We consider Hermite-Pad\'e approximants in the framework of discrete
integrable systems defined on the lattice Z2. We show that the
concept of multiple orthogonality is intimately related to the Lax
representations for the entries of the nearest neighbor recurrence relations
and it thus gives rise to a discrete integrable system. We show that the
converse statement is also true. More precisely, given the discrete integrable
system in question there exists a perfect system of two functions, i.e., a
system for which the entire table of Hermite-Pad\'e approximants exists. In
addition, we give a few algorithms to find solutions of the discrete system.Comment: 20 page