1,448 research outputs found

    Continued fraction for formal laurent series and the lattice structure of sequences

    Get PDF
    Besides equidistribution properties and statistical independence the lattice profile, a generalized version of Marsaglia's lattice test, provides another quality measure for pseudorandom sequences over a (finite) field. It turned out that the lattice profile is closely related with the linear complexity profile. In this article we give a survey of several features of the linear complexity profile and the lattice profile, and we utilize relationships to completely describe the lattice profile of a sequence over a finite field in terms of the continued fraction expansion of its generating function. Finally we describe and construct sequences with a certain lattice profile, and introduce a further complexity measure

    Linear complexity of sequences and multisequences

    Get PDF

    Diptych varieties. I

    Full text link
    We present a new class of affine Gorenstein 6-folds obtained by smoothing the 1-dimensional singular locus of a reducible affine toric surface; their existence is established using explicit methods in toric geometry and serial use of Kustin-Miller Gorenstein unprojection. These varieties have applications as key varieties in constructing other varieties, including local models of Mori flips of Type A.Comment: 50 pages. The webpage at www-staff.lboro.ac.uk/~magdb/aflip.html contains links to auxiliary materia

    Discrete integrable systems generated by Hermite-Pad\'e approximants

    Full text link
    We consider Hermite-Pad\'e approximants in the framework of discrete integrable systems defined on the lattice Z2\mathbb{Z}^2. We show that the concept of multiple orthogonality is intimately related to the Lax representations for the entries of the nearest neighbor recurrence relations and it thus gives rise to a discrete integrable system. We show that the converse statement is also true. More precisely, given the discrete integrable system in question there exists a perfect system of two functions, i.e., a system for which the entire table of Hermite-Pad\'e approximants exists. In addition, we give a few algorithms to find solutions of the discrete system.Comment: 20 page

    Discrete integrable systems, positivity, and continued fraction rearrangements

    Full text link
    In this review article, we present a unified approach to solving discrete, integrable, possibly non-commutative, dynamical systems, including the QQ- and TT-systems based on ArA_r. The initial data of the systems are seen as cluster variables in a suitable cluster algebra, and may evolve by local mutations. We show that the solutions are always expressed as Laurent polynomials of the initial data with non-negative integer coefficients. This is done by reformulating the mutations of initial data as local rearrangements of continued fractions generating some particular solutions, that preserve manifest positivity. We also show how these techniques apply as well to non-commutative settings.Comment: 24 pages, 2 figure

    Q-systems, Heaps, Paths and Cluster Positivity

    Full text link
    We consider the cluster algebra associated to the QQ-system for ArA_r as a tool for relating QQ-system solutions to all possible sets of initial data. We show that the conserved quantities of the QQ-system are partition functions for hard particles on particular target graphs with weights, which are determined by the choice of initial data. This allows us to interpret the simplest solutions of the Q-system as generating functions for Viennot's heaps on these target graphs, and equivalently as generating functions of weighted paths on suitable dual target graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the QQ-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the ArA_r QQ-system. We also give an alternative formulation in terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure
    • …
    corecore