25 research outputs found

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    A Multi-Stakeholder Information Model to Drive Process Connectivity In Smart Buildings

    Get PDF
    Smart buildings utilise IoT technology to provide stakeholders with efficient, comfortable, and secure experiences. However, previous studies have primarily focused on the technical aspects of it and how it can address specific stakeholder requirements. This study adopts socio-technical theory principles to propose a model that addresses stakeholders' needs by considering the interrelationship between social and technical subsystems. A systematic literature review and thematic analysis of 43 IoT conceptual frameworks for smart building studies informed the design of a comprehensive conceptual model and IoT framework for smart buildings. The study's findings suggest that addressing stakeholder requirements is essential for developing an information model in smart buildings. A multi-stakeholder information model integrating multiple stakeholders' perspectives enhances information sharing and improves process connectivity between various systems and subsystems. The socio-technical systems framework emphasises the importance of considering technical and social aspects while integrating smart building systems for seamless operation and effectiveness. The study's findings have significant implications for enhancing stakeholders' experience and improving operational efficiency in commercial buildings. The insights from the study can inform smart building systems design to consider all stakeholder requirements holistically, promoting process connectivity in smart buildings. The literature analysis contributed to developing a comprehensive IoT framework, addressing the need for holistic thinking when proposing IoT frameworks for smart buildings by considering different stakeholders in the building

    Secure authentication and key agreement via abstract multi-agent interaction

    Get PDF
    Authentication and key agreement are the foundation for secure communication over the Internet. Authenticated Key Exchange (AKE) protocols provide methods for communicating parties to authenticate each other, and establish a shared session key by which they can encrypt messages in the session. Within the category of AKE protocols, symmetric AKE protocols rely on pre-shared master keys for both services. These master keys can be transformed after each session in a key-evolving scheme to provide the property of forward secrecy, whereby the compromise of master keys does not allow for the compromise of past session keys. This thesis contributes a symmetric AKE protocol named AMI (Authentication via Multi-Agent Interaction). The AMI protocol is a novel formulation of authentication and key agreement as a multi-agent system, where communicating parties are treated as autonomous agents whose behavior within the protocol is governed by private agent models used as the master keys. Parties interact repeatedly using their behavioral models for authentication and for agreeing upon a unique session key per communication session. These models are evolved after each session to provide forward secrecy. The security of the multi-agent interaction process rests upon the difficulty of modeling an agent's decisions from limited observations about its behavior, a long-standing problem in AI research known as opponent modeling. We conjecture that it is difficult to efficiently solve even by a quantum computer, since the problem is fundamentally one of missing information rather than computational hardness. We show empirically that the AMI protocol achieves high accuracy in correctly identifying legitimate agents while rejecting different adversarial strategies from the security literature. We demonstrate the protocol's resistance to adversarial agents which utilize random, replay, and maximum-likelihood estimation (MLE) strategies to bypass the authentication test. The random strategy chooses actions randomly without attempting to mimic a legitimate agent. The replay strategy replays actions previously observed by a legitimate client. The MLE strategy estimates a legitimate agent model using previously observed interactions, as an attempt to solve the opponent modeling problem. This thesis also introduces a reinforcement learning approach for efficient multi-agent interaction and authentication. This method trains an authenticating server agent's decision model to take effective probing actions which decrease the number of interactions in a single session required to successfully reject adversarial agents. We empirically evaluate the number of interactions required for a trained server agent to reject an adversarial agent, and show that using the optimized server leads to a much more sample-efficient interaction process than a server agent selecting actions by a uniform-random behavioral policy. Towards further research on and adoption of the AMI protocol for authenticated key-exchange, this thesis also contributes an open-source application written in Python, PyAMI. PyAMI consists of a multi-agent system where agents run on separate virtual machines, and communicate over low-level network sockets using TCP. The application supports extending the basic client-server setting to a larger multi-agent system for group authentication and key agreement, providing two such architectures for different deployment scenarios

    Validation of design artefacts for blockchain-enabled precision healthcare as a service.

    Get PDF
    Healthcare systems around the globe are currently experiencing a rapid wave of digital disruption. Current research in applying emerging technologies such as Big Data (BD), Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), Augmented Reality (AR), Virtual Reality (VR), Digital Twin (DT), Wearable Sensor (WS), Blockchain (BC) and Smart Contracts (SC) in contact tracing, tracking, drug discovery, care support and delivery, vaccine distribution, management, and delivery. These disruptive innovations have made it feasible for the healthcare industry to provide personalised digital health solutions and services to the people and ensure sustainability in healthcare. Precision Healthcare (PHC) is a new inclusion in digital healthcare that can support personalised needs. It focuses on supporting and providing precise healthcare delivery. Despite such potential, recent studies show that PHC is ineffectual due to the lower patient adoption in the system. Anecdotal evidence shows that people are refraining from adopting PHC due to distrust. This thesis presents a BC-enabled PHC ecosystem that addresses ongoing issues and challenges regarding low opt-in. The designed ecosystem also incorporates emerging information technologies that are potential to address the need for user-centricity, data privacy and security, accountability, transparency, interoperability, and scalability for a sustainable PHC ecosystem. The research adopts Soft System Methodology (SSM) to construct and validate the design artefact and sub-artefacts of the proposed PHC ecosystem that addresses the low opt-in problem. Following a comprehensive view of the scholarly literature, which resulted in a draft set of design principles and rules, eighteen design refinement interviews were conducted to develop the artefact and sub-artefacts for design specifications. The artefact and sub-artefacts were validated through a design validation workshop, where the designed ecosystem was presented to a Delphi panel of twenty-two health industry actors. The key research finding was that there is a need for data-driven, secure, transparent, scalable, individualised healthcare services to achieve sustainability in healthcare. It includes explainable AI, data standards for biosensor devices, affordable BC solutions for storage, privacy and security policy, interoperability, and usercentricity, which prompts further research and industry application. The proposed ecosystem is potentially effective in growing trust, influencing patients in active engagement with real-world implementation, and contributing to sustainability in healthcare

    XXIII Congreso Argentino de Ciencias de la Computación - CACIC 2017 : Libro de actas

    Get PDF
    Trabajos presentados en el XXIII Congreso Argentino de Ciencias de la Computación (CACIC), celebrado en la ciudad de La Plata los días 9 al 13 de octubre de 2017, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Informática de la Universidad Nacional de La Plata (UNLP).Red de Universidades con Carreras en Informática (RedUNCI

    An evaluation of the challenges of Multilingualism in Data Warehouse development

    Get PDF
    In this paper we discuss Business Intelligence and define what is meant by support for Multilingualism in a Business Intelligence reporting context. We identify support for Multilingualism as a challenging issue which has implications for data warehouse design and reporting performance. Data warehouses are a core component of most Business Intelligence systems and the star schema is the approach most widely used to develop data warehouses and dimensional Data Marts. We discuss the way in which Multilingualism can be supported in the Star Schema and identify that current approaches have serious limitations which include data redundancy and data manipulation, performance and maintenance issues. We propose a new approach to enable the optimal application of multilingualism in Business Intelligence. The proposed approach was found to produce satisfactory results when used in a proof-of-concept environment. Future work will include testing the approach in an enterprise environmen

    Routes for extending the lifetime of wind turbines

    Get PDF
    corecore