g. in [30]. We explain here below how this can be done in the case when
ψ = 0 (the general case can be treated with the ideas explained in [30, Section 5.1.2]). In this
case the operator

L : D (L) ⊆ C0 (
Ō

)
→ C0 (

Ō
)
,

D (L) =

{
η ∈ ∩p≥1 W 2,p

loc (O) : η, Lη ∈ C0 (
Ō

)
, η|∂O = 0

}
,

(Lη) (x) =
1
2

Tr
[
B(x)∂xxη(x)B

∗(x)
]
,

generates an analytic semigroup {et L , t ≥ 0} [30, p. 97, Corollary 3.1.21]. Moreover, given any
initial datum φ ∈ C0(Ō) and any function H0 continuous in [0, T ]× Ō×Rn and satisfying (30)
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we can apply a modification of the argument used to prove Proposition 7.3.4 in [30, p. 281] to
get existence and uniqueness of a solution u of the integral equation

u(t, x) =

(
e(T −t)Lφ

)
(x)

+

∫ T

t

(
e(T −s)L

[
〈F0 (s, ·) , ∂x u (s, ·)〉 + H0 (s, ·, ∂x u (s, ·))

])
(x)ds, (31)

which can be considered as an integral form of the PDE (28) when ψ = 0 (in the general case
one needs to lift the function ψ into the equation obtaining an extra term in (31), see on this [30,
Remark 5.1.14, p. 195]) written using the variation of constants formula. More precisely we have
the following definitions and results.

Definition 6.12. We say that a function w belongs to the space Σ 1,α([0, T ] × Ō) if w ∈

C0([0, T ] × Ō), w is Fréchet differentiable in x ∈ O, ∂xw ∈ C0([0, T − ε] × Ō) for every
ε ∈ (0, T ), and

sup
(t,x)∈[0,T )×Ō

∣∣(T − t)α ∂xw(t, x)
∣∣ < +∞.

Definition 6.13. A function u ∈ Σ 1, 1
2 ([0, T ] × Ō) that satisfies the integral equation (31) for

every (t, x) ∈ [0, T ] × Ō is called a mild solution of the HJB equation (28).

Theorem 6.14. Assume that B ∈ C0(Ō), F0 ∈ C0([0, T ] × Ō), φ ∈ C0(Ō) and ψ = 0.
Moreover let H0 be continuous in [0, T ] × Ō × Rn and satisfy (30). Then there exists a unique

mild solution u ∈ Σ 1, 1
2 ([0, T ] × Ō) of the HJB equation (28).

Proof. The proof is a standard application of the contraction mapping principle, see [30,
Proposition 7.3.4] and also [6,18]. �

Now we want to show that such a mild solution is a strong solution in the sense that it can be
seen as the limit of smooth solutions.

We rewrite here the definition of the strong solution for our case since it is slightly weaker
than the one used in Section 4 due to the possible singularity of the spatial gradient at t = 0, see
Remark 4.8.

Definition 6.15. Let φ ∈ C0(Ō) and ψ ∈ C0([0, T ] × ∂O). A function u ∈ Σ 1, 1
2 ([0, T ] × Ō)

is a strong solution of Eq. (28) if it satisfies the boundary and final conditions

u (T, x) = φ(x), x ∈ O,
u(t, x) = ψ(t, x), t ∈ [0, T ] , s ∈ ∂O,

and if, for every ε > 0, it is a strong solution (in the sense of Definition 4.2) of the linear parabolic
problem

wt + Lw = h, t ∈ [0, T ] , x ∈ O,
w (T − ε, x) = u (T − ε, x) , x ∈ O,

where h = [〈F0(·, ·), ∂x u(·, ·)〉+ H0(·, ·, ∂x u(·, ·))], i.e. if, for every ε > 0 there exist sequences
uεn , hεn , φεn such that
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1. for every n uεn is a strict solution (i.e. it belongs to C1,2([0, T − ε] × Ō) and satisfies the
equalities on [0, T − ε] × Ō) of the approximating problem

vt + Lv = hεn, v (T − ε, x) = φεn(x);

2. uεn converges to u uniformly in [0, T − ε] × Ō, as n → +∞;
3. hεn converges to h uniformly in [0, T − ε] × Ō, as n → +∞;
4. φεn − u(T − ε, ·) converges to zero uniformly in Ō, as n → +∞.

Given the above Definition 6.15 we can apply directly Proposition 4.1.8 (see also Theorem
5.1.11) of [30] to get the following.

Theorem 6.16. Under the same assumptions as in Theorem 6.14 the mild solution of (28) is also
strong.

Proof. It is enough to apply Proposition 4.1.8 and Theorem 5.1.11 of [30] to the non-
homogeneous linear parabolic problem

vt + Lv = h, v (T, x) = u (T − ε, x) ,

where we set

h(t, x) = 〈F0(t, x), ∂x u(t, x)〉 + H0 (t, x, ∂x u (t, x)) .

In fact for every ε > 0 such a function h belongs to the space C0([0, T − ε]; C0(Ō)) =

C0([0, T − ε] × Ō). �

Remark 6.17. In the case when ψ is not 0 it can be shown that the above results still hold true
using the same techniques as in [30], Theorem 5.1.16, and 5.1.17. We do not do this here for
simplicity of exposition. �

Remark 6.18. Suppose that the operator L can be written in divergence form and that the
coefficients are only Borel measurable and not necessarily continuous; suppose moreover that
the diffusion coefficients are lower and upper bounded by a constant. Then, the semigroup has a
density with respect to the Lebesgue measure and it fulfills the classical Aronson estimates, see
for instance [1,36].

Fukushima–Dirichlet decompositions for mild or weak solutions to equations of type (28)
were treated by [2,26,35]. Using such results or possible generalizations in the spirit of [22],
one could establish verification theorems related to optimal control problems even in that
framework. �

6.3. The verification theorem

Now we prove a verification theorem for the optimal control problem above, (25) and (26).
The proof is a modification of the proof given in Section 4. The main differences are due to

1. a singularity of the first derivative and so a different definition of strong solution;
2. the constraint on the set O and so the presence of boundary data in x (exit time).

The statement of the verification theorem in this case is the following

Theorem 6.19. Assume that Hypotheses 6.1, 6.2, 6.4 and 6.8, hold. Let v ∈ Σ 1, 1
2 ([0, T ] × Ō)

be a strong solution of (28). Then
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(i) v ≤ V on [0, T ] × Ō.
(ii) If z is an admissible control at (t, x) ∈ [0, T ]×O that satisfies (setting y(s) = y(s; t, x, z)),

P-a.s.,

H0 (s, y(s), ∂xv (s, y(s))) = H0
CV (s, y(s), ∂xv (s, y(s)) ; z(s)) ,

for a.e. s ∈ [t, T ∧ τO], then z is optimal at (t, x) and v(t, x) = V (t, x).

The proof of this theorem follows as usual by the following fundamental identity that we state
as a lemma.

Lemma 6.20. Assume that Hypotheses 6.1, 6.2, 6.4 and 6.8 hold. Let v ∈ Σ 1, 1
2 ([0, T ]× Ō) be a

strong solution of (28). Then, for every (t, x) ∈ [0, T ]× Ō and z ∈ Zad(t) the following identity
holds

J (t, x; z) = v(t, x)

+ E
∫ τO∧T

t

[
−H0 (s, y(s), ∂xv(s, y(s)))+ H0

CV (s, y(s), ∂xv(s, y(s)); z(s))
]

ds, (32)

where y(s)
def
= y(s; t, x, z) is the solution of (25) associated with the control z.

Proof. Since v ∈ Σ 1, 1
2 ([0, T ] × Ō) then for every ε > 0 we have v ∈ C0,1([0, T − ε] × Ō) and

v is a strong solution of the problem

wt + Lw = h, t ∈ [0, T ] , x ∈ O,
w (T − ε, x) = v (T − ε, x) , x ∈ O,

where h = [〈F0(·, ·), ∂xv(·, ·)〉 + H(·, ·, ∂xv(·, ·))] (see Definition 6.15).
Applying now Theorem 4.3 and Remark 4.9 of [22] for the operator L0 = ∂t + L (so now

b = 0, σ = B and b1 = F0 + F1), we get that

v (τO ∧ (T − ε) , y (τO ∧ (T − ε))) = v (t, y(t))

+

∫ τO∧(T −ε)

t
〈∂xv(s, y(s)), B (y(s)) dW (s)〉

+

∫ τO∧(T −ε)

t
H0 (s, y(s), ∂xv (s, y(s))) ds

+

∫ τO∧(T −ε)

t
〈F1 (s, y(s), z(s)) , ∂xv(s, y(s))〉 ds.

Adding and subtracting
∫ τO∧(T −ε)

t l(s, y(s), z(s))ds (which is always finite since l is bounded),
using that y(t) = x and taking the expectation we get

E

[∫ τO∧(T −ε)

t
l (s, y(s), z(s)) ds + v (τO ∧ (T − ε) , y (τO ∧ (T − ε)))

]
= v(t, x)

+ E
∫ τO∧(T −ε)

t

[
−H0 (s, y(s), ∂xv (s, y (s)))+ H0

CV (s, y(s), ∂xv(s, y(s)); z(s))
]

ds.

Let now ε → 0+. By continuity of v (and since by definition the strong solution satisfies the
boundary and final conditions) we get
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Ev (τO ∧ (T − ε) , y (τO ∧ (T − ε)))

→ E
[
I{τO≥T }φ (y (T ))+ I{τO<T }ψ (τO, y (τO; t, x, z))

]
.

Moreover, by the boundedness of l we get

E
∫ τO∧(T −ε)

t
l (s, y(s), z(s)) ds → E

∫ τO∧T

t
l (s, y(s), z (s)) ds.

Finally we recall that, by the definition of the Hamiltonian (29) and thanks to the fact that

v ∈ Σ 1, 1
2 ([0, T ] × Ō), for a suitable C0 > 0 we have for every s ∈ [0, T )

E
[
−H0 (s, y(s), ∂xv (s, y(s)))+ H0

CV (s, y(s), ∂xv(s, y(s)); z(s))
]

ds

≤ C0 (1 + E |∂xv (s, y (s))|) ≤ C1 (T − s)−
1
2 ,

which allows us to apply the dominated convergence theorem obtaining

E
∫ τO∧(T −ε)

t

[
−H0 (s, y(s), ∂xv (s, y (s)))+ H0

CV (s, y(s), ∂xv(s, y(s)); z(s))
]

ds

→ E
∫ τO∧T

t

[
−H0 (s, y(s), ∂xv (s, y(s)))+ H0

CV (s, y(s), ∂xv (s, y(s)) ; z(s))
]

ds.

All the above yields then the claim (32). �

Proof of Theorem 6.19. By the definition of H0 and H0
CV, for every z ∈ Zad(t), x ∈ O the

following inequality holds P-almost surely (setting y(s) = y(s; t, x, z))

H0 (s, y(s), ∂xv (s, y(s)))− H0
CV (s, y(s), ∂xv (s, y(s)) ; z(s)) ≥ 0,

for a.e. s ∈ [t, T ∧ τO] . (33)

The rest of the proof follows exactly as that of Theorem 4.9. �

Remark 6.21. Arguing as in Section 5 it is possible to prove a necessary condition and the
existence of weakly optimal feedbacks. �

7. Application 2: A class of problems with degenerate diffusion

Now we consider our model problem focusing on the case where the HJB equation admits
solutions that are C0,1 but not C1,2. This may occur for instance in the case when the matrix
B B∗ is degenerate in the sense that there exists at least one point x ∈ Rn such that B B∗ is not
invertible.

Indeed such degeneracy means that the HJB equations (13) and (21) are degenerate (parabolic
or elliptic). For such equations a general regularity theory like the one available in the uniformly
parabolic or elliptic case is not known. So it is difficult to obtain the existence of C1,2 (C2)
solutions in this case. There is more hope of obtaining solutions with regularity C0,1 (C1) or
at least continuous with existence of the space derivatives in the weak sense (this case is not
covered in the present paper but is the subject of our current research). This means that, on one
hand, such problems are a source of possible sharp applications of our verification Theorems 4.9
and 4.16. On the other hand in this case it is difficult to have Hypothesis 4.7(ii) satisfied. So one
needs to have convergence of the derivatives in the sense of Hypothesis 4.7(i), which may not be
easy to check. We give an example when this can be done in the last part of this section.
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Remark 7.1. A possible methodology for proving the existence of C0,1 solutions of the
parabolic degenerate equation (13) is the following (consider the case where all data are
autonomous). Take the degenerate elliptic operator

L1η(x) = 〈F0(x), ∂xη(x)〉 +
1
2

Tr
[
B∗(x)∂xxη(x)B(x)

]
,

defined in C2(Rn). We can write the HJB equation (13) as

vt (t, x)+ L1v(t, x)+ H0 (x, ∂xv(t, x)) = 0,

v (T, x) = φ(x).

At this point, if the operator L1 is “sufficiently good”, e.g. if it generates a smoothing semigroup
(see the papers [15,20] on this), one can try to apply some perturbation arguments finding
existence of a strong solution. Also Remark 4.8 applies. �

To illustrate the above situation we present a one dimensional example coming from optimal
advertising models. For this reason the problem is taken with the sup, so also the Hamiltonians
are different from the rest of the paper. The proofs are only sketched for brevity.

The state variable y is the goodwill (i.e. the number of people who are aware of the product),
the control variable z is the investment in advertising and one maximizes the profit from selling
the product on a given finite horizon; see on this e.g. [24,32] and the references therein.

The state space is R, the control space is U = R+. The noise space is R and W is a standard
one dimensional Brownian motion. Given an initial point x ∈ R and parameters α, β > 0, the
state equation is{

dy(s) = [−αy(s)+ z(s)] ds + βy(s)dW (s)
y(t) = x .

(34)

Given ρ > 0, c : R+
→ R+, continuous, increasing and convex and such that

lim
z→+∞

c(z)

z
= +∞, (35)

h : R → R, continuous and strictly increasing, we maximize the profit functional

J (t, x; z) = E
{∫ T

t
−c (z(s)) ds + h (y (T ))

}
,

over all controls z ∈ Zad(t) where

Zad(t) = {z : Tt ×� → U, measurable, a.s. locally integrable, (Fs)-adapted}.

Here y = y(·; x, z) = y(·; t, x, z) is the strong solution of Eq. (34) on [0,+∞). Here
Hypotheses 2.1, 2.2 and 2.4 are clearly satisfied. The value function is

V (t, x) = sup {J (t, x; z) : z ∈ Zad(t)}

and the corresponding Hamilton–Jacobi–Bellman equation (HJB from now on) reads as follows
∂tv(t, x)+

1
2
β2x2∂xxv(t, x)− 〈αx, ∂xv(t, x)〉 + H0 (∂xv(t, x)) = 0,

t ∈ [0, T ] , x ∈ R,
v (T, x) = h(x), x ∈ R,

(36)
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where the Hamiltonian H0 is given by

H0(p) = sup
z≥0

{zp − c(z)} = c∗(p),

(where c∗ is the Legendre transform of c) and it is always finite and continuous thanks to (35).

Remark 7.2. We stress the fact that, via the approach described in Remark 7.1, we can prove,
eventually restricting the assumptions on data, that there exists a strong solution of the HJB
equation (36). In fact, the operator

L1η(x) = 〈αx, ∂xη (x)〉 +
1
2
β2x2∂xxη (x) ,

generates an analytic semigroup (see e.g. [20] and the references therein) in the space C0 with
domain C2 with suitable weights. This allows us, using a perturbation method similar to that
of [19], to show, under some restriction on the data, the existence of a mild solution of HJB
equation (36), i.e. a solution of the integral equation

v (t, ·) = e(T −t)L1 h +

∫ T

t
e(T −s)L1 H0 (∂xv (s, ·)) ds

belonging to the space C0,1 with suitable weights. Such a mild solution turns out to be strong in
the sense of Definition 4.6 easily: by simply taking suitable approximations of the initial datum h
and of H0(∂xv(s, ·)), as is done again in [19] or in [30], one finds solutions un of approximating
problems that converge to u. However it is not trivial to see whether for such an approximating
sequence we also have the convergence required in Hypothesis 4.7(i). Below we see that this is
so in a simple case. �

Choosing data in a suitable way we can write explicitly a strong solution which satisfies our
assumptions but is not C2 in space. Let c(z) = z1+η with η ∈ (0, 1), and h(x) = |x |

1+ηsgn(x).
Then the Hamiltonian is

H0(p) = η

(
[p]+

1 + η

)1+
1
η

,

with the maximum point

z =

(
[p]+

1 + η

) 1
η

. (37)

If we look for a solution of the form w(t, x) = f (t) · |x |
1+η we see that the function

v(t, x) =

a(t) |x |
1+η , for x > 0,

0, for x = 0,
b(t) |x |

1+η , for x < 0,

satisfies for every x 6= 0 the HJB equation (36) above if a > 0 and b < 0 are, respectively, the
solution of the Cauchy problem

a′(t) = −

[
1
2
β2η (1 + η)− α (1 + η)

]
a(t)− ηa (t)1+

1
η , a (T ) = 1,
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and

b′(t) =

[
1
2
β2η (1 + η)− α (1 + η)

]
b(t), b (T ) = −1.

Now the second Cauchy problem admits a unique global solution on [0, T ], which is always
strictly negative. The first does the same under suitable conditions on the data (e.g. that 1

2β
2η <

α): assume from now on that this is the case. We can easily see that v ∈ C0,1([0, T ] × R).
Moreover we may prove, by approximating v by vn = v · θn (where θn is a suitable cut-off
function such that θn = 0 for |x | ≤

1
n and θn = 1 for |x | ≥

2
n ) that v is a strong solution of (36)

and that ∂xvn → ∂xv uniformly on compact sets. This fact says that we have a strong solution to
which standard verification does not apply but which falls into our assumptions. Indeed since the
convergence of the derivative is uniform on compact sets also another technique can be applied
(see Section 8.2).

Remark that not only Theorem 4.9 but also Proposition 5.5 applies. Indeed the maximum of
the Hamiltonian is reached at the unique point z given by (37), so we can set, with the notation
of Proposition 5.5,

G0(t, x, p) = G0(p) =

(
[p]+

1 + η

) 1
η

.

Recalling that

∂xv(t, x) =

a(t) (1 + η) |x |
η , for x > 0,

0, for x = 0,
−b(t) (1 + η) |x |

η , for x < 0,

we have

G(t, x) = G0(∂xv(t, x)) =


a(t)

1
η |x | for x > 0

0 for x = 0

[−b(t)]
1
η |x | for x < 0.

It is easy to check that G is an admissible feedback map (along with Definition 5.4). In fact,
setting, for x > 0,

z(s) = a(s)
1
η |y(s)| ,

the closed loop equation is{
dy(s) =

[
−αy(s)+ a(s)

1
η |y(s)|

]
dt + βy(s)dW (s)

y(t) = x .

This equation always features existence and uniqueness of a strong solution yG,t,x which is a.s.
strictly positive and so zG,t,x is admissible and zG,t,x (s) = G(s, yG,t,x (s)) for s ∈ [t, T ].
The same argument can be applied to the cases x < 0 and x = 0. This means that, from
Proposition 5.5, for every fixed (t, x) ∈ [0, T ] × R the couple (zG,t,x , yG,t,x ) (again with
the notation of Proposition 5.5) is optimal. Moreover the optimal control (state) is unique. In
particular, when x > 0 (x < 0) then we have a unique optimal couple where the optimal
state is a.s. positive (negative). When x = 0 the zero strategy is optimal. These facts cannot
be immediately deduced using other verification theorems. Of course one could argue with ad
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hoc arguments applied to this problem but this is another story. We observe that this also implies
that v is the value function.

Remark 7.3. The procedure outlined in this example may be applied to other kinds of problems
with bilinear state equation and current cost with growth 1 + η (η ∈ (0, 1)), eventually with
infinite horizon. We think e.g. of optimal investment models where adjustment costs are not
quadratic but of growth 1 + η (see e.g. [38]). Also one could treat similar models when no
explicit solution can be found but it is possible to prove that there exists a strong C0,1 solution of
the HJB equation.

Finally we mention two possible extensions of the problem introduced above that are
interesting for economic applications (namely growth theory, optimal investment, optimal
portfolio models): the case when state constraints arise and the case when the space gradient
of the value function presents some singularities. Take for example the advertising example with
η < 0. These cases do not fall in our assumptions but we think that our procedure can be extended
to cover them in a future work. �

8. Comparison with other verification results

In this section we compare our results with ones from other known verification techniques for
nonsmooth solutions of the HJB equation. A discussion about this matter has already been given
in Section 2. Here we give a more detailed analysis.

8.1. The classical result

We start by recalling that the classical verification theorems for stochastic optimal control
problems (see e.g. [13, p. 163]) adapted to our case are perfectly equal to our Theorems 4.9 and
4.16 except for the following facts:

• they assume, in the finite horizon case, v ∈ C1,2([0, T ]×Rn) instead of v ∈ C0,1([0, T ]×Rn);
• they assume, in the infinite horizon case, v ∈ C2(Rn) instead of v ∈ C1(Rn).

In Section 6 we have seen an example where v is surely C0,1([0, T ] × Rn) but it is not clear
whether it is also C1,2([0, T ] × Rn). Moreover, in Section 7 we have seen a one dimensional
example where v is surely C0,1([0, T ] × R) and not C1,2([0, T ] × R).

8.2. The approximation result

By the approximation result we mean the verification theorem, proved e.g. in [18] in a special
infinite dimensional case, that is proved using the approach that we have briefly recalled in
Remark 4.4. The statement of such a result is completely similar to our Theorems 4.9 or 4.16.
The only difference is that to prove this theorem one needs to know that the function v is a strong
solution of the HJB equation in a more restrictive sense (we may call them “stronger” solutions)
pointed out in Remark 4.4: it is required that also the space derivative of the approximating
sequence converges uniformly on compact sets, i.e. ∂xvn → ∂xv. In the results of the present
paper in place of this we have a weaker requirement, namely that either Hypothesis 4.7 (i), or
Hypothesis 4.7(ii) is satisfied. Regarding this point we note that:

• In Application 1 the fact that the solution is strong follows directly from theorems on
semigroups stated in [30]. Here Hypothesis 4.7(i) holds by the nondegeneracy of the diffusion
coefficient while the convergence of the space derivative in such cases is not trivial at all and
may be not true.
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• In Application 2, in the one dimensional example, as pointed out in Remark 7.2, it is
straightforward to prove that u is a strong solution in the sense of Definition 4.6. Here the
diffusion coefficient is degenerate so to apply our results we need Hypothesis 4.7(ii). This is
not trivial to check in general but is in any case easier than the uniform convergence of the
derivatives. In the special case where we calculate the value function the uniform convergence
holds so also the approach of [18] may be used.

We finally point out that, to avoid the requirement of the convergence of the derivative on
compact sets, we need to use a completely different (and much more complex) approach based on
the Fukushima–Dirichlet decomposition and on the representation result (Theorem 4.3) proved
in our companion paper [22].

8.3. The viscosity solution result

When the HJB equation admits a viscosity solution it is possible to prove a verification
theorem which is very general since it deals with only continuous solutions of HJB, and with the
case when also the diffusion coefficient is controlled, but which is less useful when we know that
we have strong solutions. The theorem, in the model case studied in this paper, is the following
(see e.g. [23,27,39] for the proof and precise definition of superdifferentials D1,2,+

t+,x v(s, y∗(s))
used here).

Theorem 8.1. Consider the problem (1) and (2) with the following assumptions. The data F0,
F1, B, l, φ are all uniformly continuous. Moreover they are Lipschitz continuous in the variable
x uniformly with respect to the other variables. Moreover, for a suitable constant M > 0,

|F0 (t, 0)| , |F1 (t, 0, z)| , |B (t, 0)| , |l (t, 0, z)| , |φ (0)| ≤ M.

Finally the control space U is a Polish space and the set of admissible controls Zad(t) is given
by all measurable and adapted processes on [t, T ] with values in U.

Let v ∈ C0([0, T ] × Rn) be a viscosity solution of the HJB equation (7). Then:

• v(t, x) ≤ V (t, x), for any (t, x) ∈ [0, T )× Rn .
• Let (y∗(·), z∗(·)) be a given admissible pair for the problem starting at (t, x). Suppose

that there exists (p∗, q∗, Q∗) ∈ L2
F (t, T ; R) × L2

F (t, T ; Rn) × L2
F (t, T ; Sn) such that for

a.e. s ∈ [t, T ],

(p∗(s), q∗(s), Q∗(s)) ∈ D1,2,+
t+,x v(s, y∗(s)), P-a.s.

and

p∗(s)−
1
2

Tr
[
B∗

(
s, x∗(s)

)
Q∗(s)B

(
s, x∗(s)

)]
−

〈
F0

(
s, x∗(s)

)
, q∗(s)

〉
= H0

CV(s, x∗(s), q∗(s); z∗(s)) = H0(s, x∗(s), q∗(s)), P-a.s.

then (y∗(·), z∗(·)) is an optimal pair for the problem starting at (t, x).

If we know that there exists a strong solution v ∈ C0,1 then to apply the above theorem we
need to know that v is also a viscosity solution. This is not difficult as the concept of viscosity
solution is more general in a wide range of cases (this is true since classical solutions are always
viscosity solutions and limits of viscosity solutions are still viscosity solutions, see e.g. [13]); if
so then we know that it must be

q∗(s) = ∂xv
(
s, y∗(s)

)
.
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The above sufficient condition states then that:
if there exists (p∗, q∗, Q∗) ∈ L2

F (t, T ; R) × L2
F (t, T ; Rn) × L2

F (t, T ; Sn) such that for
a.e. s ∈ [t, T ],

(p∗(s), q∗(s), Q∗(s)) ∈ D1,2,+
t+,x v(s, y∗(s)), P-a.s.

(so q∗(s) = ∂xv(s, y∗(s))) and

p∗(s)−
1
2

Tr
[
B∗

(
s, x∗(s)

)
Q∗(s)B

(
s, x∗(s)

)]
−

〈
F0

(
s, x∗(s)

)
, ∂xv

(
s, y∗(s)

)〉
= H0

CV

(
s, x∗(s), ∂xv

(
s, y∗ (s)

)
; z∗(s)

)
= H0 (

s, x∗(s), ∂xv
(
s, y∗(s)

))
, P-a.s.

then (y∗(·), z∗(·)) is an optimal pair for the problem starting at (t, x).
Our sufficient condition instead states the following:
if for a.e.s ∈ [t, T ],

H0
CV

(
s, x∗(s), ∂xv

(
s, y∗(s)

)
; z∗(s)

)
= H0 (

s, x∗(s), ∂xv
(
s, y∗(s)

))
, P-a.s.,

then (y∗(·), z∗(·)) is an optimal pair for the problem starting at (t, x).
The main difference is that in the Theorem 8.1 above we need to know about the existence of a

couple of processes p∗ and Q∗ (that play the role of time derivative and second space derivative)
which are in fact not needed in our statement. This is not a trivial difficulty in general. So our
statement shows that, when strong solutions exist, one can get sharper sufficient conditions.
Similar and even stronger considerations can be given for the necessary conditions and the
existence of optimal feedbacks. In particular the analogue of the necessary condition stated by
Proposition 5.2 in the viscosity setting says only that for every possible (p∗(s), q∗(s), Q∗(s)) ∈

D1,2,+
t+,x v(s, y∗(s)), P-a.s. (so q∗(s) = ∂xv(s, y∗(s))) we have

p∗(t)−
1
2

Tr
[
B∗

(
t, x∗(t)

)
Q∗(t)B

(
t, x∗(t)

)]
−

〈
F0

(
t, x∗(t)

)
, ∂xv

(
t, y∗(t)

)〉
≤ H0

CV

(
t, x∗(t), ∂xv

(
t, y∗(t)

)
; z∗(t)

)
and this does not imply a priori that

H0
CV

(
t, x∗(t), ∂xv

(
t, y∗ (t)

)
; z∗(t)

)
= H0 (

t, x∗(t), ∂xv
(
t, y∗(t)

))
, P-a.s.

since it may happen that

p∗(t)−
1
2

Tr
[
B∗

(
t, x∗(t)

)
Q∗(t)B

(
t, x∗(t)

)]
−

〈
F0

(
t, x∗(t)

)
, ∂xv

(
t, y∗(t)

)〉
< H0 (

t, x∗(t), ∂xv
(
t, y∗ (t)

))
for all possible (p∗(s), q∗(s), Q∗(s)) ∈ D1,2,+

t+,x v(s, y∗(s)), P-a.s. So, as regards necessary
conditions, we may say that the difference between our result and the viscosity solution result is
wider.

Remark 8.2. We must also note another point. The assumptions made in Theorem 8.1 about the
data are much more restrictive than our assumptions made for the model problem of Section 6.
We think that Theorem 8.1 could be extended to more general situations but this extension is not
trivial and not known at this stage.
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Of course the importance of the verification theorem for viscosity solutions is that it covers the
cases when the control enters also in the diffusion coefficients and when the viscosity solutions
has no further regularity. So it is in a sense natural that such a result is more restrictive than ours
when applied to cases when the control enters only in the drift and a strong solution exists. �

8.4. The backward equations result

This is a verification technique introduced for instance in [34] and [14] that is used when it
is possible to find a mild solution to the HJB equation (in the sense recalled in Section 6.2) and
when it can be represented via the solution of a forward–backward system, see on this [14,31].
The most recent and complete result is given in [14] in the infinite dimensional case and we take
the setting from it adapting the statement to our problem. Similar results in another context are
given e.g. in [34] (see also the references therein).

Consider then the problem (1) and (2) with the following assumptions.

1. The state space is X = Rn while the control space is U , a bounded subset of Rm .
2. The data F0, B are continuously differentiable with bounded first derivative in the variable x

uniformly with respect to t .
3. F1(t, x, z) = B(t, x)R(t, x)z where R : [0, T ]×X → L(U, X) is continuously differentiable

in x , bounded with its space derivative.
4. l is continuous and polynomially growing.
5. φ is continuously differentiable with bounded first derivatives.
6. Defining the modified current value Hamiltonian K 0

CV(t, x, q; z) = l(t, x, z) + 〈q, z〉Rm we
assume that K 0

= inf K 0
CV(t, x, q; z) is measurable, continuously differentiable in (x, p)with

bounded derivative with respect to p and with polynomially growing derivative with respect
to x .

7. There exists a unique minimum point of the modified current value Hamiltonian K 0
CV given

by Γ (t, x, p) where Γ is continuous.

The result is the following.

Theorem 8.3. Assume Hypotheses 1–7 above. Fix (t, x) ∈ [0, T ]× X. For all admissible control
strategies z starting at (t, x) we have J (t, x; z) ≥ v(t, x) and the equality holds if and only if
the following feedback law is verified by z and y(·; t, x, z):

z(s) = Γ (s, y(s), R(s, y(s))∗G(s, y (s))∗∂xv(s, y(s))), P-a.s. for a.e. s ∈ [t, T ].

(38)

Finally there exists at least an admissible control strategy z starting at (t, x) for which (38) holds.
In such a system the closed loop equation:dy(s) = F0(s, y(s))+ B (s, y(s)) R(s, y(s))Γ1(s, y(s))ds

+ B(s, y(s))dWs, s ∈ [t, T ],

y(t) = x ∈ X,
(39)

where we set Γ1(s, y(s)) = Γ (s, y(s), R(s, y(s))∗ B(s, y(s))∗∇xv(s, y(s))), admits a solution ȳ
and if z̄(s) = Γ (s, ȳ(s), R(s, ȳ(s))∗G(s, ȳ(s))∗∇xv(s, ȳ(s))) then the couple (z̄, ȳ) is optimal
for the control problem.



F. Gozzi, F. Russo / Stochastic Processes and their Applications 116 (2006) 1530–1562 1561

We point out the following.

• The dependence on the control in the state equation is linear and through the same operator B
that drives the noise, moreover the space U is compact. This means that Hypothesis 4.7(ii) is
always satisfied. So the backward equation result Theorem 8.3 cannot cover cases when only
part (i) of Hypothesis 4.7 is satisfied, e.g. the one dimensional example of Section 7. This is
not a casual restriction but it seems to be a limitation due to the technique used in the proof
(where the Girsanov transform appears). It is not clear how to deal with more general cases
as pointed out in [14, Section 7]. Moreover the linearity in the control says that, at the present
stage, we cannot apply this technique to the cases described in Section 6.

• The regularity assumptions on the coefficients are quite strong and in any case quite a bit less
general than our assumptions. In particular continuous differentiability is always required also
in the Hamiltonian (assumption 6 above).

• The result quoted above is proven for an infinite dimensional case where mild solutions exist
and the Girsanov theorem can be applied in a suitable way. Here we give a finite dimensional
version of it. Of course the infinite dimensional case imposes certain restrictions and probably
some technical assumptions may be removed. However some assumptions that strongly limit
the applicability of the result (linearity in the control, smoothness of the coefficients) seem to
constitute a structural limit of the technique used there.
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