1,136 research outputs found

    Stabilization of Unstable Procedures: The Recursive Projection Method

    Get PDF
    Fixed-point iterative procedures for solving nonlinear parameter dependent problems can converge for some interval of parameter values and diverge as the parameter changes. The Recursive Projection Method (RPM), which stabilizes such procedures by computing a projection onto the unstable subspace is presented. On this subspace a Newton or special Newton iteration is performed, and the fixed-point iteration is used on the complement. As continuation in the parameter proceeds, the projection is efficiently updated, possibly increasing or decreasing the dimension of the unstable subspace. The method is extremely effective when the dimension of the unstable subspace is small compared to the dimension of the system. Convergence proofs are given and pseudo-arclength continuation on the unstable subspace is introduced to allow continuation past folds. Examples are presented for an important application of the RPM in which a “black-box” time integration scheme is stabilized, enabling it to compute unstable steady states. The RPM can also be used to accelerate iterative procedures when slow convergence is due to a few slowly decaying modes

    Symmetries in the Lorenz-96 model

    Get PDF
    The Lorenz-96 model is widely used as a test model for various applications, such as data assimilation methods. This symmetric model has the forcing FRF\in\mathbb{R} and the dimension nNn\in\mathbb{N} as parameters and is Zn\mathbb{Z}_n equivariant. In this paper, we unravel its dynamics for F<0F<0 using equivariant bifurcation theory. Symmetry gives rise to invariant subspaces, that play an important role in this model. We exploit them in order to generalise results from a low dimension to all multiples of that dimension. We discuss symmetry for periodic orbits as well. Our analysis leads to proofs of the existence of pitchfork bifurcations for F<0F<0 in specific dimensions nn: In all even dimensions, the equilibrium (F,,F)(F,\ldots,F) exhibits a supercritical pitchfork bifurcation. In dimensions n=4kn=4k, kNk\in\mathbb{N}, a second supercritical pitchfork bifurcation occurs simultaneously for both equilibria originating from the previous one. Furthermore, numerical observations reveal that in dimension n=2qpn=2^qp, where qN{0}q\in\mathbb{N}\cup\{0\} and pp is odd, there is a finite cascade of exactly qq subsequent pitchfork bifurcations, whose bifurcation values are independent of nn. This structure is discussed and interpreted in light of the symmetries of the model.Comment: 31 pages, 9 figures and 3 table

    Qualitative Analysis of the Classical and Quantum Manakov Top

    Get PDF
    Qualitative features of the Manakov top are discussed for the classical and quantum versions of the problem. Energy-momentum diagram for this integrable classical problem and quantum joint spectrum of two commuting observables for associated quantum problem are analyzed. It is demonstrated that the evolution of the specially chosen quantum cell through the joint quantum spectrum can be defined for paths which cross singular strata. The corresponding quantum monodromy transformation is introduced.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane

    Full text link
    We present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincar\'e disc D. Different types of patterns are considered: spatially periodic stationary solutions, radial solutions and traveling waves, however there are significant differences in the results with the Euclidean case. We apply equivariant bifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H-planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.Comment: Dedicated to Klaus Kirchg\"assne
    corecore