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The Lorenz-96 model is widely used as a test model for various applications, such as data
assimilation methods. This symmetric model has the forcing F ∈ R and the dimension n ∈ N

as parameters and is Zn-equivariant. In this paper, we unravel its dynamics for F < 0 using
equivariant bifurcation theory. Symmetry gives rise to invariant subspaces that play an important
role in this model. We exploit them in order to generalize results from a low dimension to all
multiples of that dimension. We discuss symmetry for periodic orbits as well.

Our analysis leads to proofs of the existence of pitchfork bifurcations for F < 0 in specific
dimensions n: In all even dimensions, the equilibrium (F, . . . , F ) exhibits a supercritical pitchfork
bifurcation. In dimensions n = 4k, k ∈ N, a second supercritical pitchfork bifurcation occurs
simultaneously for both equilibria originating from the previous one.

Furthermore, numerical observations reveal that in dimension n = 2qp, where q ∈ N ∪ {0}
and p is odd, there is a finite cascade of exactly q subsequent pitchfork bifurcations, whose
bifurcation values are independent of n. This structure is discussed and interpreted in light of
the symmetries of the model.

Keywords : Lorenz-96 model; equivariant dynamical system; bifurcation; invariant manifold.

1. Introduction

1.1. Equivariant dynamical systems

It was not until the late 1970s that the study of
symmetric dynamical systems gained great interest,
when it was discovered that the symmetries of a sys-
tem can have a big impact on its dynamics. Since
then, a considerable amount of literature have been
published on symmetry and bifurcations resulting
in a rich extension of bifurcation theory, called
equivariant bifurcation theory. In this field a group-
theoretic formalism is used to classify bifurcations
and to describe solutions and other phenomena
of a system. One of the most powerful results of
this so-called equivariant bifurcation theory is the
equivariant branching lemma, formulated first by

Vanderbauwhede [1982] and Cicogna [1981] inde-
pendently. A few years later, a detailed overview
of the theory of local equivariant bifurcations
appeared in [Golubitsky & Schaeffer, 1985; Golubit-
sky et al., 1988], which is still a standard reference
in this field. This is followed in more recent years
by other works with an overview of the new state-
of-the-art, e.g. [Chossat & Lauterbach, 2000] with
an applied mathematics approach and the more
advanced and theoretical work [Field, 2007].

Knowing the symmetries of a model can pro-
vide a lot of insight to the dynamics via equivari-
ant bifurcation theory. This includes the occurrence
of certain bifurcations, symmetry-related solutions,
pattern formation and invariant manifolds (see for
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many concrete examples [Chossat & Lauterbach,
2000; Golubitsky et al., 1988] and references therein).
Also, there are many examples of phenomena in
nature that have some symmetry. To illustrate: the
Rayleigh–Bénard convection possesses a reflection
symmetry, which leads to a pitchfork bifurcation
(among others), as can be concluded by the equiv-
ariant branching lemma [Golubitsky et al., 1984].
Likewise, the Lorenz-63 model exhibits a pitchfork
bifurcation due to symmetry, as it is derived from
the Rayleigh–Bénard convection [Lorenz, 1963].

1.2. Lorenz-96 model

This paper concentrates on another model of
Lorenz, namely, his 1996 model [Lorenz, 2006a].
Already in 1984 he studied a four-dimensional ver-
sion of this model in his search for the simplest
nontrivial forced dissipative system that is capa-
ble of exhibiting chaotic behavior [Lorenz, 1984b].
By imposing symmetry conditions on the equa-
tions, he introduced the monoscale version of the
n-dimensional Lorenz-96 model. The equations of
this model are equivariant with respect to a cyclic
permutation of the variables and so the system is
completely determined by the equation for the jth
variable, which is given by

ẋj = xj−1(xj+1 − xj−2) − xj + F, j = 1, . . . , n,

(1a)

and a “boundary condition”

xj−n = xj+n = xj. (1b)

Here, the variables xj can be associated to values of
some atmospheric quantity (e.g. temperature) mea-
sured along a circle of constant latitude of the earth
[Lorenz, 2006a]. The latitude circle is divided into
n equal parts such that the index j = 1, . . . , n,
denotes the longitude of a particular variable. The

number n ∈ N is the dimension of the system, while
the forcing F ∈ R can be used as a bifurcation
parameter.

The Lorenz-96 model is used by Lorenz to study
the atmosphere and related problems [Lorenz &
Emanuel, 1998; Lorenz, 2006a, 2006b]. The simplic-
ity of the model makes it also attractive and use-
ful for various other applications, such as to test
data assimilation methods [de Leeuw et al., 2017;
Ott et al., 2004; Trevisan & Palatella, 2011] and to
study spatiotemporal chaos [Pazó et al., 2008]. For
a more complete overview of studies that exploit
the Lorenz-96 model for applications, we refer to
our papers [van Kekem & Sterk, 2018a, 2018b].

Table 1 lists a selection of papers that investi-
gate part of the dynamics of the Lorenz-96 model.
In a recent article, we have proven analytically some
basic properties for all dimensions (but mainly for
positive parameter values) and the existence of Hopf
and Hopf–Hopf bifurcations and we have studied
numerically the routes to chaos for F > 0 [van
Kekem & Sterk, 2018a]. However, there are only
two papers that focus on the dynamics for negative
parameter values F : in [Lorenz, 1984b] the chaotic
attractor is studied for F = −100. In [van Kekem &
Sterk, 2018b] we have investigated the spatiotempo-
ral properties of waves for both F > 0 and F < 0
and showed mostly numerically that the dynamics
for F < 0 depends on the parity of the dimension.
A systematic understanding of how the symmetry
influences the dynamics of the Lorenz-96 model is
however still lacking. Therefore, we continue in this
paper by using an analytical approach to examine
the nature of the symmetry of the Lorenz-96 model
and its implications for bifurcation sequences. We
mainly focus on negative parameter values F , since
for those values the symmetry has a larger influence
on the dynamics, due to the existence of pitchfork
bifurcations that are induced by symmetry as well.

Table 1. Overview of the research into the dynamics of the monoscale Lorenz-96 model (1) and the main
values of parameter F that were used. In most cases, only the range for positive F has been analyzed.

Reference Subject F

Lorenz [1984a] Chaotic attractor −100
Orrell and Smith [2003] Spectral bifurcation diagram [0, 17)
Lorenz [2005] Designing chaotic models 2.5, 5, 10, 20, 40
Pazó et al. [2008] Lyapunov vectors 8
Karimi and Paul [2010] Extensive chaos [5, 30]
van Kekem and Sterk [2018a] Traveling waves & bifurcations [0, 13)
van Kekem and Sterk [2018b] Wave propagation (−4, 4)
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Whenever relevant, we will also discuss the impli-
cations of our findings on symmetry for the case of
positive F .

1.3. Summary of the results

The main results of this paper can be summa-
rized as follows: first of all, for any n ∈ N the n-
dimensional Lorenz-96 model is equivariant with
respect to a cyclic left shift of the coordinates
(denoted by γn), i.e. the model has a Zn-symmetry.
It is well-known that equivariance gives rise to
invariant linear subspaces. These invariant sub-
spaces turn out to have very important implica-
tions for the dynamics of the model. We show how
they can be utilized in extrapolating established
facts in a certain dimension to all multiples of that
dimension and exploit them to clarify the dynami-
cal structure.

The trivial equilibrium xF = (F, . . . , F ), which
exists for all n ≥ 1 and all F ∈ R, is invari-
ant under γn. Of particular interest is when the
dimension n is even, in which case Z2-symmetry
can be realized by γ

n/2
n . Equivariant bifurcation the-

ory then shows that the equilibrium xF exhibits a
pitchfork bifurcation. The emerging stable equilib-
ria both exhibit again a pitchfork bifurcation if n is
a multiple of four. Both cases will be proven for the
smallest possible dimension, i.e. n = 2 (resp., n = 4)
using a theorem from [Kuznetsov, 2004] on bifurca-
tions for systems with Z2-symmetry. A generaliza-
tion to all dimensions n = 2k (resp., n = 4k), is
then provided by the invariant manifolds.

Furthermore, a supercritical Hopf bifurcation
destabilizes all present stable equilibria after at
most two pitchfork bifurcations, as is shown numer-
ically in [van Kekem & Sterk, 2018b]. Therefore, the
dynamical structure for n ≥ 4 and F < 0 can be
divided in general into three classes, depending on
the dimension n (see also Figs. 1–3 for schematic
bifurcation scenarios):

(1) If n is odd, then the first bifurcation of the equi-
librium xF is a supercritical Hopf bifurcation.

(2) If n = 4k + 2, k ∈ N, then only one pitch-
fork bifurcation takes place, followed by a Hopf
bifurcation on each branch. This leads to two
stable periodic orbits that coexist for the same
parameter values F .

(3) If n = 4k, k ∈ N, then all four stable equilib-
ria generated by the second pitchfork bifurca-
tion exhibit a Hopf bifurcation simultaneously,

resulting in four coexisting stable periodic
orbits.

Of particular interest is the observation that
in the last case there can be even more pitchfork
bifurcations, that however occur after the equilib-
ria undergo the Hopf bifurcations. We conjecture
that the number of subsequent pitchfork bifurca-
tions depends on the dimension n as follows: let
n = 2qp, where q ∈ N ∪ {0} and p is odd, then
the number of successive pitchfork bifurcations is
exactly equal to q. This finite cascade of q pitch-
fork bifurcations leads to a structure of 2q+1 − 1
equilibria that are mutually conjugate by a power
of γn. An example of such a structure is given by the
schematic bifurcation diagram in Fig. 9 for n = 24p.

For positive forcing the first bifurcation is
a Hopf or Hopf–Hopf bifurcation, which is not
induced by symmetry. However, it turns out that
the generated periodic orbits can be symmetric if
their wave numbers have a common divisor with the
dimension. Here, the wave number should be inter-
preted as the spatial frequency of the wave, which
measures the number of “highs” or “lows” on the
latitude circle, see for example [van Kekem & Sterk,
2018a, 2018b; Lorenz & Emanuel, 1998].

1.4. Overview

This paper has been divided into two parts. Sec-
tion 2 deals with the analytical results of the
research. We give an exposition of the symme-
tries of the Lorenz-96 model and corresponding
invariant manifolds, using concepts from equivari-
ant bifurcation theory. These results are used to
prove the existence of a pitchfork bifurcation in
all even dimensions and a second occurrence of
pitchfork bifurcations in all dimensions of the form
n = 4k.

Section 3 is devoted to a further, numerical
exploration of the dynamics for all dimensions.
First, we will see that the periodic orbits after
a supercritical Hopf bifurcation still have some
symmetry. Second, we investigate numerically and
explain by our exposition of symmetry the existence
of the structure with exactly q subsequent pitchfork
bifurcations in dimension n = 2qp.

2. Analytical Results

In this section, we will describe the symmetry of
the Lorenz-96 model using concepts from equivari-
ant dynamical systems theory. For a detailed and

1950008-3

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

9.
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

G
R

O
N

IN
G

E
N

 o
n 

03
/1

0/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 24, 2019 13:56 WSPC/S0218-1274 1950008

D. L. van Kekem & A. E. Sterk

clear overview of this field, we refer to the stan-
dard textbooks on bifurcation theory for symmetric
systems [Golubitsky & Schaeffer, 1985; Golubitsky
et al., 1988]. The symmetry also gives rise to invari-
ant manifolds, that turn out to be very important in
our model. We will show how these invariant man-
ifolds can be exploited. Lastly, we show that the
symmetry of the model leads to subsequent pitch-
fork bifurcations for particular dimensions.

2.1. Zn-symmetry and invariant
manifolds

2.1.1. Cyclic symmetry

Let n ∈ N be arbitrary and denote the right-hand
side of system (1a) with dimension n by fn(x, F ),
such that fn : R

n×R → R
n. Consider the following

n-dimensional permutation matrix:

γn =




0 1 0 · · · 0

0 1
...

. . . . . .
...

0 · · · 0 1

1 0 · · · 0




. (2)

It is obvious that the linear mapping γn : R
n → R

n

acts like a cyclic left shift and that γn
n = Idn, the

n-dimensional identity matrix. We define the cyclic
group generated by γn as

Γn := 〈γn〉,
which is isomorphic to the additive group Z/nZ. A
key observation is that

fn(γj
nx, F ) = γj

nfn(x, F )

holds for any j ∈ N and any n ∈ N. This immedi-
ately implies the following result:

Proposition 1 [Zn-symmetry]. For any dimension
n ≥ 1 the Lorenz-96 model is Γn-equivariant.

Furthermore, powers of γn generate subgroups
of Γn, namely,

Gm
n = 〈γm

n 〉 < Γn, 0 < m ≤ n, m |n. (3)

The order of a subgroup Gm
n is n/m and it is iso-

morphic to Z/(n/m)Z. These subgroups Gm
n are

isotropy subgroups of special equilibrium solutions

that are of the form

xm = (Am, . . . , Am), Am = (a0, . . . , am−1),

0 < m ≤ n, m |n, (4)

where aj ∈ R. The coordinates of xm have n/m rep-
etitions of the block Am and, hence, γkm

n xm = xm

for all k ∈ N. Later on, we will encounter equilibria
of system (1) which have indeed such a structure
(see Secs. 2.2 and 3.2).

2.1.2. Invariant manifolds

Associated to an isotropy subgroup G < Γn is the
fixed-point subspace Fix(G), i.e. an invariant linear
subspace consisting of all points in R

n that satisfy
γx = x for any element γ ∈ G. It is a well-known
result that such a fixed-point subspace is an invari-
ant set of the dynamical system [Golubitsky et al.,
1988]. Here, the fixed-point subspace which is fixed
by the complete subgroup Gm

n is given by

Fix(Gm
n ) = {x ∈ R

n : x = xm}, (5)

where xm is as in Eq. (4).
The fixed-point subspace (5) is an invariant

manifold of dimension m. Also, each invariant man-
ifold of dimension m |n contains all of its “prede-
cessors” with dimension m′ such that m′ |m:

Fix(Γn) = Fix(G1
n) ⊂ Fix(Gm′

n )

⊂ Fix(Gm
n ) ⊂ Fix(Gn

n) = R
n.

These invariant subspaces constitute nested fami-
lies of subspaces which are all invariant under the
flow of the Lorenz-96 model.

Equivariance also implies that if x(t) is a solu-
tion of the Lorenz-96 model, then its conjugate
solutions, γj

nx(t), are solutions as well for any
j ∈ N. Moreover, for each equilibrium solution
xm ∈ Fix(Gm

n ) all conjugate solutions γj
nxm with

0 ≤ j < m are elements of the same fixed-point
subspace Fix(Gm

n ) and have the same properties1

(up to symmetry) as xm by permutation of the gov-
erning equations. This fact allows us to study only
one of the equilibria in the group orbit {x : x =
γj

nxm, 0 ≤ j < m} of xm.

2.1.3. Reduction of dimension

The preceding observation, together with the fact
that the coordinates of points xm have repetitions

1For example, the eigenvalues of conjugate solutions are equal.
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when m < n, simplifies our analysis a lot. In par-
ticular, it implies that we can reduce the number of
governing equations of the system inside Fix(Gm

n ).
In fact, we have the following important result:

Proposition 2. Let m ∈ N and let n = km be any
multiple of m. The dynamics of the n-dimensional
Lorenz-96 model restricted to the invariant manifold
Fix(Gm

n ) is topologically equivalent to the Lorenz-96
model of dimension m.

Proof. Let n ∈ N be as given and restrict the n-
dimensional Lorenz-96 model to the invariant man-
ifold Fix(Gm

n ). By definition (5) we have that the
entries of any x ∈ Fix(Gm

n ) repeat as xj+m = xj

with the index modulo n. It follows immediately
that Eq. (1a) for the (j + m)th coordinate equals
that for the jth coordinate. Hence, we are left with
n/m copies of an m-dimensional Lorenz-96 model
on Fix(Gm

n ).
Furthermore, since Fix(Gm

n ) and each of its
copies have dimension m, the dynamics on Fix(Gm

n )
is governed by m equations only and hence by
the Lorenz-96 model of dimension m. Hence, on
Fix(Gm

n ) we can reduce to a lower-dimensional
model. As homeomorphism between the invariant
manifold Fix(Gm

n ) and R
m (the space of the m-

dimensional Lorenz-96 system) one can take the
function which selects the first m coordinates and
drops the remaining coordinates, leaving us with
the m-dimensional Lorenz-96 model. Its inverse is
then the map which duplicates the given m coordi-
nates n/m times. �

Remark 2.1. Proposition 2 enables us to generalize
results from low dimensions to higher dimensions.
For example, when in the m-dimensional Lorenz-
96 model a certain bifurcation occurs, then generi-
cally for every multiple n = km, k ∈ N, the same
bifurcation occurs in the n-dimensional model. This
vastly reduces the proof of facts that occur in many
dimensions, since it comes down to searching for the
lowest possible dimension to occur and to proving
it for that particular dimension. By Proposition 2
then, this proves the property for infinitely many
dimensions.

A note of caution is due here, since two prob-
lems can occur:

(1) It might happen that another bifurcation takes
place before the phenomena extrapolated from
a lower dimension and thus a different attractor

gains stability, resulting in a different route to
chaos.

(2) Besides that, another attractor can exist with
no or different symmetry (i.e. in another sub-
space than Fix(Gm

n )) and whose route to chaos
is different.

In both cases, chaos possibly occurs for smaller
parameter values. What the method of Proposi-
tion 2 does provide, are the features and bifurca-
tions of the attractors inside the subspace Fix(Gm

n ),
for any n that is a multiple of m.

2.2. First pitchfork bifurcation

System (1) has in any dimension the trivial
equilibrium

xF = (F, . . . , F ), F ∈ R. (6)

The eigenvalues of this equilibrium can be deter-
mined easily using the circulant nature of the
Jacobian matrix. Let

ρj = exp
(
−2πi

j

n

)
,

then it is shown in [van Kekem & Sterk, 2018a] that
these eigenvalues are given by

λj(F, n) = −1 + Fρ1
j − Fρn−2

j (7)

for all j = 0, . . . , n−1. We omit the dependence on n
from now on and write λj or λj(F ) for λj(F, n). The
eigenvector corresponding to λj can be expressed in
terms of ρj as well:

vj =
1√
n

(1 ρj ρ2
j · · · ρn−1

j )�. (8)

Observe that the eigenvalue λ0 equals −1. Due
to the fact that ρn−j = ρj, all the other eigenvalues
and eigenvectors form conjugate pairs as

λj = λn−j , vj = vn−j, (9)

except when n is even, in which case the eigenvalue
for j = n

2 is real and equals λn/2 = −1−2F . This is
the only eigenvalue that depends on the parameter
F and is purely real and thus plays a key role in
this study. We can have more real eigenvalues when
n is a multiple of 3, in which case the eigenvalues
for j = n

3 , 2n
3 are both fixed and equal to −1.

For every even dimension n the eigenvalue λn/2

equals 0 at F = −1
2 . This gives rise to the first of

our main results:

Theorem 1 [First Pitchfork Bifurcation]. Let n ∈ N

be even. Then the trivial equilibrium xF exhibits a
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supercritical pitchfork bifurcation at the parameter
value FP,1 := −1

2 .

Note that the index 1 of FP anticipates the pos-
sibility of more pitchfork bifurcations, of which this
is the first one in line for decreasing F . We prove
Theorem 1 using the symmetries of the model. By
Proposition 2, proving the theorem boils down to
proving the existence of a pitchfork bifurcation in
the case n = 2 and subsequently generalizing it to
any even dimension n. The same procedure will be
applied to prove the existence of a second occur-
rence of pitchfork bifurcations in Sec. 2.3.

The proof of Theorem 1 (and also that of the
second pitchfork bifurcation) relies on a theorem
taken from [Kuznetsov, 2004]. Before we state this
result, let us first introduce some notation. Let Rn

be an n × n matrix that defines a symmetry trans-
formation x 
→ Rnx. Furthermore, we decompose
R

n into a direct sum R
n = X+

n ⊕ X−
n , where

X+
n := {x ∈ R

n : Rnx = x},
X−

n := {x ∈ R
n : Rnx = −x}.

Theorem 2 [Kuznetsov, 2004]. Suppose that a Z2-
equivariant system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f, Rnf(x, α) = f(Rnx, α) and R2
n =

Idn, has at α = 0 the fixed equilibrium x0 = 0 with
simple zero eigenvalue λ1 = 0, and let v ∈ R

n be
the corresponding eigenvector.

Then the system has a one-dimensional Rn-
invariant center manifold W c

α and one of the fol-
lowing alternatives generically takes place:

(i) (fold) If v ∈ X+
n , then W c

α ⊂ X+
n for all suffi-

ciently small |α| and the restriction of the sys-
tem to W c

α is locally topologically equivalent
near the origin to the normal form

ξ̇ = β ± ξ2;

(ii) (pitchfork) If v ∈ X−
n , then W c

α ∩X+
n = x0 for

all sufficiently small |α| and the restriction of
the system to W c

α is locally topologically equiv-
alent near the origin to the normal form

ξ̇ = βξ ± ξ3.

Remark 2.2. At the pitchfork bifurcation the equi-
librium that satisfies Rnx0 = x0 changes sta-
bility, while two Rn-conjugate equilibria appear

[Kuznetsov, 2004]. In terms of the fixed-point sub-
spaces, this means that the resulting Rn-conjugate
equilibria are contained in a larger subspace than
the original. In Sec. 3.2, we will elaborate further
on this.

The proofs below of the first [resp., the sec-
ond (in the next section)], pitchfork bifurcation are
based on the lowest possible dimensions, i.e. m = 2
and m = 4. In both cases we start with equilibria
in Fix(Gm/2

m ) and Z2-symmetry is realized by γ
m/2
m .

Consequently, we will set

Rm := γm/2
m , (10)

and the pitchfork bifurcation will result in two extra
γ

m/2
m -conjugate equilibria in Fix(Gm

m). Likewise, we
have that X+

m = Fix(Gm/2
m ) and X−

m = Fix(Gm/2
m )⊥.

For general dimensions n = km we can extend
these results according to Proposition 2 which yields
that the equilibria after the first pitchfork bifurca-
tion (for which m = 2) are γ

m/2
km = γ1

n-conjugate
and contained in Fix(G2

n). Similarly, for the sec-
ond pitchfork bifurcation we have m = 4, so here
the resulting equilibria will be pairwise γ

m/2
km = γ2

n-
conjugate and contained in Fix(G4

n).

In order to prove the existence of a pitch-
fork bifurcation in the two-dimensional Lorenz-96
model, it suffices to show that it satisfies the sec-
ond case of Theorem 2. This is in brief how the
following lemma is proven:

Lemma 1. Let n = 2, then the equilibrium xF of
the Lorenz-96 model exhibits a pitchfork bifurcation
at the parameter value FP,1 = −1

2 .

Proof. The eigenvalues of xF are given by Eq. (7),
so that in the two-dimensional case we have

λ0 = −1, λ1 = −1 − 2F.

Therefore, λ1 = 0 at F = FP,1 and a bifurcation
takes place. An eigenvector at FP,1 corresponding
to λ1 is given by

v1 = (−1, 1).

By Proposition 1, system (1) with n = 2 has a
Z2-equivariance with symmetry transformation

R2 := γ2 =

(
0 1

1 0

)
, (11)
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as defined by formula (10). From Sec. 2.1 it follows
that this matrix satisfies the following:

(a) R2
2 = Id2;

(b) R2 defines a symmetry transformation on R
2 =

X+
2 ⊕ X−

2 with

X+
2 = Fix(G1

2),

X−
2 = Fix(G1

2)
⊥ = {x ∈ R

2 : x0 = −x1}.
With these preliminaries, the conditions of Theo-
rem 2 are satisfied (up to a transformation to the
origin). In addition, it is easy to see that we are in
the pitchfork case, since we have

R2v1 = −v1,

i.e. the eigenvector with respect to λ1(FP,1) lies
in X−

2 . Hence, by Theorem 2 the two-dimen-
sional Lorenz-96 model has a one-dimensional R2-
invariant center manifold W c

F with W c
F ∩X+

2 = xF

for all F sufficiently close to FP,1 and the restriction
of the system to W c

F is locally topologically equiv-
alent near xF to the normal form of a pitchfork
bifurcation. �

Proof [Proof of Theorem 1]. The result of Lemma 1
extends to all dimensions n = 2k, k ∈ N by Propo-
sition 2. �

Remark 2.3. Theorem 1 can also be proven via
a center manifold reduction [Guckenheimer &
Holmes, 1983; Kuznetsov, 2004; Wiggins, 2003],
which gives the following form of system (1a) (up
to linear transformations), restricted to its center
manifold:

u̇ = −2αu − 4
n

u3 + O(‖u, α‖4), (12)

where α = F + 1
2 . This is the normal form of the

supercritical pitchfork bifurcation and implies that
the equilibrium xF is stable for F > FP,1 and loses
stability at F = FP,1, while two other stable equi-
libria exist for F < FP,1.

At the supercritical pitchfork bifurcation the
equilibrium xF ∈ Fix(G1

n) loses stability and gives
rise to two stable equilibria ξ1

j ∈ Fix(G2
n), j = 0, 1,

that exist for F < −1
2 . These new equilibria are

given by

ξ1
0(F ) = (a+, a−, . . . , a+, a−),

a± = −1
2
± 1

2

√−1 − 2F , (13)

while ξ1
1 is obtained by swapping the indices +

and −. So, each ξ1
j has a structure like the equi-

libria xm in formula (4) with m = 2 and they are
indeed γn-conjugate as predicted by Remark 2.2. In
other words: applying the matrix γn means geomet-
rically a switch from one branch of equilibria to the
other.

2.3. Second pitchfork bifurcation

The pitchfork bifurcation described in the previous
section is followed by a second subsequent pitchfork
bifurcation for F < FP,1 when the dimension is a
multiple of 4. This time, there are two simultaneous
bifurcations, each of which takes place at a differ-
ent branch of equilibria (13) that emanated from
the first pitchfork bifurcation of Theorem 1.

Theorem 3 [Second Pitchfork Bifurcation]. Let n =
4k with k ∈ N. Then both equilibria ξ1

0,1(F ) ema-
nating from the pitchfork bifurcation at FP,1 = −1

2
exhibit a supercritical pitchfork bifurcation at the
parameter value FP,2 := −3.

The proof goes in exactly the same way as the
proof for the first pitchfork bifurcation. Again, we
first prove a lemma that describes the occurrence of
a second pitchfork bifurcation in the lowest possible
dimension:

Lemma 2. Let n = 4, then the equilibria ξ1
0,1(F )

emanating from the pitchfork bifurcation at FP,1 =
−1

2 both exhibit a pitchfork bifurcation at the param-
eter value FP,2 := −3.

Proof. The eigenvalues of both equilibria ξ1
j , j =

0, 1 are given by:

λ1
0,1 =

1
2
(−1 ±√

9 + 16F ),

λ1
2,3 =

1
2
(−3 ±√−3 − 4F ).

(14)

Since λ1
2 = 0 when F = FP,2, a bifurcation takes

place. An eigenvector corresponding to λ1
2(FP,2) is

given by

v1
2 = (2 +

√
5,−1,−2 −

√
5, 1).

To show that system (1) with n = 4 is Z2-
equivariant we recall that

R4 := γ2
4 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


, (15)
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as defined by formula (10). Again, this matrix sat-
isfies the requirements of Theorem 2, since

(a) R2
4 = Id4;

(b) R4f4(x, F ) = f4(R4x, F ), by Proposition 1;
(c) R4 defines a symmetry transformation on R

4 =
X+

4 ⊕ X−
4 , where

X+
4 = Fix(G2

4),

X−
4 = Fix(G2

4)
⊥

= {x ∈ R
4 : x0 = −x2, x1 = −x3}.

Note that the group {Id4, R4} has Fix(G2
n) as its

fixed-point subspace, so it contains all the symme-
tries of ξ1 ∈ Fix(G2

n) (i.e. R4ξ
1 = ξ1). In contrast,

it holds that

R4v
1
2 = −v1

2,

i.e. the eigenvector with respect to λ1
2(FP,2)

lies in X−
4 . By Theorem 2 this implies that a

pitchfork bifurcation takes place and the four-
dimensional Lorenz-96 model has a one-dimensional
R4-invariant center manifold W c

F with W c
F ∩X+

4 =
ξ1
j for all F sufficiently close to FP,2. �

Remark 2.4. Lemma 2 can be proven by a center
manifold reduction, like Theorem 1 for dimensions
n = 2k. For n = 4, this gives the following normal
form of a pitchfork bifurcation:

u̇ = a(α)u + b(α)u3,

with

a(α) =
α(18

√
5
√

5 − 2α + α)
54(−5 + 2α)

,

b(α) =
450(145 + 61

√
5) + α(

√
5 − 2α(854 + 406

√
5) − 180(145 + 61

√
5))

135(23 + 3
√

5)(−5 + 2α)
,

where α = F − FP,2 = F + 3. The function b(α) is
negative for values of α around 0, hence both pitch-
fork bifurcations at FP,2 for n = 4 are supercritical.

Proof [Proof of Theorem 3]. The result of Lemma 2
extends to all dimensions n = 4k, k ∈ N by Propo-
sition 2. �

Remark 2.5. A generalization to all n = 4k−2 is not
provided by Proposition 2. Indeed, the second pair
of eigenvalues λ1

2,3 of (13) occurs only in the form of
Eq. (14) when the dimension is of the form n = 4k.
If instead the dimension equals n = 2 then there are
no more eigenvalues that can cross the imaginary
axis, whereas for n = 4k − 2, k ≥ 2, the eigenvalue
pairs are different from the case n = 4k, as numeri-
cal computations show [van Kekem & Sterk, 2018b].
Therefore, in dimensions n = 4k − 2, k ∈ N, there
will not be an additional pitchfork bifurcation, but
the next bifurcation after the first pitchfork bifur-
cation will be a Hopf bifurcation, as we will see in
Sec. 3.1.

At the second pitchfork bifurcations the equi-
libria ξ1

j ∈ Fix(G2
n), with j = 0, 1, lose stability and

four stable equilibria ξ2
j ∈ Fix(G4

n), 0 ≤ j ≤ 3,
appear that exist for F < −3. In contrast with
ξ1
j it is not feasible to derive analytic expressions

for the equilibria ξ2
j . By Remark 2.2, we know

that in the four-dimensional case these new equi-
libria are pairwise R4-conjugate in the following
way: ξ2

j = R4ξ
2
j+2 (with the index modulo 4); that

is, the equilibria with index j and j+2 emanate from
the same equilibrium ξ1

j for j = 0, 1. By equivari-
ance, the conjugate solutions γ4ξ

2
j are equilibria as

well for all 0 ≤ j ≤ 3. In fact, we observe numeri-
cally that this gives precisely the solutions from the
other R4-conjugate pair of solutions (see Sec. 3.2),
i.e. we can switch between all four equilibria by sub-
sequently applying γ4, e.g. ξ2

j = γj
4ξ

2
0.

For general dimensions n = 4k, similar state-
ments hold: the new equilibria satisfy ξ2

j = γ2
nξ2

j+2
(with the index modulo n) and they are of the
form (4) with m = 4. This gives an extra argument
why a symmetry breaking by a pitchfork bifurca-
tion is not possible in dimensions n = 4k − 2: since
n is not divisible by 4, we cannot “fill” the n coordi-
nates of an equilibrium in R

n completely by blocks
of four and the invariant subspace Fix(G4

n) does not
exist.

3. Numerical Results

In specific dimensions of the Lorenz-96 model we
observed more than two subsequent pitchfork bifur-
cations with a nice structure. In this section,
we will give a more detailed exposition on this
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symmetric dynamical structure. We mainly con-
centrate on the bifurcation pattern for F < 0 by
describing the codimension-1 bifurcations of the
equilibria that are generated via one or more pitch-
fork bifurcations.

Firstly, we discuss the occurrence of a super-
critical Hopf bifurcation for F < 0, which is pre-
ceded by at most two pitchfork bifurcations. Since
these results are already presented in [van Kekem &
Sterk, 2018a, 2018b] together with the spatiotem-
poral properties of the resulting periodic orbit, we
focus here on their symmetrical properties. By ana-
lyzing the dimension of their containing invariant
subspace we can clarify the existence (and nonexis-
tence) of patterns in the dynamics.

Secondly, we show that in specific dimensions
it is possible to have more subsequent pitchfork
bifurcations after the Hopf bifurcation and the two
proven pitchfork bifurcations. We discuss how many
of them can be expected in each dimension. These
consecutive pitchfork bifurcations then also gener-
ate a lot of unstable equilibria that may influence
the dynamics.

Most of these results follow from numerical
observations. We will interpret these observations
by means of the theoretical exposition of the sym-
metry in Sec. 2.1 without aiming to be complete.
Especially, proving facts after many pitchfork bifur-
cations will become increasingly difficult, since the
lowest dimension needed increases exponentially.

3.1. Symmetric periodic orbits

3.1.1. Destabilizing Hopf bifurcations

Recall that for n = 2 only one pitchfork bifurcation
is possible and no further bifurcation can happen.
Moreover, in dimensions n = 1 and 3 all eigenval-
ues are equal to −1, so that no bifurcation is possi-
ble at all. Apart from that, we show below that in
any dimension n ≥ 4 the stable equilibria for neg-
ative parameter values F eventually lose stability
through a supercritical Hopf bifurcation and one or
more stable periodic orbits will appear.

In [van Kekem & Sterk, 2018b] we have shown
that this will happen after at most two subsequent
pitchfork bifurcations. Therefore, the bifurcation
pattern can be divided into three different cases
according to the number of pitchfork bifurcations
that occur before the Hopf bifurcation:

• Case 1 (No Pitchfork Bifurcations). For odd n,
no pitchfork bifurcation will occur, but the first

F 0

ξ0 = xF

FH

H

Fig. 1. Schematic representation of the attractors for neg-
ative F in an n-dimensional Lorenz-96 model with odd
n > 3, so without any pitchfork bifurcation. The label H
stands for a (supercritical) Hopf bifurcation and occurs for
−0.894427 ≤ FH < − 1

2 . The only equilibrium is given by

ξ0 ≡ xF ∈ Fix(G1
n). A solid line represents a stable attrac-

tor; a dashed line represents an unstable one.

bifurcation of the trivial equilibrium (6) for F < 0
is a Hopf bifurcation at FH(j, n) := 1/(cos 2πj

n −
cos 4πj

n ) with j = n−1
2 . In [van Kekem & Sterk,

2018a], we have proven that this first Hopf bifur-
cation is supercritical, which implies that the sta-
ble equilibrium xF loses stability and a stable
periodic orbit appears after the bifurcation; see
Fig. 1.

• Case 2 (One Pitchfork Bifurcation). For n =
4k + 2, k ∈ N, Remark 2.5 states that only
one pitchfork bifurcation occurs in this case,
whose existence is proven by Theorem 1. In [van
Kekem & Sterk, 2018b], we have demonstrated
numerically that both equilibria exhibit a super-
critical Hopf bifurcation simultaneously. Hence,
for parameter values F below the corresponding
Hopf bifurcation value F ′

H, the two equilibria ξ1
j ,

j = 0, 1, are unstable and two stable periodic
orbits coexist; see Fig. 2.

• Case 3 (Two Pitchfork Bifurcations). For n =
4k, k ∈ N, Theorems 1 and 3 guarantee the occur-
rence of two pitchfork bifurcations subsequently.
By numerical continuation, we observed that
the resulting four stable equilibria exhibit super-
critical Hopf bifurcations simultaneously [van
Kekem & Sterk, 2018b]. Thus, in this case four
stable periodic orbits coexist for parameter val-
ues F < F ′′

H; see Fig. 3.

3.1.2. Symmetry for periodic solutions

Recall from Sec. 2.1 that whenever x(t) is a solution
of the Lorenz-96 model, then γj

nx(t) is a solution as
well for any 1 ≤ j ≤ n. This also holds for a periodic
solution P (t) of system (1). The orbits of P (t) and
γj

nP (t) are either identical or disjoint by uniqueness
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F 0

ξ0

FP,1

ξ1
0

ξ1
1

F ′
H

H

H

PF1

Fig. 2. Schematic bifurcation diagram of a 21p-dimensional
Lorenz-96 model with p > 1 odd and for negative F . The label
PF 1 denotes the only (supercritical) pitchfork bifurcation
with bifurcation value FP,1 = − 1

2 ; H stands for a (supercrit-
ical) Hopf bifurcation with bifurcation value −3.5 ≤ F ′

H ≤
−3, depending on n. The equilibria are ξ0 ≡ xF ∈ V 0 and
ξ1
j ∈ V 1, j = 0, 1, given by Eq. (13). A solid line represents a

stable equilibrium; a dashed line represents an unstable one.

of solutions. In the first case both orbits differ at
most by a phase shift in time; in the second case we
obtain a new periodic solution γj

nP (t) but whose
spatiotemporal properties (i.e. the period and wave
number) are the same as that of P (t) [Golubitsky
et al., 1988].

In the Lorenz-96 model we observed numeri-
cally that the two or four periodic orbits, gener-
ated through the Hopf bifurcations after one or two
pitchfork bifurcations, are indeed γn-conjugate to
each other. Because they all emerge from a different
equilibrium, their orbits must be disjoint, but they
share the same spatiotemporal properties. Hence,
due to the symmetry the periodic orbits for F < 0
are related to each other by conjugacy as follows:
Hopf bifurcation for negative F :

• Case 1 (n odd). There is only one periodic orbit
P (t) that satisfies γnP (t) = P (t + jT/n), where
T is the period and 1 ≤ j < n; i.e. applying
γn results in a phase shift proportional to T/n
such that after n iterations we retrieve the orbit
without phase shift.

• Case 2 (n = 4k + 2, k ∈ N). The two disjoint
periodic orbits are γn-conjugate. Applying γn

twice returns the original periodic orbit but with

a phase shift equal to 2jT/n, where 1 ≤ j < n.
See Fig. 4 for an example of the smallest dimen-
sion, n = 6.

• Case 3 (n = 4k). Four different periodic orbits
exist of which three can be obtained from one
by applying γn subsequently one, two or three
times as in dimension 4. Moreover, when we apply
γn four times, then the original periodic orbit
reappears with a phase shift equal to 4jT/n,
1 ≤ j < n. See Fig. 5 for an example of the
smallest dimension, n = 4.

More details about the spatiotemporal properties of
the periodic attractors after the Hopf bifurcation in
each of the cases listed above can be found in [van
Kekem & Sterk, 2018b].

In order to check the symmetry of these peri-
odic orbits, we perform the following numerical
experiment. For a given dimension n we follow the
stable attractor for increasing or decreasing F . We

F 0

ξ0

FP,1

ξ1
0

ξ1
1

FP,2

ξ2
0

ξ2
2

ξ2
1

ξ2
3

F ′′
H

H

H

H

H

PF1

PF2

PF2

Fig. 3. Schematic bifurcation diagram of a 22p-dimensional
Lorenz-96 model with p > 1 odd and for negative F . The label
PF 1 (resp., PF 2), denotes the first (resp., second), (supercrit-
ical) pitchfork bifurcation with bifurcation value FP,1 = − 1

2
(resp., FP,2 = −3); H stands for a (supercritical) Hopf bifur-
cation with bifurcation value −3.9 < F ′′

H < −3.5, depending
on n. The equilibria are given by ξ0 = xF ∈ Fix(G1

n) and
by Eq. (13) for ξ1

j ∈ Fix(G2
n), j = 0, 1, while ξ2

j ∈ Fix(G4
n),

j = 0, . . . , 3. A solid line represents a stable equilibrium; a
dashed line represents an unstable one.
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0 1 2 3 4

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x j

0 1 2 3 4

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x j

Fig. 4. Time series of all coordinates xj of the two different periodic attractors for n = 6 and F = −3.6, i.e. after the
Hopf bifurcation following the first and only pitchfork bifurcation. The coordinates xj , with j = 1, . . . , 6, are colored blue,
light-blue, red, purple, dark-green and yellow-green, respectively. The similarities between both periodic attractors are clear.
A comparison of their coordinates shows that those of the right figure are shifted one place to the left with respect to the left
one, which implies that the periodic orbits are γ6-conjugate.

0 1 2 3

t

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x j

0 1 2 3

t

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x j

Fig. 5. Time series of all coordinates xj of two periodic attractors for n = 4 and F = −4.0, i.e. after the Hopf bifurcation
following the second pitchfork bifurcation. The coordinates xj , with j = 1, 2, 3, 4, are colored blue, red, green and black,
respectively. Observe that the periodic orbits are disjoint and γ4-conjugate to each other, which means that they originate
from the branches ξ2

k (left) and ξ2
k+1 (right) with k ∈ {0, 1, 2, 3}. The disjoint periodic orbits from the two other branches,

ξ2
k+2 and ξ2

k+3, are obtained similarly, i.e. by applying γ4 two and three times to the periodic orbit in the left figure, in
agreement with the analytical results (Sec. 2.3).

1950008-11

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

9.
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

G
R

O
N

IN
G

E
N

 o
n 

03
/1

0/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 24, 2019 13:56 WSPC/S0218-1274 1950008

D. L. van Kekem & A. E. Sterk

fix the value of the parameter F and integrate the
system long enough to obtain an attractor. After
that, we check for repetition of the coordinates of
the attractor. The number of different coordinates is
then the dimension of the invariant subspace that
contains the stable attractor. Finally, we raise or
lower F with a small step.

Using this method, we observe that, in general,
the periodic orbits do not belong to any fixed-point
subspace other than Fix(Idn) = R

n, for dimensions
up to 100. This might be due to the fact that the
Hopf bifurcation values F ′

H and F ′′
H are different for

each dimension [van Kekem & Sterk, 2018b], which
leads to different periodic orbits that do not inherit
their properties from a lower dimension. However,
in dimensions that are multiples of 6 we observe
a tendency for periodic attractors in Fix(G6

n) to
become stable after a while; see Fig. 6. This is
observed in both dimensions of the form n = 4k
and n = 4k+2, so it could be the case that (even in
dimensions n = 4k) this symmetric attractor orig-
inates (via a Hopf bifurcation) from the equilibria
directly after the first pitchfork bifurcation.

3.1.3. Positive F

The trivial equilibrium xF is of the form x1 ∈
Fix(G1

n) and exists in any dimension and for all
F ∈ R. However, for positive forcing, the first bifur-
cation for this equilibrium is not induced by symme-
try, but it is either a supercritical Hopf bifurcation
or a double-Hopf bifurcation, as we have shown in
[van Kekem & Sterk, 2018a]. This bifurcation hap-
pens at FH(l1, n) := 1/(cos 2πl1

n − cos 4πl1
n ), where l1

denotes the index of the first eigenpair (9) crossing
the imaginary axis, and results in one or more stable
periodic orbits. Note that the index l1 (which also
represents the wave number of the periodic orbit
[van Kekem & Sterk, 2018a]) varies with the dimen-
sion. This results in a lot of different periodic orbits
that can have various or no symmetry and their own
route to chaos. Below, we will give a condition for
which a periodic orbit has symmetry.

We investigated a few particular cases where
it is observed that the periodic orbit is symmetric,
using the same numerical experiment as above. For
instance, for dimensions n = 5k, k = 1, . . . , 10, a
pattern of attractors is observed that are all invari-
ant under γ5

n [van Kekem & Sterk, 2018a], which
implies that they are contained in Fix(G5

n) and
inherit their properties partly from the attractor
of n = 5. This is confirmed by the plots in Fig. 7,
that show the symmetry of the periodic orbits for
dimensions n = 5k, k = 1, . . . , 12. It can be seen
that for n = 55 and 60, a symmetric attractor
in Fix(G5

n) becomes stable after a nonsymmetric
attractor has disappeared.

Similarly, in e.g. n = 8 (resp., n = 12), periodic
orbits are observed with wave number l = 2 (resp.,
l = 2 and 3) that are contained in Fix(G4

8) [resp.,
Fix(G6

12) and Fix(G4
12)] (see Fig. 8). In the same fig-

ure we show that for n = 28, an attractor, with wave
number l = 6, exists that is contained in Fix(G14

28).
We therefore conjecture that when the spatial wave
number l of a periodic orbit P (t) and the dimension
n satisfy gcd(l, n) = g > 1, then P (t) ∈ Fix(Gn/g

n ),
i.e. the periodic orbit generated through the first
Hopf bifurcation is symmetric. This phenomenon

0
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n =   6
n = 12
n = 18
n = 24
n = 30

Fig. 6. Plot of the dimension m of the invariant subspace Fix(Gm
n ) that contains the global attractor for various dimensions

n = 6k, k = 1, . . . , 5, and negative F (see text for the description of the method). In any dimension, after one or two
pitchfork bifurcations, a periodic orbit is generated with no symmetry (i.e. contained only in Fix(Gn

n)). For slightly smaller
F , a symmetric attractor gains stability, which is in any case contained in Fix(G6

n).
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Fig. 7. As in Fig. 6, but with dimensions n = 5k, k = 1, . . . , 12, and positive F . In any dimension up to n = 50 an attractor is
generated through a Hopf bifurcation which is contained in Fix(G5

n). For n = 55 and 60, first an attractor without symmetry

dominates, but for some larger values of F an attractor in Fix(G5
n) becomes globally stable again.

can be explained by the fact that such a wave splits
into g parts, where each part constitutes a wave
with wave number l/g that corresponds to the wave
in dimension n/g. Note that this also includes the
case where gcd(l, n) = l, which is mentioned in
[Lorenz, 2006b]. Periodic orbits with such a fea-
ture can arise in many dimensions, even if they are
unstable as they emerge from a later Hopf bifur-
cation of the trivial equilibrium. A further discus-
sion of this phenomenon lies beyond the scope of
this article, but will be investigated in forthcoming
work.

3.2. Multiple pitchfork bifurcations

In Sec. 2, we have proven that it is possible to
have two pitchfork bifurcations one after the other,
namely, when n is a multiple of 4. Numerically, we
observe that there can be even more subsequent

pitchfork bifurcations after these two bifurcations.
Even though these additional bifurcations happen
after the Hopf bifurcations of Case 3 in the previous
subsection (and therefore they occur for unstable
equilibria and generate unstable equilibria), they
can entail large groups of symmetries, an exponen-
tially increasing number of equilibria and they show
a beautiful structure. Since this possibly influences
the dynamical structure for smaller F , we will dis-
cuss here the appearance of multiple pitchfork bifur-
cations and explain their presence using the expo-
sition of symmetry from Sec. 2.

In the following exposition we write the dimen-
sion uniquely as n = 2qp, with q ∈ N∪{0} arbitrary
and p odd. One should bear in mind that the cases
q = 1 and q = 2 are completely covered by the
results proven in Secs. 2.2 and 2.3. Consequently,
we assume q ≥ 3 in the following, which enables the
occurrence of more than two subsequent pitchfork
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Fig. 8. As in Fig. 6, but with various dimensions and positive F . For n = 8 and 12 the global attractor corresponds to the
one for n = 4. A similar phenomenon occurs for dimensions n = 14 and 28.
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bifurcations and are complementary to the analyt-
ical results. Let us start with some notation that
anticipates the results later on.

3.2.1. Notation

First of all, we call the pitchfork bifurcation which
is the lth in the row, the lth pitchfork bifurcation
and denote its bifurcation value as FP,l. Clearly,
FP,l < FP,l−1 and by definition, the lth pitchfork
bifurcation occurs for equilibria generated through
the (l−1)th bifurcation. In the previous sections we
have already used this nomenclature for the cases
l = 1, 2.

Furthermore, we will introduce some notation
that anticipates the results later on. The groups (3)
and invariant subspaces (5) are with m = 2l such
that 0 ≤ l ≤ q are of particular importance in the
description of the symmetry and related pitchfork
bifurcations. Therefore, we define the special invari-
ant subspace Fix(G2l

n ) ⊂ R
n of system (1) as

V l := Fix(G2l

n )

= {x∈R
n :xj+2l = xj for all 0≤ j ≤n− 1},

(16)

where 0 ≤ l ≤ q and the index of x has to be taken
modulo n. Note that these invariant manifolds also
played a crucial role in the proofs of Theorems 1
and 3.

By the discussion in Sec. 2.1 it is easy to see
that each invariant manifold V l contains all of its
“predecessors”:

V l′ ⊂ V l, 0 ≤ l′ ≤ l.

Also, by the definition of V l, Proposition 2 imme-
diately implies the following result:

Corollary 3.1. Let n = 2qp and 0 ≤ l ≤ q. Then
the dynamics of the n-dimensional Lorenz-96 model
restricted to the invariant manifold V l is topolog-
ically equivalent to the Lorenz-96 model of dimen-
sion 2l.

Furthermore, inspired by Remark 2.2 and
Eq. (13) we also define

ξl
j ∈ V l, 0 ≤ j ≤ 2l − 1, (17)

to be the equilibria generated by the lth pitchfork
bifurcation, which have the same symmetry as equi-
libria of the form x2l

. Similarly, let ξl be the collec-
tion of all equilibria ξl

j ,

ξl := {ξl
j ∈ V l, 0 ≤ j ≤ 2l − 1} ⊂ V l,

Table 2. The number of successive pitchfork
bifurcations and the corresponding total number
of (possibly unstable) equilibria after the last
pitchfork bifurcation as observed in selected
even dimensions.

n # PF’s # Equilibria

2 1 3
4 2 7
6 1 3
8 3 15

10 1 3
12 2 7
14 1 3
16 4 31
20 2 7
24 3 15
32 5 63
36 2 7
64 6 127

128 7 255
256 8 511
512 9 1023

which turns out to contain all equilibria that share
the same properties. Accordingly, for l = 1 we have
ξ1 = {ξ1

0, ξ
1
1} ⊂ V 1 as defined in Eq. (13). Likewise,

we can define ξ0 ≡ xF ∈ V 0, for convenience.

3.2.2. Numerical observations

In Table 2, we list the number of successive pitch-
fork bifurcations that are observed for specific even
dimensions as well as the total number of equilib-
ria generated through these bifurcations including
the trivial equilibrium xF (right column). The num-
ber of pitchfork bifurcations for a specific dimension
n = 2qp, as above, turns out to be precisely the
exponent q. Accordingly, we assume in the following
that 0 ≤ l ≤ q, which coincides with the restriction
for V l in Eq. (16).

Besides, the bifurcation values FP,l are indepen-
dent of n for all l. These fixed values FP,l are listed
in Table 3 for l ≤ 9 and are obtained by numer-
ical continuation in the dimensions n = 2l using
the software packages Auto-07p [Doedel & Olde-
man, 2012] and MatCont [Dhooge et al., 2011]. In
addition, the lth pitchfork bifurcation occurs for all
equilibria ξl−1

j (F ) at exactly the same bifurcation
value FP,l. So, when we speak about “the lth pitch-
fork bifurcation” there are actually 2l−1 simultane-
ous pitchfork bifurcations of conjugate equilibria,
generating in total 2l new equilibria.
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Table 3. List of bifurcation values FP,l for the lth pitchfork
bifurcation, which are known up to l = 9 and that are inde-
pendent of the dimension n. The two right columns give the
distances between the successive pitchfork bifurcations and
their ratios rl = (FP,l−1 − FP,l−2)/(FP,l − FP,l−1).

l FP,l Distance to FP,l−1 rl

1 −0.5 — —
2 −3 2.5 —
3 −6.6 3.6 0.694444
4 −8.0107123 1.41071 2.55190
5 −8.4360408 0.425329 3.31676
6 −8.5275625 0.0915217 4.64730
7 −8.5474569 0.0198944 4.60037

8 −8.5517234 4.2665 × 10−3 4.66289

9 −8.5526377 9.143 × 10−4 4.66681

Even more, we observed that all these new equi-
libria have the same entries in the same order but
shifted, which justifies our notation of the equilib-
ria (17). Therefore, the equilibria ξl

j ∈ V l satisfy in
general

γk
nξl

j = ξl
j+k, for all 0 ≤ j, k ≤ 2l − 1, (18)

where the lower index of ξ should be taken mod-
ulo 2l. As described in Sec. 2.1, all these conjugate
solutions have the same properties and therefore it
suffices to study only one copy of them, say ξl

0. We
will often just refer to the set ξl (so, without index)
when we describe their common properties.

Table 3 also shows that the distance between
successive pitchfork bifurcations decreases as l
increases. The values of their ratios rl suggest that

lim
l→∞

rl = lim
l→∞

FP,l−1 − FP,l−2

FP,l − FP,l−1
= δ,

where δ ≈ 4.66920 is Feigenbaum’s constant. There-
fore, the qth and last pitchfork bifurcation of a spe-
cific dimension n will be expected for the bifurcation
value FP,q ≥ FP,∞ ≈ −8.55289.

3.2.3. Visualization of structure

The structure of pitchfork bifurcations and equilib-
ria that we observed by numerical analysis is sum-
marized in Fig. 9, which we will now explain. The
figure presents a schematic view for the case n = 2qp
with q = 4 and gives an indication for the bifurca-
tion structure for general q ≥ 3. First of all, the
horizontal line in the middle represents the trivial
equilibrium ξ0 = xF which is stable for F > FP,1.
At the point PF 1 we see that two stable equilibria

ξ1
0,1 emerge, while ξ0 becomes unstable: the first

supercritical pitchfork bifurcation.
Secondly, both equilibria ξ1

0,1 exhibit a pitch-
fork bifurcation PF 2 at FP,2. In both cases a pair
of stable, γ2

n-conjugate equilibria appear, i.e. ξ2
2 =

γ2
nξ2

0 and ξ2
3 = γ2

nξ2
1. Moreover, by formula (18)

these pairs are also γn-conjugate to each other,
which means that we can switch between the
branches originating from ξ1

0 and those from ξ1
1 by

applying γn.
Next, all four equilibria from ξ2 exhibit a super-

critical Hopf bifurcation, by Case 3 of Sec. 3.1. As a
result, ξ2 and all successive equilibria ξl, 2 < l ≤ q,
are unstable for F < F ′′

H. Thereafter, the third
pitchfork bifurcation PF 3 occurs at FP,3 and gen-
erates 23 unstable and pairwise γ4

n-conjugate equi-
libria ξ3. Finally, the fourth pitchfork bifurcation
generates the equilibria ξ4 ⊂ V 4. This completes
the full structure with 25 − 1 unstable equilibria.

3.2.4. Explanation by symmetry

The preceding phenomena can be explained using
the concepts introduced in Sec. 2.1. In general, at
a pitchfork bifurcation there is a breaking of the
symmetry: before the bifurcation there exists an
equilibrium x0 satisfying Rx0 = x0, where R rep-
resents Z2-symmetry, while after the bifurcation
two additional equilibria x1,2 appear that satisfy
Rx1 = x2 [Kuznetsov, 2004]. So, the new equilib-
ria x1,2 after the bifurcation have a lower order of
symmetry than the bifurcating equilibrium x0, as
explained by Remark 2.2. In terms of the invariant
subspaces, this means that the smallest invariant
subspace containing x1,2 should be larger than the
one containing x0. More explicitly, if x0 ∈ Fix(Gm

n ),
with m ≤ n

2 minimized, then the two resulting equi-
libria x1,2 are in Fix(Gm′

n ) with m′ = 2m (due to
Z2-symmetry).

In Sec. 2.2, we have demonstrated that the equi-
librium ξ0 = xF ∈ V 0 exhibits the first pitchfork
bifurcation and that two stable equilibria ξ1 ⊂ V 1

appear. The second pitchfork bifurcation occurs for
both equilibria ξ1 simultaneously and generates sta-
ble equilibria ξ2 ⊂ Fix(G4

n) = V 2, as shown in
Sec. 2.3. In general, assuming that l ≤ q and that
the equilibria ξl−1 ⊂ V l−1 generated through the
(l−1)th pitchfork bifurcation again exhibit a pitch-
fork bifurcation, then the lth pitchfork bifurcation
generates 2l new branches of equilibria ξl

j(F ) ∈ V l,
0 ≤ j ≤ 2l − 1, where F < FP,l. Thus, the total
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Fig. 9. Schematic bifurcation diagram of a 2qp-dimensional Lorenz-96 model for negative F with q = 4 subsequent pitchfork
bifurcations. The label PF l, 1 ≤ l ≤ q, denotes the lth (supercritical) pitchfork bifurcation with bifurcation value FP,l as in
Table 3; H stands for a (supercritical) Hopf bifurcation with bifurcation value −3.9 < F ′′

H < −3.5. Each branch of equilibria

is labeled with ξl
j according to Eq. (17), where l indicates that the branch is generated by the lth pitchfork bifurcation and

contained in V l and j denotes how often we have to apply γn to ξl
0 to obtain this branch, as in Eq. (18). A solid line represents

a stable equilibrium; a dashed line represents an unstable one. The arrows in gray indicate the relation between the mutual
branches. Similar diagrams can be obtained for any q ≥ 3.

number of equilibria for dimension n generated by
the q pitchfork bifurcations (including the trivial
equilibrium) is equal to 2q+1−1, which is confirmed
by the right column of Table 2.

The observation that the lth pitchfork bifurca-
tion consists of 2l−1 simultaneous pitchfork bifur-
cations of conjugate equilibria can be explained
by noting that all equilibria ξl−1 satisfy the rela-
tion (18) and therefore share the same properties
and, in particular, the same eigenvalues. The fact

that the bifurcation values FP,l do not depend
on the dimension is a direct consequence of
Proposition 2.

In particular, the qth pitchfork bifurcation gen-
erates equilibria ξq ⊂ V q = Fix(G2q

n ). Conse-
quently, there cannot be more than q subsequent
pitchfork bifurcations because this requires the
resulting equilibria to be in Fix(G2q+1

n ), which does
not exist. Hence, for any dimension n = 2qp there
can be at most q pitchfork bifurcations.
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Based on these numerical observations and
their interpretation in terms of symmetry, the fol-
lowing conjecture seems plausible:

Conjecture 1. The number of subsequent pitchfork
bifurcations in the Lorenz-96 model of dimension
n = 2qp, where q ∈ N ∪ {0} and p odd, is exactly
equal to q.

In summary, the results in this section show
that in each dimension n = 2qp there are exactly
q pitchfork bifurcations for F < 0 and the phe-
nomenon fits well into the theoretical description
given in Sec. 2.1.

4. Conclusions and Outlook

In this investigation, the aim was to unravel the
symmetrical nature of the Lorenz-96 model and to
understand its dynamics better with this informa-
tion, building on [van Kekem & Sterk, 2018a]. The
model is equivariant in any dimension with respect
to a cyclic left shift γn and the groups of symme-
tries give rise to invariant manifolds for each divisor
m of the dimension n. One of the major findings of
this paper was that the invariant manifolds allow us
to extrapolate results that are proven for a certain
dimension n to all multiples of n. These findings
enhance our understanding of the Lorenz-96 model.

In the present study we exploited the symme-
try mainly to study and explain the dynamics for
negative parameter values, where symmetry turns
out to play an important role. We have proven ana-
lytically the existence of one (resp., two), pitchfork
bifurcations in dimension n = 2 (resp., n = 4),
each of which gives rise to γ

n/2
n -conjugate equilib-

ria. Consequently, in any even dimension a pitch-
fork bifurcation takes place, with an additional sub-
sequent pitchfork bifurcation when the dimension
equals n = 4k, k ∈ N.

Numerical investigation shows another signif-
icant finding of this study: in any dimension n
the number of successive pitchfork bifurcations is
exactly equal to q, where q is the non-negative inte-
ger such that the dimension n is uniquely given by
n = 2qp, with p odd. However, to establish this
result analytically is a nontrivial task, since the
Jacobian is no longer circulant for the nontrivial
equilibria that arise from each pitchfork bifurca-
tion. Moreover, proving other facts beyond the lth
pitchfork bifurcation will become increasingly diffi-
cult, since the lowest dimension needed is n = 2l

and thus increases exponentially with l. On the
other hand, once we have found an equilibrium ξl

j

in a certain invariant subspace V l, the relation (18)
guarantees that the 2l − 1 other equilibria have
the same properties. This finding together with the
Zn-symmetry may have important implications for
the dynamics after the cascade of pitchfork bifur-
cations. Although the periodic orbit that emerges
from the supercritical Hopf bifurcation is the stable
attractor for F < F ′′

H (see Sec. 3.1), the cascade-
like pitchfork bifurcations can have a big influence
on the dynamics via the large number of generated
equilibria. Such an influence has been observed in
dimension n = 4 for positive F , where four unsta-
ble and γ4-conjugate equilibria give rise to a hete-
roclinic structure that causes the dynamics on the
chaotic attractor to return to nearly periodic behav-
ior repeatedly, i.e. the classical type 1 intermittency
scenario [van Kekem & Sterk, 2018a].

The influence of the symmetry on the Lorenz-
96 model for F > 0 is less clear. We have shown
in [van Kekem & Sterk, 2018a] that the first
bifurcations for the trivial equilibrium are always
Hopf or Hopf–Hopf bifurcations. The emerging peri-
odic orbits have symmetries under certain circum-
stances, namely, when their wave number has a divi-
sor in common with the dimension of the model.
However, further work needs to be done to establish
this conjecture. More symmetries might be found
via other equilibria than the trivial one, but it is in
general nontrivial to locate them.

Furthermore, a pattern of attractors for n =
5m, m = 1, . . . , 10, is discussed in [van Kekem &
Sterk, 2018a]. This phenomenon can be explained
by the invariant manifolds which allow us to extrap-
olate the results for low dimension to higher dimen-
sions. However, as explained in Remark 2.1, this
method does not guarantee to give the complete
bifurcation pattern and route to chaos for any mul-
tiple of the lowest possible dimension, but only the
dynamics restricted to the corresponding invariant
manifold. It is also possible that another bifurcation
will take place before the phenomena extrapolated
from low dimension and thus a different attractor
gains stability. Such an event is indeed observed in
the example of the pattern for the dimensions n =
5m, where the pattern is interrupted at m = 11.

Altogether, the results in this paper provide
important insights into the symmetrical structure of
the Lorenz-96 model. This also helps to understand
the bigger dynamical structure and its traveling
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waves, partly described in [van Kekem & Sterk,
2018a, 2018b; Orrell & Smith, 2003]. Further stud-
ies have to be carried out in order to unravel the
bifurcations and routes to chaos of the stable attrac-
tors for negative F . An interesting question in this
context is how the symmetry influences the dynam-
ics for parameter values beyond the pitchfork bifur-
cations or for larger dimensions. The attractor for
n = 4 and large negative F is studied in [Lorenz,
1984a], although without taking into account its
potential symmetry. In particular, note that for
F < 0 the bifurcation patterns up to and including
the Hopf bifurcation can be divided into three dif-
ferent cases, which might have consequences for the
number of different routes to chaos. In our future
research we will therefore include a further analy-
sis of the bifurcation structure in combination with
the symmetry of the model and explore the routes
to chaos for F < 0.
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