

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Secure Authentication and Key Agreement

via

Abstract Multi-Agent Interaction

Ibrahim Hassan Ahmed
T

H
E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

The University of Edinburgh

School of Informatics

2021

Abstract

Authentication and key agreement are the foundation for secure communica-
tion over the Internet. Authenticated Key Exchange (AKE) protocols provide
methods for communicating parties to authenticate each other, and establish a
shared session key by which they can encrypt messages in the session. Within
the category of AKE protocols, symmetric AKE protocols rely on pre-shared
master keys for both services. These master keys can be transformed after each
session in a key-evolving scheme to provide the property of forward secrecy,
whereby the compromise of master keys does not allow for the compromise of
past session keys.

This thesis contributes a symmetric AKE protocol named AMI (Authentication
via Multi-Agent Interaction). The AMI protocol is a novel formulation of au-
thentication and key agreement as a multi-agent system, where communicating
parties are treated as autonomous agents whose behavior within the protocol is
governed by private agent models used as the master keys. Parties interact re-
peatedly using their behavioral models for authentication and for agreeing upon
a unique session key per communication session. These models are evolved after
each session to provide forward secrecy. The security of the multi-agent inter-
action process rests upon the difficulty of modeling an agent’s decisions from
limited observations about its behavior, a long-standing problem in AI research
known as opponent modeling. We conjecture that it is difficult to efficiently
solve even by a quantum computer, since the problem is fundamentally one of
missing information rather than computational hardness.

We show empirically that the AMI protocol achieves high accuracy in correctly
identifying legitimate agents while rejecting different adversarial strategies from
the security literature. We demonstrate the protocol’s resistance to adversarial
agents which utilize random, replay, and maximum-likelihood estimation (MLE)
strategies to bypass the authentication test. The random strategy chooses ac-
tions randomly without attempting to mimic a legitimate agent. The replay
strategy replays actions previously observed by a legitimate client. The MLE
strategy estimates a legitimate agent model using previously observed interac-
tions, as an attempt to solve the opponent modeling problem.

i

This thesis also introduces a reinforcement learning approach for efficient multi-
agent interaction and authentication. This method trains an authenticating
server agent’s decision model to take effective probing actions which decrease
the number of interactions in a single session required to successfully reject
adversarial agents. We empirically evaluate the number of interactions required
for a trained server agent to reject an adversarial agent, and show that using
the optimized server leads to a much more sample-efficient interaction process
than a server agent selecting actions by a uniform-random behavioral policy.

Towards further research on and adoption of the AMI protocol for authenticated
key-exchange, this thesis also contributes an open-source application written in
Python, PyAMI. PyAMI consists of a multi-agent system where agents run
on separate virtual machines, and communicate over low-level network sockets
using TCP. The application supports extending the basic client-server setting
to a larger multi-agent system for group authentication and key agreement,
providing two such architectures for different deployment scenarios.

ii

Lay Summary

Over the Internet, it is important for two or more legitimate parties to be able
to communicate securely, such that any unwelcome entity is unable to decipher
their communication. To begin with, it is important that legitimate parties
are assured of each others’ identity. They must also be able to agree upon a
secret value which can be used to encrypt and decrypt their communication for
each communication session they engage in; this value is known as a crypto-
graphic key. An algorithm which enables both operations is called a symmetric
authentication and key establishment (symmetric AKE) protocol.

We provide such a symmetric AKE protocol called the AMI protocol (Authen-
tication via Multi-Agent Interaction) which models the legitimate parties as
autonomous agents. These agents are intelligent software programs designed to
independently interact with other such programs and make complex decisions
without human intervention. Their task is to represent the communicating par-
ties and act on their behalf. Our agents interact with each other for some time,
then make authentication decisions and produce cryptographic keys based on
the interaction. The basic question the interaction helps the agents solve is: are
you who you say you are?

We show that the AMI protocol strongly resists different attempts by unwel-
come entities to mimic a legitimate party and thereby bypass the authentication
process. Our protocol is designed to withstand such attempts regardless of how
much computing power an adversary has, and whether or not it can bypass
other symmetric AKE protocols in the literature. To make the protocol even
more secure, we provide a optimization method which permits the agents to be
more strategic in their interaction, and make an authentication decision from
fewer but more significant messages.

Finally, we show how the AMI protocol is scalable for scenarios where there are
more than two legitimate parties. We first provide different system architectures
which permit a group of agents. We then provide protocol extensions for these
architectures, which enable authentication of the entire group, and result in the
production of a cryptographic key for secure group communication.

iii

Acknowledgements

There are many people who supported and guided me along my PhD journey.
My advisor, Stefano Albrecht, was an invested and supportive presence through-
out my doctoral studies. He was generous with both his time and his energy
during this demanding period. I am appreciative of my time in his research lab,
where I grew into the field of Artificial Intelligence.

My secondary advisors, Tariq Elahi and David Aspinall, helped improve my
research by guiding my annual reviews. Tariq, especially, gave me advice and
encouragement whenever I needed it. Markulf Kohlweiss also provided feedback
on the cryptography side as an additional reviewer.

My two collaborators for the conference publication mentioned in this thesis
were Josiah Hanna and Elliot Fosong. Josiah’s experience with reinforcement
learning helped develop some of the optimization methods therein. He also
helped in the writing of the publication. Elliot helped investigate relevant re-
search directions for the publication and assisted in its writing.

I acknowledge my fellow members of the Autonomous Agents Research Group,
especially: Georgios Papoudakis, Filippos Christianos, and Arrasy Rahman,
who were always willing to answer my questions about research and work. Ar-
rasy in particular was a source of continual support, friendship, and feedback.
I am grateful for our many discussions.

From the Informatics department, Alex Lescarides was invaluable for her per-
sonal advice and support during the initial years of my studies as the academic
counselor. Mary Cryan was later the academic counselor for the department
and was very supportive of me as well. Patrick Hudson from IGS made it much
easier for me to settle in as an international student.

My family provided much long-distance support while I studied overseas. My
parents, Ahmed and Abida, deserve my appreciation and gratitude. My siblings:
Sumayyah, Safiyyah, and Abdullah, I consider my best friends and well-wishers.
I always looked forward to our weekly video calls - thank you for everything.

Finally, I praise and thank God the Almighty for his generosity and strength.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this
work has not been submitted for any other degree or professional qualification
except as specified.

(Ibrahim Hassan Ahmed)

v

Contents

1 Introduction 1

1.1 Authenticated Key Exchange: Terminology, Design, and Features 1

1.1.1 Construction of Keys and their Security 2

1.1.2 Vulnerability of Keys to Quantum Algorithms 3

1.1.3 AKE Protocols: Design and Components 3

1.1.4 Vulnerability of AKE Protocols to Quantum Computing . 6

1.2 A Multi-Agent Formulation of Symmetric AKE 8

1.2.1 Agent Models as Master Keys 9

1.2.2 Interaction Between Parties 10

1.2.3 Authentication Tests . 10

1.2.4 Key Agreement . 11

1.2.5 Protocol Security . 12

1.3 Thesis Contribution: Technical Chapters 13

1.4 Thesis Assumptions, Scope, and Limitations 16

1.5 Publications . 19

2 Related Works 20

2.1 Symmetric Authenticated Key Exchange 21

2.1.1 Kerberos . 21

2.1.2 Secure Authenticated Key Exchange (SAKE) 22

2.1.3 Forward-Secure Authenticated Key Exchange (FORSAKES) 24

2.2 Improved Key Recovery Strategies 26

2.2.1 Characteristics of Key Recovery Within AMI 27

2.2.2 Pre-trained Language Models for Time Series Forecasting 28

vi

2.2.3 Transformer-based Models for Time Series Forecasting . . 31

2.3 Multi-Agent Systems and Modeling 36

2.3.1 Multi-Agent Systems and Agent-Based Modeling 36

2.3.2 Game Theory for Network Security and Cryptography . . 37

2.4 Biometric Authentication . 39

2.4.1 Behavioral Biometric Authentication 40

2.4.2 Biometric-based Remote User Authentication 43

2.5 Related Cryptographic Protocols 47

2.5.1 Interactive Proof Systems 47

2.5.2 Zero Knowledge Proofs 50

2.5.3 Probabilistically Checkable Proofs 51

3 A Multi-Agent Formulation of Symmetric AKE 54

3.1 Introduction . 54

3.1.1 Intro to Agents & Multi-agent Systems 54

3.2 Agent Architecture . 55

3.2.1 Definitions and Setting . 55

3.2.2 Agent State Transition Diagrams 56

3.2.3 Agent Internal Architecture and Reasoning 58

3.2.4 Multi-Agent Interaction 62

3.3 Conclusion . 63

4 Primary Authentication Test and Key Agreement via Multi-
Agent Interaction 64

4.1 Introduction . 64

4.2 Primary Authentication Test: Frequentist Hypothesis Testing . . 64

4.2.1 Metrics for Authentication Tests 65

4.2.2 A Test Based on Frequentist Hypothesis Testing 67

4.2.3 Experimental Evaluation 72

4.2.4 Analysis of Results . 76

4.2.5 Remarks on Primary Authentication Test 77

4.3 Key Agreement via Multi-Agent Interaction 78

4.3.1 Key Agreement Scheme 79

vii

4.3.2 Security of the Session Key 80

4.3.3 Size of Master Keys . 81

4.3.4 Remarks on Key Agreement 82

5 Alternative Authentication Test: Neural Network Classifier 83

5.1 Introduction . 83

5.2 A Test Based on a Neural Network Classifier 84

5.3 Supervised Learning Test . 84

5.3.1 Experimental Evaluation 85

5.3.2 Analysis of Results . 87

5.4 Generative Adversarial Network Test 88

5.4.1 Introduction to GANs . 89

5.4.2 GAN-Based Authentication Test 90

5.4.3 Experimental Evaluation 90

5.4.4 Analysis of Results . 93

5.5 Conclusion . 95

6 Protocol Security 96

6.1 Introduction . 96

6.1.1 Intro to Information-theoretic Security 96

6.1.2 Information-theoretic Key Agreement Protocols 97

6.1.3 Requirements for Information-theoretic Security 99

6.2 The AMI Protocol’s Information-theoretic Security 100

6.2.1 Resolution of the Opponent Modeling Problem 101

6.2.2 Experimental Setup . 102

6.2.3 Experimental Results and Analysis 103

6.2.4 Further Improvements for MLE Attack 105

6.3 Conjecture for Quantum Security 106

6.4 Conclusion . 107

7 Key Evolution Scheme 109

7.1 Introduction . 109

7.2 Key Evolution Scheme . 110

viii

7.2.1 Key Evolution Algorithm 111

7.2.2 Considerations for the KES 112

7.2.3 Security of the Evolved Master Key 113

7.3 Conclusion . 113

8 Protocol Optimization 114

8.1 Introduction . 114

8.2 Optimization Methodology . 115

8.2.1 Reinforcement Learning Basics 116

8.2.2 Training Setup . 117

8.2.3 Experimental Results and Analysis 119

8.3 Further Considerations for Optimization 120

8.3.1 Experimental Setup . 120

8.3.2 Experimental Results . 122

8.4 Conclusion . 123

9 Extension to AMI: Mutual Authentication 125

9.1 Introduction . 125

9.2 Agent State Transition Diagram 125

9.3 Agent Internal Architecture . 126

9.4 Session Key Module . 127

9.5 Conclusion . 128

10 Further Extension to AMI: Group Authentication 130

10.1 Intro to Group Authentication 130

10.1.1 Centralized Group AKE Protocols 131

10.1.2 Decentralized Group AKE Protocols 131

10.2 Extension: Centralized Group Authentication 132

10.2.1 Agent Internal Architectures 133

10.3 Extension: Decentralized Group Authentication 138

10.3.1 Agent Internal Architectures 138

10.4 Conclusion . 142

11 PyAMI: Open-Source Framework 143

ix

11.1 Introduction . 143

11.2 PyAMI: Architectures and their Implementation 144

11.2.1 Centralized Architecture 145

11.2.2 Mutual Authentication Architecture 147

11.2.3 Decentralized Architecture 148

11.3 Evaluation of Remote Interaction Process 150

11.3.1 Realistic Network Scenario 150

11.3.2 Increased Distance Test for Network Latency 151

11.4 Local Simulation Mode . 152

11.5 Conclusion . 152

12 Conclusion 154

12.1 Key Results . 155

12.2 Directions for Future Work . 156

12.2.1 A More Capable Adversary 156

12.2.2 Agent Models: Type and Size 157

12.2.3 Key Agreement Methods 157

12.2.4 Model Reconstruction for Key Recovery 158

Bibliography 159

x

List of Figures

3.1 State Transition Diagram of Server 57

3.2 State Transition Diagram of Client 58

3.3 Server Internal Architecture . 59

3.4 Client Internal Architecture . 60

3.5 Example Probabilistic Decision Tree 61

3.6 Multi-Agent Interaction Protocol 63

4.1 Frequentist Hypothesis Testing: Authentication Accuracy 76

5.1 Server Decision Module for Classifier-based Test 84

5.2 Classifier With One-Hot Encoded Input 86

5.3 Supervised Learning: Authentication Accuracy 87

5.4 Standard GAN Architecture . 89

5.5 Server’s Classifier Trained in a GAN 90

5.6 Discriminator Performance on Metrics During Training 93

5.7 Generative Adversarial Network: Authentication Accuracy 94

6.1 Authentication Accuracy Against Rigorous MLE Attacks 103

6.2 Tuning Action Space Size for Rigorous MLE Attack 104

7.1 AMI Key Evolution Scheme for Forward Secrecy 112

8.1 RL-based Interaction between Agent and Environment 117

8.2 Example of RL Training Environment for Server Model 118

8.3 RL-trained Server and Uniform-Random Server Against Random
Adversaries . 120

xi

8.4 Authentication Accuracy on MLE Attack from RL-trained Server 122

9.1 State Transition Diagram of Server (Mutual Setting) 126

9.2 State Transition Diagram of Client (Mutual Setting) 126

9.3 Server Internal Architecture (Mutual Setting) 127

9.4 Client Internal Architecture (Mutual Setting) 128

10.1 Server Internal Architecture (Centralized Setting) 133

10.2 Client Internal Architecture (Centralized Setting) 135

10.3 User Internal Architecture (Decentralized Setting) 139

10.4 Example of a Probabilistic Decision Multitree 141

xii

List of Algorithms

1 AMI Multi-Agent Interaction Protocol 62

2 Test Datasets for Evaluating AMI Authentication Tests 74

2 Test Datasets (cont.) . 75

3 AMI Session Key Generation . 79

4 Train Classifier in a GAN . 92

5 AMI Key Evolution Scheme . 111

6 Build MLE Attacks on Optimized and Random Servers 121

7 AMI Session Key Generation: Mutual Setting 129

8 AMI Multi-Agent Interaction Process: Centralized Setting 136

9 AMI Group Session Key Generation: Centralized Setting 137

10 AMI Key Evolution: Centralized Setting 138

11 AMI Multi-Agent Interaction Process: Decentralized Setting . . . 140

12 AMI Group Session Key Generation: Decentralized Setting . . . 142

xiii

Chapter 1

Introduction

We begin this thesis by introducing the problems of cryptographic authentica-
tion and key agreement, providing the necessary technical background including
important terminology, protocol design, and common features. Important terms
will be italicized when first introduced, then frequently italicized when referred
to, to remind the reader of their importance and to highlight their role in dif-
ferent aspects of authentication and key agreement protocols. We include some
discussion of asymmetric cryptography, including its building blocks and pro-
tocol features, to help the reader contrast with symmetric protocols, and thus
better understand the latter’s unique features and design.

1.1 Authenticated Key Exchange: Terminology,
Design, and Features

Authentication and key establishment are the foundation for secure communi-
cation over computer networks. Communicating parties must follow established
protocols to verify each other’s identity and establish keys to encrypt their pri-
vate communication. Secure authentication and key establishment schemes are
critical to the operation of secure systems used by governments, financial insti-
tutions, universities, and e-commence, among others. These systems must pro-
vide security and reliability despite being constantly subjected to cyber threats
probing for vulnerabilities.

In cryptography, an protocol which provides only authentication is termed entity
authentication [15]. One which only establishes a shared key between parties
is referred to as key establishment [15]. A protocol which both authenticates
the involved parties, and also computes a fresh shared key is referred to as
authenticated key-exchange (AKE) [9], and it is this category of protocol design
which this thesis’ subject matter falls under.

1

To go back to protocol design basics, suppose a sender wishes to transmit a
plaintext message to a receiver. The sender transforms the original plaintext via
a cryptographic algorithm, also called a cipher, into disguised ciphertext. The
ciphertext can then be appropriately sent over a shared communication channel
to the receiver without fear of the original plaintext being publicly seen by any
other party. If the security of the cipher, a mathematical function for encryption
and decryption, relies on keeping the function itself a secret, it is referred to
as a restricted algorithm [80]. However, this provides certain drawbacks - each
group of users must provide its own algorithm, and each time a user departs
the group or a new user joins, it must switch to a different algorithm [80]. Of
course, the compromise of the algorithm’s design also means a fresh algorithm
must be selected as well.

Modern cryptography resolves this by the use of keys. Modern cryptographic
protocols make publicly available the mechanics of the cipher or algorithm, and
instead base the security of the algorithm on a certain key value. The key can
be any of a large number of values - the range of possible values for a key is
called a keyspace [80]. The assumption that a cryptographic algorithm and its
implementation will be publicly known is known as Kerckhoffs’ principle [46],
and will be an important point for the remainder of this thesis.

1.1.1 Construction of Keys and their Security

The set of all possible plaintexts and ciphertexts, as well as the keyspace and
cipher itself, is called a cryptosystem. There are two general types of cryptosys-
tems: (1) symmetric-key cryptosystems and (2) public-key cryptosystems, each
with their own methods for key construction and defense against key recovery.

In a symmetric-key cryptosystem, the same key is typically used for both encryp-
tion and decryption. These systems rely on keeping the value of the symmetric
key a secret - if its value is found, then all ciphertexts in the cryptosystem
can be decoded. In their construction, it is important that the symmetric key
be generated uniformly-randomly over the keyspace (in a practical setting, a
cryptographically secure pseudo-random bit generator can provide data compu-
tationally indistinguishable from truly random values [23, 30]). Key length is
an important feature for the system’s security. The longer the key, the larger
the space of possible values an attacker has to try. For example, an 8-bit key
can have 28 = 256 possible values.

Public-key cryptosystems, also called asymmetric cryptosystems, mandate two
different keys for encryption and decryption - a public key and a private key,
respectively. While the public key is made publicly available, the private key
is kept hidden. It must also be computationally difficult to compute the pri-
vate key from the public key. To achieve this property, their construction relies
mathematically on one-way trapdoor functions [23]. For any one-way function
f , its output can be efficiently computed, but it is infeasible to compute the pre-
image of f when given an output. The additional trapdoor property, however,

2

stipulates that there is some secret information which enables efficient compu-
tation of the inverse of f [23]. The public and private key pair are constructed
such that the private key contains the trapdoor information, allowing it to com-
pute the pre-image of f for any output encrypted by the public key [23]. Unlike
in symmetric cryptography, the difficulty of finding the private key is not in a
(brute-force) key search, but in solving the computationally hard problem of
the one-way trapdoor function, as seen in the integer factorization or discrete
logarithm problems [80].

1.1.2 Vulnerability of Keys to Quantum Algorithms

Recent advances in quantum technology affect symmetric and asymmetric cryp-
tosystems in different ways, particular to the way their keys are constructed and
how quantum algorithms affect the security of that construction.

As mentioned, the most straightforward way to recover a hidden symmetric key
is a brute-force attack to search through all possible values in the keyspace. For
an n-bit symmetric key with a keyspace of N = 2n possible values, a classical
algorithm requires O(N) iterations to find the key. Grover provided an O(

√
N)

quantum algorithm [34] which needs only
√

2n = 2n/2 iterations to find the
key. As an example, Grover’s algorithm requires only 2256/2 = 2128 iterations
to recover a 256-bit symmetric key. Thus, it can be said that the 256-bit key
really has the security level of only a 128-bit key [12]. Due to this calculation,
post-quantum researchers recommend doubling symmetric key sizes to protect
against quantum algorithms like Grover’s [12].

For public-key cryptosystems, it is Shor’s quantum algorithm [85] which effi-
ciently solves in polynomial time the integer factorization and discrete loga-
rithm problems underpinning modern methods for both authentication and key
exchange [21]. Researchers have turned to alternative cryptographic primitives
for which no quantum algorithms yet exist. These include methods based on
lattices, error-correcting codes, and multivariate polynomials [21]. These meth-
ods provide constructions which rely on alternative mathematical problems, and
thus avoid quantum vulnerability. For example, the core problem among lattice
problems is the NP-hard Shortest Vector Problem, which entails finding the
shortest non-zero vector within a lattice [19]. Such a problem can be used in
the construction of a public and private key pair.

1.1.3 AKE Protocols: Design and Components

In this section, we discuss the different components which constitute and char-
acterize AKE protocols.

Key abstraction

The difference between symmetric and asymmetric protocol design is highlighted
in AKE protocols, where ephemeral session keys are jointly established between

3

communicating parties. The security concept for keys is abstracted into two
levels. The first level consists of long-lived secret keys called master keys (or
long-term keys) securely retained by a party, with strictly limited access [23].
The keys of the second level are called session keys and are associated with a
specific communication session. We refer to session keys as ephemeral because
they are valid only for the duration of the session - should a session key be
compromised, other sessions in the past or future should not be affected. Session
keys are only generated when required and typically discarded after use [23].

Key agreement and session key generation

For secure key exchange, communicating parties must establish the shared ses-
sion key over an insecure channel. In symmetric AKE protocols, however, it
is not possible to do so without existing secure channels already being avail-
able, as matter of general principle [15]. One exception is when communicating
parties can meet to personally exchange a pre-shared secret (for example, a se-
cure banking transaction where the symmetric key shared between bank and
payment terminal is manually injected into the terminal in a secure room [16]).
Outside of this scenario, it must be assumed that parties either already have a
pre-shared secret (via the existing secure channel), or have access to a trusted
third-party entity carrying a pre-shared secret for each registered party in the
system (as seen in Kerberos [65]) [15]. Thus, for symmetric AKE, it can be
assumed that both parties have already been provided with an identical master
key as a pre-shared secret, prior to the session key generation.

If a symmetric AKE protocol is designed to include a trusted third-party along-
side parties Alice and Bob, then this entity will randomly generate a unique
session key for the session and distribute two packages to Alice; one package
containing the session key encrypted by Alice’s master key, and the other pack-
age the session key encrypted by Bob’s master key. Alice can then decrypt her
packet and forward the other to Bob to decrypt by his own master key. If the
AKE protocol does not include a trusted third-party, then the communicating
parties must individually derive a session key using their master key (and some
additional information like an exchanged random nonce to prevent replay at-
tack [9]) via a key derivation function. The key derivation function works by
applying a pseudorandom function via a cryptographic-secure MAC to produce
a random or statistically near-random key suitable as a session key [20]. If the
key derivation function successfully generates an output computationally indis-
tinguishable from uniform randomly-distributed data, an attacker will have to
resort to exhaustive search over the space of session keys to recover the master
key which was used as input [20]. Thus, the key derivation function is intended
to protect the pre-shared master key even whilst the session keys are used in
further encryption and decryption of session data.

In asymmetric AKE, public-key algorithms such as the Diffie-Hellman protocol
[25] allow for key agreement without a pre-shared secret between the commu-
nicating parties. Via Diffie-Hellman, parties can jointly establish a session key
over an insecure channel without relying on any prior shared information.

4

Due to the unique construction of public keys, however, asymmetric encryption
is much less efficient than symmetric encryption [80]. As such, asymmetric cryp-
tosystems in practice often use public key algorithms to establish a symmetric
session key, for further symmetric encryption and decryption, in modern hybrid
cryptosystems such as TLS [73].

Authentication

Symmetric cryptosystems rely on message authentication codes to provide data
origin authentication (and data integrity) [80]. A message authentication code
is a family of functions parameterized by a key which produces a fixed-length
output for a given variable-length input. Given a key and message, it is com-
putationally easy to produce the respective MAC output, but without the key,
it is computationally infeasible to generate the MAC output for a specific input
[15]. MACs are resistant to chosen-plaintext attacks, which means that even if
an attacker is able to view the MAC output for any number of chosen plaintext
inputs, they can still cannot deduce the key [80]. In the context of a symmet-
ric AKE protocol, a party Alice can prove to party Bob that she possess the
pre-shared master key via a MAC. To do so, Alice uses her master key as the
key parameter in a MAC function with an encrypted message as input, then
sends Bob both the encrypted message and the MAC output. Bob uses his own
master key to parametrize the same MAC function, and passes in the encrypted
message as input. He can then compare the generated MAC output to the re-
ceived MAC output from Alice. If they are identical, then by the property of
MACs, Alice must have used the same master key as well.

Digital signatures [75] are the public-key variant of message authentication
codes. In this authentication paradigm, a service’s identity is associated with its
public key, in the way that a person is associated with their registered ID card or
passport. Modern systems like TLS use the X.509 standard [22] for digital sig-
natures. In this standard, a certificate authority (CA) is entrusted with issuing
certificates containing the name and public key of a registered service, encrypted
by the CA’s private key to form a digital signature. Entities accessing such ser-
vices are already provided with the public key of trusted certificate authorities,
and upon reception of a service’s digital certificate, can decrypt the signature
by the specified CA’s public key to verify that the service name is registered
with the service’s public key [80]. As mentioned, this method for authentication
relies on the trusted third-party authority and uses registered public keys as a
proof of identity. It is notable that in this algorithm, the private key is used for
encryption and the public key for decryption.

Forward secrecy

We discussed the key-derivation function which uses the master key to produce
a different session key per communication session. By Kerckhoffs’ principle,
however, the mechanics of the key-derivation function itself are assumed to be
publicly known; if the master keys are compromised during session instance i,
then not only can the session key at instance i be computed, but so can ses-

5

sion keys from previous instances i − 1, i − 2, etc. An AKE protocol which is
designed to prevent this scenario has the property of forward secrecy [15]. Sym-
metric AKE protocols may use a key-evolving scheme to periodically update or
transform the master keys, either after each session or at set time intervals [40].
The former is more appropriate for protocols which do not support concurrent
AKE sessions between parties, i.e. smart cards or security tokens [40]. The
latter design is intended for a setting such as the Internet, where two routers or
two gateways, for example, support multiple AKE sessions running in parallel.
In this scenario, assuming that each party carries a single long-term master key,
evolving the master key after one of its AKE sessions finishes would render the
other active session invalid [40].

One issue which arises with key-evolving schemes is that of synchronization If
the master key is updated repeatedly, it may happen that one party updates
after instance i−1 while the other fails to do so. If this party is behind one step
at instance i, and its master key is still at instance i− 1, then the intruder may
seize its master key and decrypt communication from session i− 1; this breaks
the protocol’s forward secrecy. To address this, symmetric AKE protocols may
have each party carry a clock or counter to keep track of the session number,
with which to track its master key’s evolution [9]. Alternatively, the protocol
may also include in each AKE session a simple check between parties to verify
that master keys are synchronized, and provide a re-synchronization mechanism
if the check fails [9].

There exists a variety of key-evolving schemes in the literature, but they com-
monly emphasize the importance of a non-invertible function which makes it
infeasible to derive a past master key from a current version [40]. Should a key-
evolving scheme not provide this property, an intruder would be able to compute
past session keys from a compromised master key, and decrypt past communi-
cation; this breaks the forward secrecy property. An appropriate choice for the
key evolution scheme would be an ideal hash function, having the properties of
one-wayness and collision resistance [40].

1.1.4 Vulnerability of AKE Protocols to Quantum Com-
puting

As mentioned in section 1.1.2, the security of both symmetric and asymmet-
ric AKE protocols is affected by advances in quantum computing. Efforts by
governmental agencies and research institutes to adjust modern cryptographic
standards to reflect developments in quantum technology signify the limitations
of current cryptosystems and protocols. The European Technology Standards
Institute (ETSI) began an initiative in 2015 to upgrade communications proto-
cols with ‘quantum safe’ cryptography – protocols secure against both quantum
and classical computers [19]. In 2016, the National Institute of Standards and
Technology (NIST) of the United States Department of Commerce followed
suit with their own initiative [21]. The reasoning behind both movements was

6

similar - given the time required to develop post-quantum methods and to inte-
grate them into existing infrastructure, it would be imperative to begin the shift
to post-quantum methods without delay. As of July 2020, NIST had already
completed two rounds of review to narrow down submitted techniques for final
selection and standardization [3].

Although asymmetric protocols are more heavily endangered by quantum com-
puting, NIST also advises upgrading existing symmetric protocols to reflect the
quantum vulnerability. It recommends that symmetric algorithms, even reli-
able and trusted industry standards like Advanced Encryption Standard [26],
use larger keys for additional protection [2]. As mentioned in Section 1.1.2, this
means actually doubling the size of a symmetric key, i.e. using a 256-bit key to
achieve the security of a 128-bit key, and thereby compensate for the speedup
provided by a quantum algorithm.

Since quantum algorithms demonstrate the theoretical ability of sufficiently
powerful quantum computers to jeopardize modern key exchange and digital
authentication, it is significant to note the current reliance of both symmetric
and asymmetric protocols on computationally hard problems. We note that in
cryptography, there are two types of security - (1) the computational infeasi-
bility of breaking a cryptographic system, and (2) the theoretical infeasibility
of breaking it, even using infinite computing power [63]. The latter is termed
information-theoretic security, and is considered stronger than computational
security [63].

There are certain assumptions under which computationally hard algorithms
guarantee security, which also demonstrate their limitations. First, typical com-
putationally hard algorithms are believed to belong to the class NP; it is widely
believed but not proven to be true that NP-complete algorithms cannot be
broken in polynomial time, remaining an unproven intractability assumption
[74]. Second, they assume an adversary attempting to break the underlying
algorithm has limited computational power, and is unable to efficiently solve
problems outside the computational class P [74]. In principle, however, security
relying on computational assumptions can theoretically be broken.

The theoretical assumptions of computational security influence how problems
underlying symmetric protocols, like brute-force key search, are vulnerable to
quantum algorithms. The latter assumption of limited computational power is
particularly troublesome as researchers and industry partners come closer to
achieving quantum computers capable of outstripping their classical counter-
parts for certain types of problems [21]. For example, solving the brute-force
key search problem is dramatically quicker on a more powerful quantum device
applying Grover’s speedup algorithm [34].

Within this thesis, we point to the theoretical limitations of computational se-
curity in dealing with more computationally powerful adversaries, such as a
quantum device. Essentially, as computing power continues to increase
at a very fast pace, cryptographic security based on computational

7

hardness cannot be persistently guaranteed from a mathematical per-
spective [93]. This is in contrast with information-theoretic security, which
provides AKE protocols an appropriate paradigm for protection against even
unconditionally powerful adversaries.

1.2 A Multi-Agent Formulation of Symmetric
AKE

Given how the limitations of computational security affects the vulnerability of
traditional AKE protocols to quantum advancements (and resulted in the mi-
gration to quantum-safe AKE methods), this thesis emphasizes symmetric
AKE based on information-theoretic security instead. This is a secu-
rity paradigm which places no bounds on an adversary’s computational power
and is itself quantum-safe [93]. The thesis achieves this by introducing a novel
formulation of symmetric AKE relying on the use of intelligent agents which
interact within a multi-agent system.

In the context of distributed artificial intelligence, an agent is defined as a
computer system situated in some environment possessing the capability of au-
tonomous action in this environment to achieve its design objectives [96, p. 29].
Such an agent can be called an intelligent agent when it is able to react ap-
propriately to changes in the environment, exhibit goal-directed behaviours by
taking the initiative, and have the social ability to interact with other agents
in the environment [96, p. 32]. Such agents operate by behavioral models in an
environment called a multi-agent system, which is usually both computational
and physical. They allow agents to operate effectively and interact with each
other, providing the computational infrastructure for such interactions to take
place, as well as the protocols for interaction [96, p. 79].

This thesis introduces a novel formulation of secure authentication and
key agreement as a multi-agent system, where communicating parties are
treated as autonomous agents whose behavior within the protocol is governed
by private agent models used as the master keys. It provides a symmetric AKE
protocol named the AMI protocol (Authentication via Multi-Agent Interaction)
wherein parties engage in a multi-agent interaction process to build interaction
transcripts used for: (1) authentication, (2) generation of session keys, and (3)
a key-evolving scheme for forward secrecy.

During the interaction process, parties use data drawn from their master key
in a way which minimizes publicly observable information while still allowing
them to achieve high-confidence authentication and key agreement. The nature
of this multi-agent interaction process means that the problem underpinning
AMI’s security is model reconstruction, instead of brute-force key search,
as the most direct key recovery strategy. This problem aligns with information-
theoretic security instead of computational security, as solving it requires a suf-

8

ficient amount of observed data which the protocol never publicly reveals. The
use of additional computational power, even the aid of a quantum device, does
not aid in resolving this type of problem. Hence, AMI’s underlying problem de-
parts from computational hardness and focuses instead on missing information
(i.e. model reconstruction) for its security.

In the following sections, we describe the AMI protocol’s unique formulation of
keys, party-to-party interaction, authentication, key agreement, and key evo-
lution. We describe how these functions differ from their counterparts in tra-
ditional symmetric AKE. We also describe how their construction relates to
aspects of information-theoretic security, such as how data is drawn from mas-
ter keys and then shared between parties, and what the implications are for
AMI’s secure authentication and key agreement mechanisms.

1.2.1 Agent Models as Master Keys

The AMI protocol allows for flexible choice of behavioral model as the long-term
master key; this thesis focuses mainly on the use of probabilistic decision trees,
as well as neural networks. Just as in other symmetric AKE schemes, it is as-
sumed that parties have already been provided the master keys as pre-shared
secrets. The difference between traditional master keys in the AKE literature
and probabilistic behavioral models is that the latter can be used to produce sam-
ples for the multi-party message exchange, formulating an interaction transcript
consisting of samples from the master keys of both parties. The probabilistic
nature of the agent models used in AMI means that parties can sample from
the master key for message exchange while minimizing the number of messages
sent, to avoid directly revealing the model parameters themselves. AMI also
provides a tuneable entropy parameter in the random generation of behavioral
models, to affect the difficulty of recovering the model parameters from
produced samples. This is the most straightforward method for key recovery
against AMI, as opposed to a brute-force search in the keyspace.

To build an interaction transcript in each session, parties proceed through an
interaction process of specified length, exchanging messages at each step. For
message exchange, behavioral models (the master keys) are formalized as func-
tions mapping a past interaction history to a probability distribution over a
shared action space. In the multi-agent literature [5], the output of an agent
model may have complex dependencies on the interaction history. If each party
keeps private the dependencies of its model’s output with respect to the interac-
tion history, this would aid in further obscuring the model parameters. However,
this thesis follows Kerckhoffs’ principle and makes public which aspects of the
history are used as dependencies for model output. In the AMI protocol, a party
uses a (public) sliding window parameter to condition its behavioral model on
the k most recent actions received from the other party’s model.

9

1.2.2 Interaction Between Parties

The AMI multi-agent interaction via (probabilistic) agent models generates in-
teraction transcripts which are then used as input to an authentication test to
verify a party’s identity. This interaction process differs in design to multi-party
interaction and authentication traditionally seen in symmetric AKE, and is more
similar to an interactive proof system, formalized in [31]. The interactive proof
system in [31] describes a two-party interaction between a computationally un-
bounded prover and polynomial-time verifier, where the prover tries to convince
the verifier of an input x’s membership in a language L. In each round of the
interaction protocol, the verifier randomly issues a challenge with respect to a
specific problem (i.e. quadratic residuity), to which the prover responds with a
random possible solution. The verifier then verifies the solution in polynomial
time, and either halts if incorrect, or repeats the protocol with another challenge
specific to the same problem. The verifier may repeat the protocol for multiple
rounds, then check the solutions from all rounds - if multiple solutions must be
all correct for the proof to be accepted, this has a lower probability of error than
checking a single solution which may be correct, despite x /∈ L. An interactive
proof system is called a zero-knowledge system if, during the interaction process,
the prover does not reveal anything more to the prover than whether the input
x has membership in the language L [31].

The AMI protocol’s interaction stage is similar in design, whereby at each time-
step of the interaction, the server issues a challenge randomly sampled from its
behavioral model, to which the client responds with a possible solution sam-
pled from its own model. Of course, each challenge-response step in AMI is not
to solve a specific problem like quadratic residuity, but rather to provide the
expected output (the response) given a certain input (the challenge). The ben-
efit of this sampling-based interaction is that unlike traditional symmetric AKE
where the master key may be sent across the communication channel (albeit
hashed via a MAC function), the exact master key itself in its entirety is never
sent by either party during the AMI interaction stage, hashed or otherwise.

A noticeable difference, however, is that the AMI authentication process does
not posses the zero-knowledge property, although it may seem that it does.
Certainly, the general idea of the AMI interaction is to demonstrate knowledge
of the master key without revealing the master key itself. However, by the
definition of zero-knowledge in [31], where the verifier must learn nothing from
the prover except that x ∈ L, the AMI interaction does reveal more than just the
correctness or set membership of a master key. Its sampling procedure reveals
limited information about the master key’s parameters.

1.2.3 Authentication Tests

The main difference from the proof system in [31] is that the server does not
verify the client’s solution at each time-step - it verifies the entire transcript of

10

solutions via its authentication test once the interaction stage has completed.
This is due to the output of agent models as a distribution over the action space,
with respect to the input.

This thesis provides and evaluates two different authentication strategies - it
relies principally on a test utilizing statistical hypothesis testing [6], and in-
vestigates another based on neural networks. The principal hypothesis testing-
based authentication differs in construction from the message authentication
codes typically seen in symmetric AKE. Authentication via MACs compares
two master keys by comparing their output when parametrizing a MAC function
using identical input variable. In this construction, a server party receives from
the client party both an encrypted message m and the output of a MAC func-
tion, yc = MACkeyc(m). The server party will produce its own MAC output,
ys = MACkeys(m), using its own master key keys. If ys == yc, then the server
may confirm that keyc == keys. However, in the AMI protocol’s hypothesis-
testing authentication, the server party uses samples from the client’s master
key, samplesc ∼ keyc(), to determine if they are statistically similar to sam-
ples from the master key carried by the server, sampless ∼ keys(). Given that
master keys in the AMI design are probabilistic models, and that samplesc and
sampless are randomly drawn, the samples cannot be directly compared for
equality and instead the probability of their source (the master keys) being the
same must be computed. This is certainly a different construction than the
direct comparison seen in the MAC-based mechanism.

We also investigate authentication via a neural network-based binary classifier,
which is pre-trained on samples from the client and server parties’ master keys.
The novelty here is that the neural network is a learnable test function. It learns
its own parameters (for the authentication decision) during the training process,
and does not require a manually-defined criteria for the binary decision as the
hypothesis test does. Interestingly, once the training process is complete, the
neural network classifier no longer requires a master key to make an authentica-
tion decision on an interaction transcript - the information required is already
encoded in the parameters of the network itself.

1.2.4 Key Agreement

Once parties share a secret symmetric key, established either via an asymmetric
key-establishment scheme (in a hybrid AKE protocol) or from a pre-shared
secret (in a symmetric AKE protocol), they generate from it a session key
suitable for the protocol’s choice of encryption algorithm. This is done by the
use of a key derivation function [15, 20]. We refer to the original symmetric key
shared by parties as the derivation key, and the output of the KDF as the session
key or derived key. Key derivation functions iterate an underlying function by
which derived keys are produced, increasing the cost of exhaustive search [47].
For example, even a modest number of iterations such as 1,000 would not be
a burden for a legitimate party to compute its session key, but would be a

11

significant burden for an attacker to recover the derivation key [47, 20]. The
cryptographic strength of the KDF is measured by the amount of work required
to distinguish the derived key from a truly uniformly distributed bit-string of
the same length [20].

Symmetric AKE schemes such as [9] may simply provide the long-term master
key as the derivation key. The AMI protocol, however, faces a trade-off between
size and security when it comes to the probabilistic models used as master
keys. The larger and more complex the model, the more secure the multi-
agent interaction process. A model with more parameters makes opponent
modeling from limited observations more difficult. It is thus more prudent to
use a subset of parameters from the model, rather than the entire model itself,
as the derivation key for the KDF. The AMI protocol thus provides a suitable
function parametrized by the interaction transcript and the agent model to
select a subset of model parameters. This output can then be passed through
a cryptographic hash function as a suitable derivation key. Derivation keys are
recommended to be either truly random or computationally indistinguishable
from uniform random [20].

1.2.5 Protocol Security

The study of how a hidden key can be discovered within the keyspace of possible
keys is a central theme in symmetric AKE, and thus one of the themes of this
thesis. We focus more on recovery of the master key than the ephemeral session
key, as the session key is already protected by the cryptographic hash function
applied in the AMI protocol’s key agreement function. Traditional symmetric
AKE protocols face challenges from brute-force key search, a computationally
difficult problem for intruders when facing a large keyspace. The AMI protocol’s
novel choice of probabilistic agent models as master keys, however, means that
the problem facing an intruder is reconstructing the (large and complex) master
key from a limited number of random samples. This problem of model recon-
struction in a complex domain is a long-standing problem in the AI community,
known as agent modeling or opponent modeling [5]. In a multi-agent system,
an intelligent agent will constructs models of other agents to reason about their
behaviors, goals, and beliefs, in order to inform its own decision-making within
the system [5]. In the cryptographic confines of the AMI protocol, the oppo-
nent modeling problem is more aligned with information-theoretic security than
complexity-theoretic security, as the protocol makes no assumptions about the
computational limits of an attacker, even affording it infinite computing power
[63]. This assumption is a key property of information-theoretically secure cryp-
tosystems [63].

If agent models are used as master keys, the problem is fundamentally one
of missing information regarding causality in an agent’s decisions (the random
samples used for message exchange), which is difficult to extract from limited
observations. Even with a publicly known agent model structure (abiding by

12

Kerckhoffs’ principle), inferring exact model parameters from a brief interaction
transcript is infeasible, given a complex model with large parameter spaces. We
conjecture that even the additional computational power provided by a quantum
computer (i.e. Grover’s algorithm for quadratic speedup in search) will not aid
an attacker in successfully solving the problem of missing information.

1.3 Thesis Contribution: Technical Chapters

Thus we conclude the discussion of the AMI protocol as a multi-agent formula-
tion of symmetric AKE, and turn towards this thesis’ specific contributions, as
detailed in the following technical chapters. These chapters detail the different
components of the AMI protocol, describe its security and security features, and
finally conclude with a software package for its application:

(Chapter 2) Related Works
We include a chapter on related works to compare and contrast the AMI pro-
tocol with other symmetric AKE protocols in the literature. This chapter also
discusses more advanced key recovery methods for resolving the AMI key recov-
ery problem. It then details relevant research which applies multi-agent systems,
agent-based modeling, and game theory to the fields of security and cryptogra-
phy. Afterwards, it explains some differences between biometric authentication
and the AMI protocol’s agent-based approach. Finally, it discusses the con-
struction of the AMI protocol in light of other relevant cryptographic protocols.

(Chapter 3) A Multi-Agent Formulation of Symmetric AKE
This chapter introduces agents and multi-agent systems in some detail. It then
describes a multi-agent formulation for communicating parties, detailing the
agent internal designs, as well as the probabilistic behavioral models which gov-
ern their behavior within the AMI protocol. The chapter also presents the multi-
agent interaction protocol for party-to-party message exchange, and describes
the format for interaction transcripts generated from the message exchange.

(Chapter 4) Primary Authentication Test and Key Agreement based
on Multi-Agent Interaction
This chapter provides the metrics with which to individually evaluate and also to
compare different authentication tests. The metrics include adversarial strate-
gies such as: a random strategy which chooses actions randomly and makes
no attempt to mimic a legitimate client party, a replay strategy which replays
the actions of a legitimate client observed in a past session, and a maximum
likelihood estimation (MLE) strategy which selects actions from an estimate of
a legitimate client’s model constructed from its observed actions during a past
session.

It then provides a primary authentication method via a statistical hypothesis

13

test from [6] and describes the benefits of this approach, including its inter-
pretability. It presents this method’s strong performance on the evaluation
metrics to demonstrate its feasibility, and describes which of its parameters
affect this performance.

The chapter continues with a key generation function provided for the AMI
protocol, which derives symmetric session keys after the authentication stage.
This method selects a subset of model parameters from the master key via the
interaction transcript in computing an appropriate cryptographic key for a key
derivation function.

(Chapter 5) Alternative Authentication Test: Neural Network
Classifier
This chapter investigates an alternative authentication test based on a neural
network classifier. It details the benefits of such a test, such as how it is learn-
able, and also how a pre-shared master key is not longer required during the
authentication stage. It also discusses two different training processes for the
test - one based on supervised learning, and the other on generative adversarial
networks. The results of each training process on the evaluation metrics are
shown, and an analysis of the results are provided, including how feasible this
neural network-based test may be.

(Chapter 6) Information-theoretic Security
This chapter explores the AMI protocol’s information-theoretic background in
more depth. It begins by describing the limitations of computational security,
and explains why AMI is more aligned with information-theoretic principles. It
then provides an overview of relevant information-theoretic AKE protocols from
the literature, and how they compare to AMI.

The following sections state the characteristics of info-theoretic protocols, and
explain how AMI fulfills these requirements. An empirical study into the in-
formation leaked during AMI’s multi-agent interaction process describes the
difficulty of solving the opponent modeling problem (of model reconstruction).
Experiments are provided to demonstrate the protocol’s robustness to a rigor-
ous opponent modelling attempt via MLE strategy to lower the protocol’s au-
thentication accuracy. The study illustrates how the AMI protocol’s treatment
of publicly observable data follows information-theoretic principles for security
against even computationally-unbounded adversaries, or those powered by a
quantum device.

14

(Chapter 7) A Key-Evolving Scheme for the Forward Secrecy
Property
This chapter contributes a key-evolving scheme for the AMI protocol to achieve
forward secrecy, and discusses its importance in the framework of information-
theoretic security.

(Chapter 8) An Optimization Method for Security
During the AMI protocol’s message exchange stage, parties draw random sam-
ples from their master key to send each other. The security of the protocol
relies on parties providing sufficient samples for high-confidence authentication,
while minimizing the number of samples sent. The question arises - specific to
a party’s master key, are some samples more significant than others, such that
authentication can be performed with fewer exchanged samples overall? If so,
how can such higher-quality samples be found for a given master key? Addi-
tionally, does the use of higher-quality samples make it easier for an intruder to
reconstruct the master key from public observations?

This chapter investigates these questions, contributing a reinforcement learn-
ing (RL)-based method to train a server neural network model to intelligently
probe a client party by sending messages which elicit higher-quality samples in
response. This training process results in high-confidence authentication deci-
sions via the hypothesis testing method, with fewer interactions between client
and server party. The chapter details the setup of the RL-based training, and
presents experimental results for its evaluation. It also analyses whether this
optimization method leads to a more effective opponent modeling attempt via
MLE attack.

(Chapter 9) Protocol Extension: Mutual Authentication
The previous chapters detailed the AMI protocol and its features for a one-way
AKE setting, where a server party authenticates a client party. An important
question for the AMI protocol is scalability - how does the protocol accom-
modate for a multi-agent system or AKE setting beyond the one-way setting?
This chapter describes how the AMI protocol can be extended to the setting of
mutual authentication between two parties.

In mutual authentication, both server party and client party apply an authenti-
cation test to a joint interaction transcript after the interaction stage, to verify
each other’s identity. If the authentication test applies the statistical hypothesis
test, then there are two sets of pre-shared master keys in the system. One set
is of the client party’s behavioral model, and the other is of the server party’s
behavioral model; each party has a copy from both sets.

(Chapter 10) Protocol Extension: Group Authentication
In group authentication, the multi-agent system has more than two parties. The
AMI protocol can be modified to provide a way for all parties to be assured of

15

all other parties’ identity, and also a way for each party to have an identical
session key for communication within the group. This chapter will describe how
this modification can be achieved.

There are two possible multi-agent system architectures: the AMI protocol may
be extended to either a centralized or decentralized design. A centralized design
consists of a single server party and multiple client parties. The server party
is responsible for individually authenticating each client party in the group,
then distributing a group session key for client parties to communicate securely
among themselves. The decentralized design consists of a group of multiple
client parties. In the absence of a server party, each client party must individu-
ally authenticate all other client parties, and compute a group session key over
joint interaction transcript. This chapter will describe how the AMI protocol
can be modified to achieve authentication and key agreement in these settings.

(Chapter 11) PyAMI: A Software Package Deploying AMI
This thesis also contributes an open-source application for agents on separate
remote machines to interact, authenticate, and generate session keys, according
to our provided protocol. The application supports architectures for different
multi-agent settings - this includes the primary setting of a server authenticating
a client, a centralized setting where a server authenticates a group of agents, and
a decentralized setting where a group of agents authenticate each individually.
Timing experiments are provided to gauge the time for a complete interaction
process between agents set in different geographic regions - they demonstrate
the potential applicability of the protocol.

(Chapter 12) Conclusion
The conclusion chapter provides a brief overview of the topics covered in this
thesis. It also highlights the thesis’ key results and contributions. Finally,
it lists several directions for future work which can build on and extend the
foundational work provided by this thesis.

1.4 Thesis Assumptions, Scope, and Limitations

The symmetric AKE protocol contributed, investigated, and evaluated by this
thesis carries a number of assumptions and limitations, which we here discuss.

Assumption of Kerckhoffs’ Principle for the AMI Protocol

First and foremost, this thesis abides by Kerckhoffs’ principle and assumes that
the only information kept hidden from the public is the master key of legiti-
mate parties. The AMI protocol’s choice and dimensions of agent models, its
multi-agent interaction scheme, the mechanics of its authentication test, its key

16

agreement scheme, and key-evolving scheme are all made public. In short, it
is assumed that the descriptions of these subtopics in their respective thesis
chapters are publicly available.

Scope and Limitations of the Adversary

We also describe the abilities and limitations of the adversary or intruder re-
ferred to in the context of our AKE setting. The adversary is modeled as having
unlimited computational power. It has the following abilities within the system:

• Observe all public messages between any parties in a session.

• Observe an unlimited number of sessions between any parties.

• Initiate an unlimited number of session between the server and itself.

The adversary is also permitted to use the following strategies to interact either
with an existing session between two parties, or with a session between itself
and the server:

• Random: The adversary will randomly generate an agent model as the
true master key. For instance, it will randomly generate a PDT with the
same dimensions and temperature as the client party’s master key. This
is one such adversarial model.

• Replay: The adversary will observe a (complete) session between a client
and the server. It will then strip the client party’s actions from the ob-
served transcript and return a deterministic adversarial model.

• MLE: The adversary will observe a (complete) session between a client
and the server. It will strip the client actions from the observed transcript
and create an Maximum Likelihood Estimate of the parameters in the
client model as an adversarial model.

The adversary may not, however, perform the following actions within the
system, for a given session between a client and the server:

• Delay messages til a later time stage.

• Replace or forge messages from either party.

• Delete a message from a party before it reaches the other.

• Open a parallel session alongside the existing session. This is not permit-
ted as the AMI protocol does not support concurrency.

17

Scope of the AMI Protocol’s Key Agreement Scheme

With respect to key agreement for the AMI protocol, this thesis does not strictly
mandate a certain key derivation function (KDF) for further symmetric en-
cryption, nor does it discuss the encryption stage in any depth, but it does
recommend PBKDF2 [47] as the KDF for producing the final encryption key.

Limitation of the AMI Protocol’s Key-Evolving Scheme

This thesis provides a key-evolving scheme (KES) by which involved legitimate
parties may transform their master key for the AMI protocol to achieve the
forward secrecy property. However, the protocol does not address the synchro-
nization issue which may arise in symmetric KES, whereby a party may fail to
evolve its master key after a session, resulting in it becoming desynchronized
with the other party’s master key. As such, legitimate parties in the AMI pro-
tocol do not keep synchronized clocks to track the system time or number of
sessions, nor does the system carry a universal clock to do so.

Scope of the AMI Protocol’s Proof of Security

This thesis discusses and provides an empirical, rather than theoretical, investi-
gation into the security of the AMI protocol, with respect to the three different
adversarial strategies mentioned. The key-recovery strategy tested is model re-
construction via a Maximum Likelihood Estimate. The thesis does not provide
a formal cryptanalysis discussing all possible points of failure within the AKE
protocol

With respect to the quantum-resistance of the AMI protocol’s, this thesis pro-
vides a conjecture for quantum security based on the opponent modeling prob-
lem, in the context of information-theoretic security. It does not provide a formal
proof for the protocol’s defense against an efficient key-recovery method powered
by a quantum device. Rather, it reasons for resistance against a quantum-based
attack in the way of other methods in the post-quantum literature [21], which
point to the lack of any existing quantum algorithm which efficiently solves the
underlying problem in their construction.

18

1.5 Publications

The details of the AMI protocol (and the RL-based optimization method) ap-
pear in the following publication:

• Ahmed, I. H., Hanna, J. P., Fosong, E., and Albrecht, S.V. “Towards
Quantum-Secure Authentication and Key Agreement via Abstract Multi-
Agent Interaction.” In Proceedings of the 19th International Conference
on Practical Applications of Agents and Multi-Agent Systems (PAAMS),
2021.

19

Chapter 2

Related Works

Several chapters in the thesis already include a discussion of relevant protocols
or methods from the respective literature. Section 4.3 in Chapter 4 mentions
key agreement methods from other symmetric protocols. Chapter 6 includes an
in-depth description of alternate information-theoretic key agreement protocols
based on noisy channels. Chapter 7 compares the AMI key evolution mecha-
nism with others from relevant symmetric protocols. Chapter 10 describes with
detail the design of different group AKE protocols, for both centralized and
decentralized systems.

In this chapter we discuss some of the topics which this thesis touches upon, the
most relevant being other symmetric AKE protocols. This chapter situates the
thesis’ contribution within the existing literature, provides examples of existing
research on traditional methods, and explains what makes our contribution novel
in comparison.

We begin with some traditional symmetric AKE protocols which are relevant
to AMI, comparing their mechanisms for authentication, key exchange, and key
evolution. We then focus more narrowly on protocol security - namely, the
underlying problem providing AMI’s security, and how this problem is more
aligned with information-theoretic security than computational security. We
discuss relevant state-of-the-art strategies for resolving this problem, which are
more powerful than those studied in Chapter 6, yet still ineffective against
information-theoretic security; this demonstrates the benefits of this security
paradigm.

This chapter then reviews the application of multi-agent systems in computer
security, and more specifically, cryptography. The latter includes relevant work
from agent-based modeling and game theory. Afterwards, it discusses biometric
authentication and how this paradigm differs from the AMI protocol’s agent-
based approach. Finally, it discusses where the AMI protocol’s multi-agent
interaction best fits amongst relevant cryptographic protocols.

20

2.1 Symmetric Authenticated Key Exchange

2.1.1 Kerberos

In the literature on symmetric AKE protocols [80], the early Needham-Schroeder
and its later variant, the popular Kerberos, were termed ‘third-part key ex-
change protocols’. As opposed to their public-key counterparts, which relied
on publicly available public keys for the key exchange, these protocols trusted
a third-party which contained a long-term symmetric key unique to each user
registered with this entity. For example, when a given party Alice wanted to
establish keys with Bob, she would entrust the third-party to randomly gen-
erate a session key K, encrypt the session key by both her user key, KA and
Bob’s user key KB , and deliver to her both as: {EA(K), EB(K)}. She would
then interact with Bob to deliver his package {EB(K)} while preventing replay
attacks.

We now look more closely at the Kerberos protocol [65] - the following descrip-
tion is a high-level overview which focuses on the authentication and session
key establishment. It is not an exhaustive description of the protocol’s mechan-
ics. In Kerberos, the client and server rely on a trusted third-party called the
Key Distribution Center (KDC), which operates both an Authentication Server
(AS) and Ticket-Granting Service (TGS). The Authentication Server shares a
long-term symmetric secret key with each registered user in the system. An en-
tire Kerberos protocol run (the authentication and key establishment) includes
three parts:

1. In the first part, a client requesting service will first connect to the Au-
thentication Server under some client ID and receive a client-TGS ticket
to be passed on to to the Ticket-Granting Service; this ticket contains
numerous items including the client ID.

2. In the second part, the client will approach the TGS with both the client-
TGS ticket, its own client ID, and the service server it wishes to access.
The TGS will verify that the ID from the client matches the ID in the
client-TGS ticket provided by the Authentication Server, to authenticate
it. It will then provide the client both a client-server session key and
client-service server ticket to be passed on to the service server; this ticket
contains the client ID and a client-server session key.

3. In the third part, the client will approach the service server and pass on
the client-server ticket from the TGS, as well as its own ID. The service
server will verify that this ID matches the ones in the client-server ticket,
to authenticate the client. The service server will receive the client-server
session key from the ticket for encrypted communication.

We see that in Kerberos, it is the trusted third-party (the Key Distribution
Center) which carries a long-term symmetric key with all registered users - this

21

symmetric key is not initially shared between the client and server parties. The
KDC also randomly generates and distributes the session keys for encrypted
client-server communication - it provides the session key to the client first, after
which the client securely passes it on to the server in the form of an encrypted
ticket. The authentication of the client is done by the KDC (for it to receive the
session key), and of course, also by the service server. The proof of the client’s
identity happens in these two steps - it first proves to the TGS that it posses the
long-term symmetric key shared with the Authentication Server, then it proves
to the service server that it is trusted by the TGS.

Comparison to AMI

The benefit of Kerberos’ use of the third-party is that the client and server do
not need to establish a pre-shared secret. The AMI protocol, in comparison,
follows the symmetric format where both parties use their pre-shared secret to
authenticate and establish session keys. Authentication in AMI is also done by
proof of possession of the long-term secret, but the comparison is more direct;
parties provide random samples from their long-term master keys, then compare
the samples for key equivalence. The Kerberos authentication focuses less on
direct comparison of master keys, and requires the client to be trusted by the
third-party before it can access the service server.

For key establishment, the AMI protocol has parties derive their session key
from the long-term. In Kerberos, the session key is generated randomly by the
ticket-granting server. Another difference is that Kerberos in its basic form does
not provide perfect forward secrecy [65], whereas AMI follows a key-evolving
scheme to update long-term keys after each client-server session. Kerberos also
has strict time requirements and required clocks to be synchronized within a
specified limit. The AMI protocol does not have strict time requirements for
messages exchanged.

2.1.2 Secure Authenticated Key Exchange (SAKE)

The SAKE protocol by Avoine et al. [9] consists of a single session which
includes mutual authentication, key exchange, and synchronized update of the
master keys. The protocol is performed between parties A and B, wherein A is
designated as a protocol initiator, while B is the responder. Unlike Kerberos,
there is no third-party which assists in authentication or key establishment. The
SAKE protocol separates long-term master keys for the primary authentication
step, and long-term master keys for the session key derivation step. Party A, the
initiator, maintains for authentication a set of keys {K ′j−1,K

′
j ,K

′
j+1} and for

key derivation, simply {Kj}. Party B simply carries {K ′j} for authentication
and {Kj} for key derivation. Note the keys are labeled with value j as the
epoch.

Avoine et al. define the synchronization problem as occurring when one party

22

fails to evolve the derivation master key Kj at a given epoch. This breaks
the property of forward secrecy, as then one party carries derivation key Kj

while the other carries Kj−1. An intruder may compromise the latter party and
decrypt communication from the session at epoch j−1, due to the party at fault
not evolving the derivation key to Kj . SAKE is termed a self-synchronizing
protocol, as it bounds the desynchronization between parties within a single
epoch. This is defined as a synchronization gap δAB , where δAB ∈ {−1, 0, 1}
epochs. The protocol updates the separate authentication master key K ′j at the
same time as the derivation key Kj , which allows it to use an authentication
master key to check for a synchronization gap.

During the primary authentication stage, the initiating party A requests party
B to send a MAC of its authentication key K ′j . Party A then uses its own
authentication key set {K ′j−1,K

′
j ,K

′
j+1} to compare with B’s K ′j , and compute

δAB . Party A then follows one of the following cases:

• If A and B are in sync (δAB = 0), then A simply computes the current ses-
sion key (from Kj) and evolves all of its master keys. It sends notification
to B to do the same.

• If A is ahead by one epoch (δAB = 1), A requests B resynchronize and
waits until B updates its master keys to catch up. Then, both parties are
in sync and both compute session keys and evolve all master keys.

• If A is behind by one epoch (δAB = −1), A updates its master keys to
catch up. Once both parties are in sync, they then compute session keys
and evolve all master keys.

Comparison to AMI

In SAKE, authentication is done by sending a MAC of the authentication mas-
ter key K ′j , and some additional information. For example, in the case where
δAB = 0, the initiator A first sends B the notice: A||rA, where rA is a variable-
length binary string. Then, B replies with: MAC(K ′j , B||A||, rB ||rA), which
provides B’s authentication via the MAC of its authentication master key, the
two party ID’s, and the two party’s random nonces. In contrast, the AMI pro-
tocol does not use MACs to compare master keys. It does, however, utilize an
interaction transcript generated between both parties as a sort of random nonce
(the transcript contains random samples).

Session keys in SAKE are derived from the derivation master key, Kj , via a
Key Derivation Function (KDF). The format is: keys ← KDF (Kj , f(rA, rB)),
which also includes random nonces from both parties as input to the KDF. The
function f() could be rA ◦ rB , for example. The AMI protocol also derives
session keys using a KDF. However, instead of simply passing the entire master
key to the KDF, it select a subset of its parameters to pass through instead.

23

This is due to the AMI protocol’s use of (larger) agent-based models as master
keys.

Key evolution in SAKE is applied to both authentication master key and deriva-
tion master key. SAKE uses a non-invertible pseudo-random function to evolve
keys: PRF (Kj) and PRF (K ′j). The PRF produces an evolved key which is
computationally indistinguishable from random data, and which cannot be re-
versed to the previous key. The use of a PRF helps it maintain the pseudo-
random property in every evolution. The AMI key evolution scheme does not
use a PRF to transform the entire master key. It instead uses a pseudo-random
number generator (PRNG) to generate fresh parameters for (a subset of) the
shared master key.

Of course, the other outstanding difference is that AMI does not address the
synchronization issue in the forward secrecy feature. SAKE is notably unique
among synchronization handling for symmetric AKE protocols, as it keeps two
separate (and evolving) types of master key for authentication and key deriva-
tion - as mentioned, the authentication master key is used by the initiator to
compute a possible synchronization gap.

2.1.3 Forward-Secure Authenticated Key Exchange (FOR-
SAKES)

In [40], Dousti and Jalili introduce a Forward-Secure Symmetric Authenti-
cated Key-Exchange protocol (FORSAKES). Their goal is to use a key-evolving
scheme applied to long-term master keys in a lightweight scheme designed to
replace the heavy modular exponentiation operation of Diffie-Hellman. FOR-
SAKES is intended for an authenticated key-exchange setting which supports
multiple concurrent sessions between two parties. Its forward security mecha-
nism is run by a universal clock which updates all long-term keys in the system
at regular time intervals.

Note that in a symmetric protocol, the evolution of long-term keys (LTKs) may
done in two possible ways:

1. LTKs are updated after a specific event in the system - for example, after
the establishment of ephemeral session keys.

2. LTKs are updated at specific time intervals. This preferable for a KES
which supports concurrent AKE instances between two parties. If LTKs
were instead updated after a specific event (such as a session completion),
the following scenario may arise: if one of the concurrent instances com-
pletes ahead of the other and evolves the LTK, it may render the other
session instances invalid.

The FORSAKES protocol itself is quite simple: it is set between an Initiator
and a Responder, between which there are only three interactions:

24

1. Initiator sends MSG1 to Responder.

2. Responder replies with MSG2||AUTH2, which is the second message
along with its hash for message integrity. Initiator verifies the integrity of
MSG2 by applying the same hash function and comparing with AUTH2.

3. Initiator replies with MSG3||AUTH3, again a message alongside its in-
tegrity check.

Note that the hash function referred to here is a cryptographically secure ideal
hash function used to implement a random oracle. This ideal hash function
(representing the random oracle) is also used in FORSAKES to evolve long-
term keys. In the larger context of cryptography, a random oracle model is an
idealized model which treats a cryptographic hash function as a truly random
function [49].

Comparison with AMI

FORSAKES uses the same long-term master key for both authentication and
key agreement, so parties initially compute both an integrity key and a session
key, using the long-term key (LTK) and the session ID (sid). The session key
is computed: sk ← O(LTK||0||sid). The integrity key is computed similarly
by: ik ← O(LTK||1||sid).

With respect to authentication, the two parties send each other authentication
messages formatted as: MSG||AUTH, where MSG consists of variables such
as party IDs, time stage, and session ID. The AUTH variable is constructed
by: AUTH ← O(ik||MSG), which uses the integrity key. Putting this to-
gether, an authentication message is thus: MSG||O(ik||MSG). Upon receipt
of an authentication message, the receiving party can use its own integrity key
to recompute the value - this method bears much similarity to a MAC-style
authentication check seen in other symmetric protocols. The AMI protocol,
however, does not use such a straightforward check of the long-term key. Its use
of agent-based models requires a different authentication mechanism to compare
the random samples which are produced by long-term keys and then exchanged
between parties.

For key agreement, FORSAKES uses the computed session key, sk, which was
derived from the long-term key via ideal hash function. In contrast, parties
in AMI compute a parameter subset of their long-term key, then apply a hash
function and feed the hash to a Key Derivation Function (KDF) applying a
pseudo-random function. The KDF produces a session key which is computa-
tionally indistinguishable from truly random data [20]. We note that pseudo-
random functions, such as the ones used in a KDF, are distinct from ideal hash
functions and may not provide the same properties [49].

The FORSAKES key evolution is very similar to its session key derivation.

25

Again, the ideal hash function is applied to produce the evolved key: LTK ′ ←
O(LTK), such that the newly evolved key reveals no information about the
previous version. In AMI key evolution, the long term key has (a subset of) its
parameters updated via a pseudo-random number generator (PRNG) instead.
The PRNG produces fresh parameter values which appear to be from a uniform-
random distribution [49]. This parameter update is more suitable for the large
agent models (i.e. probabilistic decision trees) used as master keys in the AMI
protocol.

Another difference regarding the key evolution scheme (KES) between FOR-
SAKES and AMI is when the KES is applied. In AMI, long-term keys are
evolved immediately after key agreement (i.e. after the session key is con-
structed), which is a popular approach in many AKE schemes [40]. FORSAKES,
however, follows a different design, and applies its KES at specific time intervals,
not after specific events in the system. As mentioned in [40] such an approach
should evolve the long-term keys frequently throughout the lifetime of the sys-
tem, and the more frequently the keys are evolved, the more forward secrecy
is satisfied. In these systems, it is appropriate to have an update frequency of
once per minute, once per hour, or once per day, depending on the system’s
unique requirements.

2.2 Improved Key Recovery Strategies

Having looked at the: master keys, multi-party interaction, authentication, key
exchange, and key evolution components of related symmetric AKE protocols in
the literature, we now look more closely at the security component of the AMI
protocol. Chapter 6 describes how AMI’s underlying problem, the opponent
modeling problem, aligns with information-theoretic principles by minimizing
the public data required to solve it. The chapter’s study on key recovery at-
tempts uses Maximum Likelihood Estimation as the key recovery strategy for
reconstructing the hidden client model (i.e. the client master key).

We briefly reiterate the AMI key recovery problem from Chapter 6: to suc-
cessfully challenge the AMI authentication test, some adversary will observe
a legitimate interaction session between client and server, as they iteratively
exchange actions at time steps t = 1, 2, 3, ..., T , to build interaction transcript
HT = [s1, c1, s2, c2, ..., sT , cT]. At each time step, the client and server condi-
tion their next action on the past history, i.e. at time step t = 3, the client will
condition on Ht = [s1, c1, s2, c2] to produce c3. The adversary then formulates
adversarial model πadv as an attempt to recover the hidden master key πu, with
the intention that πadv == πu. It finally creates an adversarial transcript with
the server, posing as the client whose key it is attempting to recover. This ad-
versarial transcript HT adv = [s1, c1 adv, s1, c1 adv, ..., s1, c1 adv] is then used by
the server model in an authentication test.

We now look at more powerful state-of-the-art strategies for key re-

26

covery against AMI, to illustrate how information theoretic-secure
protocols can resists adversaries with increasing computational power.
This is opposed to protocols relying on computational security, which are vul-
nerable to such changes; this is reflected in new requirements for standardized
symmetric algorithms to increase their key size in order to maintain their secu-
rity [26].

Although MLE is a preferred estimation method among statistical estimation
techniques [27], the current state-of-the-art for a problem like model recon-
struction is the pre-trained language model (PLM), from deep learning. Recent
research in language modeling prioritizes deep learning for its computational
power and performance, over earlier approaches such as n-gram language mod-
els, which also incorporate MLE themselves [54]. For this reason, and because
we wish to challenge AMI’s information theoretic security with the best available
methods, we tailor the literature review on language models towards large-scale
PLMs and their foundation, the Transformer [91]. We also note that literature
on earlier approaches such n-grams for solving AMI’s specific problem scenario
(see Section 2.2.1) is quite limited.

PLMs are specifically designed for tasks related to language modeling, i.e. de-
termining the probability of a given sequence of words occurring in a sentence
[45]. A PLM is typically pre-trained on a large-scale unsupervised corpus, then
fine-tuned on downstream supervised tasks for state-of-the-art-results. Research
has shown that PLMs encode massive amounts of linguistic knowledge from the
given corpus and learn universal and contextual representations of language, a
difficult task given the complexity and ambiguity of human language [54]. The
architecture of a PLM is based on the Transformer model [91], which utilizes an
attention mechanism for sequence modeling. The significance of a Transformer
lies in how it can model dependencies without regard to their distance in the in-
put or output sequences; it can access any part of a sequence history regardless
of distance, making it suitable for capturing long-term dependencies [91, 56].

2.2.1 Characteristics of Key Recovery Within AMI

Of course, the existing literature on language models, (especially PLMs) for
text generation, is quite large. However, we note that key recovery against
AMI diverges from traditional text generation, the goal of which is to generate
plausible and readable text in human language [54]. The AMI key recovery
problem is a special case of natural language generation, i.e. the modeling and
generation of numerical sequences. In other words, learning the underlying
patterns and trends within a sequence of numerical values to predict the next
value. Hence, we describe time series forecasting as the closest application of
language models from the literature.

A time series is a sequence of data which is typically collected at consecutive
times, i.e. across several time stages. A time series is defined by x(t), t =
0, 1, 2, ... where t describes the elapsed time [28]. Forecasting the time series

27

means estimating the future of the series based on its past. More formally, time
series forecasting means estimating the time series value in the interval t : T
based on the past known interval 1 : t − 1 [28]. In the subsequent sections,
we describe how researchers of time series forecasting leverage the powerful
capability of language models in learning underlying representations of language
from text, towards time series data instead.

As described in Chapter 6, key recovery against AMI involves reconstructing
a probabilistic model from its observed samples (i.e. the opponent modeling
problem). The study in this chapter investigated reconstructing a probabilistic
decision tree (PDT) specifically, formulating an MLE attack by populating the
nodal distributions of an adversarial PDT, πmle, from observed interactions be-
tween the client and server. The important point here is that this observed data
reflects the structure and shape of the client model (i.e. the PDT), wherein
there are trends and patterns as the model is traversed, repeatedly arriving at
and sampling from nodes seen before in the same transcript. Certainly there are
longer-term dependencies contained with a given transcript HT , with sampled
actions at time t having a dependency on earlier actions, even from those as
early as t = 0, etc.

This type of data fits well with studies on time series data, which has an explicit
order dependence between observations, typically contains trends and seasonal
variations, and is often non-linear [28]. For example, a time series dataset on
the hourly utilization demand on a server may see cycles of high-peak demand
at certain hours of the day, as a recurring pattern over multiple days. This can
be viewed as similar to a transcript HT containing more samples from certain
nodal distributions than others, as they are traversed to in a periodic pattern
and thus appear more frequently.

2.2.2 Pre-trained Language Models for Time Series Fore-
casting

We look first at the literature on PLMs for time series forecasting. However,
the literature on state-of-the-art, large-scale, pre-trained language models ap-
plied to this task is not large. Nevertheless, we look at available examples of
such PLMs and analyze their big-data requirement during pre-training as an
essential component of their remarkable capability. This requirement is due in
large part to the unbounded nature of language contexts in a given linguistic
sequence, especially the dependencies of given values or words on other words
in the same sequence. To better grasp the intricacies and ambiguities of human
language, modern PLMs carry millions of parameters; OpenAI’s GPT-3 [17] has
175 billion parameters, 10 times more than any previous non-sparse language
model. Embedding learned features from text into these many parameters cer-
tainly requires a massive corpus containing rich, diverse semantics; GPT-3 was
trained on 570GB of filtered high-quality data [17].

28

For PLMs applied to time series forecasting, we first look at Traffic-BERT from
[43], a study which pre-trains a BERT-based model [24] on large-scale traffic
data such that it can forecast time series data for different roads. The study
emphasizes the importance of large volumes of traffic data for traffic flow fore-
casting, as opposed to existing statistical models which are limited in their
ability to process large-scale data. This contributed to the latter’s inability to
generalize their training across different roads, thus they had to be separately
trained for each individual road.

Traffic-BERT was pre-trained by forecasting the next hour of traffic flow (12
data points set 5 minutes apart) from the past hour of traffic (12 historical data
points). The pre-training dataset integrated traffic flow across numerous dif-
ferent roads from three different geographic regions (PeMS-L, METR-LA, and
PeMS-Bay traffic datasets), storing data collected cumulatively over nearly a
year of data collection. This indicates the massive size of the dataset. Sub-
sequent evaluation revealed that Traffic-BERT outperformed other baselines
including an ARIMA model (a popular model for time series forecasting), as
well as LSTM and GRU-based models, for traffic flow prediction. However,
we look more closely at an additional experiment in [43], where Traffic-BERT
was pre-trained only on the METR-LA dataset, which was more homogenous
than the original integrated dataset. This evaluation showed that Traffic-BERT
was outperformed by a group-constrained convolutional recurrent neural net-
work (GCRNN) when both were trained on the METR-LA dataset only. Yet,
when Traffic-Bert was provided with the rest of the diverse original dataset, it
was superior. This results points to Traffic-BERT’s reliance on a large-scale, di-
verse dataset for pre-training in order to achieve superiority over other advanced
models when it came to traffic flow prediction.

We also include the study which provides SITS-Former (Satellite Image Time
Series Transformer) [100]. This model was pre-trained via self-supervised learn-
ing on a massive unlabeled dataset of satellite-provided image patches, before
being fine-tuned for classification on relevant image data. The study highlights
the importance of pre-training, which here takes the form of self-supervised
learning, a technique for learning general features of a corpus which may be
missing labels due to its large volume. In [100], the self-supervised learning
task is recovering masked pixels in image patches across a set of timesteps, con-
ditioned on the image acquisition date. This teaches the model to learn the
spatiotemporal contextual relationships between the image patches to fill in the
missing content. Of course, image data is not relevant to the AMI key recovery
problem - however, the dataset is still a time series. SITS-Former’s pretraining
is performed on massive unlabeled dataset of around 1.66 million samples.

Once pre-training is complete, and SITS-Former has been additionally fine-
tuned for classification on a separate labeled dataset, the study shows the
model’s excellent performance against other advanced PLMs pre-trained in the
same manner. SITS-Former also shines especially when compared to advanced
deep learning models which were not pre-trained (they were only trained on

29

labled data for classification only), and we emphasize the importance of pre-
training on a massive corpus to achieve such remarkable classification results
over these benchmarks. [100] investigates how crucial the pre-training was,
performing a one-way analysis of variance (ANOVA) test to evaluate the null
hypothesis, i.e. whether pre-training a model does not affect the final classifica-
tion accuracy. The test results indeed statistically affirmed the importance of
pre-training.

We conclude that the potential application of a PLM like SITS-Former to the
AMI key recovery problem (which we do note is a different downstream task,
that of prediction and not classification) is greatly dependent on pre-training on
a massively sized dataset. This would certainly be a prohibitive factor against
such a PLM achieving high-accuracy in its downstream task if the pre-training
cannot be done due to limited or minimal data. The task would be even more
difficult due to the high complexity of the model reconstruction required for suc-
cessful key recovery, requiring the learned experience of a PLM both pre-trained
and fine-tuned for achieving its expected state-of-the-art performance. A simi-
lar approach to [100] can also be seen in [84], where a large Transformer-based
model is also pre-trained via self-supervised learning on a large unlabeled corpus
in order to achieve high accuracy on a further downstream classification task. In
[84], however, the self-supervised learning uses different custom-designed tasks
to learn certain features from the unlabeled data.

Finally, we include [68] to emphasize the big data requirement of PLMs - not
only do the best state-of-the-art PLMs demand massive corpora for pre-training,
but in addition, their fine-tuning requirement is another prohibitive factor in
resolving AMI key recovery. Despite the success of deep neural network models
for text generation, a major performance bottleneck historically was the un-
availability of large-scale labeled datasets; most generation methods require sig-
nificant amounts of manually labeled parallel data [54]. State-of-the-art PMLs
are limited by the need for task-specific datasets and task-specific fine-tuning:
achieving strong performance on a desired task typically requires fine-tuning on
a dataset of thousands to hundreds of thousands of task-specific examples [17].

Fine-tuning data requirements are especially relevant to AMI key recovery be-
cause if a large-scaled PLM like BERT [24] or a version of GPT [71] was applied
for this problem, the model would be fine-tuned on public observations from an
AMI session, not pre-trained. As demonstrated in the earlier studies like Traf-
ficBERT [43], PLMs typically pre-train on a (linguistic) corpus in the first stage
of training, then are fine-tuned on a more specific, relatively smaller dataset
for further downstream tasks, like text generation. Pre-training on the spe-
cific dataset itself, like with SITS-Former [100] on time series image data is not
common. It would be unreasonable to pre-train a PLM on observations from
an AMI session because the amount of data revealed therin is far too minimal.
Certainly larger PLMs like GPT-3 [17] would not find it nearly sufficient for
adequate parametrization. Hence, it would be more reasonable to pre-train a
PLM to prepare it for language generation, etc., then fine-tune it on the data

30

from an AMI session. However, as presented in the following study [68], even the
fine-tuning data requirement for time series is significant and thus a prohibitive
factor.

This point is seen in [68], which applies the generative capabilities of GPT [71]
towards modeling a multivariate time series. The resulting model, TabGPT, can
create synthetic time series data close in distribution to the original time series.
TabGPT demonstrates the application of a GPT model initially pre-trained on
a massive corpus of English-language text, to generative numerical time series
data after fine-tuning. We here note the data requirement for TabGPT to
successfully model and generate the original time series. First, the pre-training
of GPT was done on the BooksCorpus dataset of over 7,000 unique books from
a variety of genres. Second, the fine-tuning in [68] required a dataset of over
60,000 data observations. This fine-tuning data requirement, we note, would
certainly be a prohibitive factor if TabGPT was applied to AMI key recovery.
AMI seeks to reveal data observations from only a single session per client model,
which is minimal in comparison to TabGPT’s fine-tuning.

We thus conclude the section on state-of-the-art pre-trained language models,
having highlighted their reliance on big data for not only pre-training, but also
later fine-tuning. AMI key recovery for model reconstruction from observed data
is closely related to modeling and then accurately generating time series data,
which we have shown is a problem requiring big data for successfully achieving
high-accuracy generation or prediction.

2.2.3 Transformer-based Models for Time Series Forecast-
ing

Transformers for Time Series Forecasting

The literature on language models has more available studies on smaller-scale
Transformer-based models than state-of-the-art PLMs, which are not pre-
trained as PLMs are, but can still be trained from scratch to capture long-
term and complex relations in time series data, which are challenging for other
sequence models [98]. We look at select such models from the relevant litera-
ture, and analyze their data requirements for training on time series. We pay
attention to whether the amount of data required is much less than other com-
pared sequence models, i.e. do Transformer-based models require less training
data for time series forecasting?

In [98], a Transformer-based model is applied to influenza-like illness (ILI) rates.
The study formulates ILI forecasting as a supervised learning task on a time
series dataset of ILI rates, training the model to predict 4 future weekly ILI ratios
from 10 trailing weekly datapoints. The trained model was then evaluated on
how well it could could predict the ILI ratio one-week ahead from 10 weeks of
historical datapoints (i.e. one-step ahead prediction). The results showed that

31

the Transformer had better forecasting performance compared to an ARIMA
model (a popular model for time series data), an LSTM model, and a Seq2Seq
model with attention mechanism. The Transformer also performed better at
capturing complex dynamical patterns in the data.

We note that although the Transformer-based model was more successful at
the prediction task than other benchmarks, it did not require substantially less
training data to do so. As per the study, the same ILI dataset was used for train-
ing across all the models. Hence, we conclude that although the Transformer
was measured to have learned the time series data better, and outperformed
other models in forecasting, it required the same amount of training data and
was not more efficient in this regard.

Another study [28], for forecasting electricity consumption and traffic data time
series, also modifies the original Transformer model for time series data. This
model is trained for longer term prediction, taking in 268 past time stages (24
time steps over 7 days) and estimates the next 24 time stages (24 time steps over
one day). We highlight the number of steps ahead for prediction in both [98]
and [28] since AMI key recovery involves not only learning the distribution of a
client model, but also the ability to generate client-like actions in an interaction
with the server. Such an interaction would be one-step ahead prediction as a
short-term forecasting task, since an interaction transcript is built action by
action, over a number of timesteps.

We analyze the amount of data required for training the Transformer in [28].
The electricity consumption dataset contained over 9 months of collected data,
wherein there were 24 hourly collections per day, from 370 households. This we
estimate to be nearly 2.4 millions samples contained in the dataset. Similarly,
the traffic dataset contains more than a a year of data collection, which we
estimate to be yet another large-scale dataset. We emphasize the amount of
training data required by the forecasting model, just as we did in the [98] study,
to point out the minimal number of observed samples in a single AMI session.
This depend on the length of an interaction session, which in AMI is typically
around 50 time steps, depending on which authentication test is used. In any
case, this figure is insignificant compared to the amount used for training in
[28].

We also include a study which introduced Pyraformer [59], designed to capture
both short-term and long-term dependencies in time series data. As stated in the
study, the major challenge of time series forecasting is compactly capturing tem-
poral dependencies of different ranges. This is an important feature for AMI key
recovery, wherein the public observations used for model reconstruction certainly
may contain temporal dependencies of different lengths. For example, in a stan-
dard AMI interaction session, a transcript HT = [s1, c1, s2, c2, s3, c3, ..., sT , cT]
sees the value cT not only reliant on sT−1, but also on each of sT−2, sT−3, ...s1.
Hence, capturing dependencies of different ranges is important in this context.

Pyraformer differs in design from the model in [98] and [28] by its reliance on an

32

efficient pyramidal attention module, or pyramidal graph which describes the
temporal dependencies of the observed time series in a multiresolution fashion.
This allows for long-range interaction modeling with reduced time and space
complexity.

Pyraformer is trained and tested on large-scale datasets, some of which contain
data from over 2 years of collection. It is able to outperform state-of-the-art
models for both single-step and long-range multi-step prediction tasks. We note
that the single-step prediction is more relevant to AMI key recovery, due to the
incremental nature of the AMI interaction process between agent models, i.e.
models generate only a single value per time step. Pyraformer’s emphasis on
low computational cost even as the input sequence length increases is a detail
we discuss in more depth in the later section on limitations of Transformer for
time series data.

Finally, we briefly mention another relevant Transformer for time series fore-
casting - DSANet [39], a model designed for time series with dynamic-period
patterns or nonperiodic patterns. DSANet utilizes a self-attention module in-
spired by the Transformer [91] in order to deal with multivariate time series with
nonperiodic patterns. We cite this study as helpful for uncommon or special
cases of agent models used in AMI, which produce data following this pattern.
For example, a client model PDT could be initialized in such a way that its
observed data contains nonperiodic patterns, which other forecasting models
may not be designed to accurately capture.

Transformers for Probabilistic Time Series Forecasting

We also mention studies on probabilistic forecasting for time series, wherein the
prediction model describes the conditional distribution of future values, given
an inout sequence. In other words, upon each input, the model will produce a
probability distribution over possible outcomes. This category of time series re-
search is quite close to the problem of AMI key recovery for probabilistic models,
wherein the traversal of an agent model produces different (nodal) distributions
for different time stages, and which the final model output is sampled from.

We focus on one such study which presents SSDNet [57], a model which combines
the Transformer architecture with state space models to provide probabilistic
and interpretable forecasts. Interpretable here means the model also describes
the trend (i.e. the trend of the time series is smooth and monotonically decreas-
ing or increasing) and seasonality (i.e. this is where the cyclical fluctuations
are located in the data) components of the time series. SSDNet uses its Trans-
former to process an input sequence and generate its latent components - these
are then used to estimate the parameters of the state space model as well as the
variance of the forecasted distribution. The latent variables also allow SSDNet
to learn stochastic trends with fluctuations in the time series. Once the state
space model is parametrized, SSDNet computes a distribution from which to
sample its output. We note another contribution of the Transformer to SSDNet

33

is by its attention mechanism, which helps identify the parts of the input most
significant for prediction.

SSDNet not only outperforms all other evaluated benchmarks (which includes
state-of-the-art autoregressive deep learning models and Transformer-based mod-
els) on most of the tested datasets for prediction accuracy, but also describes
the time series’ trend and seasonality in an interpretable way. This is relevant
to AMI key recovery, as such descriptions aid in analyzing these components of
observed data. SSDNet is also designed to capture seasonal patterns with ran-
dom fluctuations in the time series, which would be helpful in analyzing model
traversal for key recovery. A client model uses server actions as input (affecting
its path of traversal) and this capability could help capture the stochasticity in
a client model’s traversal, especially if an adversary is unaware of how a client
model uses its input in this regard.

We note one further point from [57]. Analysis of SSDNet’s training and testing
time, as compared to other state-of-the-art benchmarks in the study, reveal
the model to be relatively quick and time efficient in both training and testing
phases. However, SSDNet was not more efficient in the amount of training
data required, as all benchmarks in the study used the same training dataset
as SSDNet did. We point out again that despite increased prediction accuracy,
and efficient training time of a model like SSDNet, Transformer-based deep
models in thse studies do not seem to require less training data for
time series forecasting.

We also briefly mention another probabilistic Transformer, ProTran [88], which
also combines a Transformer with a state space model to tackle the problem of
capturing complex, non-deterministic temporal dynamics across long-distance
time steps in a time series. Just as in SSDNet, ProTran leverages a Transformer
to model these long-term interactions, and is capable of generating diverse long-
term forecasts with uncertainty estimates. It diverges in design from SSDNet,
however, applying a generative modeling and inference procedure based on vari-
ational inference.

With respect to ProTran, we highlight the study’s discussion of Transformer
limitations. It is mentioned that despite progress in recent literature, models
which predict high-dimensional future observations from few past examples
have remained intractable. It was not apparent from [88] how the ProTran
training was formulated, i.e. how many historical data points were used as input
during training, or whether the study sought to overcome this specific challenge.
It would have been helpful in this regard had it included an investigation into the
amount of historical data ProTran requires as input for high-accuracy predic-
tion, especially in comparison to other state-of-the-art benchmarks for sequence
modeling.

34

Limitations of Transformer-based Models on Time Series Data

Another potential limitation of Transformer-based approaches mentioned in [88]
was how the reliance on attention mechanisms incurred a quadratic time and
memory complexity. It was stated that this limitation hindered application
of ProTran to tasks characterized by long-term dependencies such as language
modeling. The study pointed to recent work on sparse transformers to address
this issue. Indeed, we find in a separate study [56] the problems which arise in
directly modeling longer time series via a Transformer. We cite this issue as an
example where even Transformer-based methods, considered superior to other
sequence models in the literature, may struggle with deeper or larger agent mod-
els which maintain long-term dependencies across larger interaction transcripts.
For example, a client PDT with increased depth maintains a long-term depen-
dency between server actions in HT = [s1, c1, s2, c2, ..., sT , cT], wherein the leaf
node traversed to at time t = T is reliant on earlier actions at time t = 1, etc.
The deeper the PDT, the longer the dependency between time steps within the
interaction transcript.

The investigation in [56] further highlighted how the space complexity of canon-
ical Transformers grew quadratically with sequence length L, which made di-
rectly modeling longer time series infeasible. This study proposed a LogSparse
Transformer to improve forecasting accuracy for time series with fine granular-
ity and strong long-term dependencies. We infer from [56] that the design of
an agent model can certainly influence the capability of a Transformer-based
key recovery attempt in capably learning the model’s underlying distribution
from observed data. If the model specifically conditions its output on not only
an immediately preceding time stage in the data, but maintains dependency on
much earlier time stages, this can hinder such a key recovery attempt. Increas-
ing the number of longer-term dependencies overall would also greatly increase
the computational overhead for the adversary. An additional modification to
the AMI protocol to produce longer interaction transcripts would, of course,
help make the Transformer-based key recovery infeasible. The main concern
here would be ensuring that the additional interaction length reveals less signif-
icant information overall, even though it may contain more time stages. This
can be done by training agent models to contain higher entropy in their output
distributions, thus decreasing the amount of information revealed per sample
produced.

We now return briefly to the specific limitation mentioned in the ProTran study
[88] - the intractibility of models which predict high-dimensional future obser-
vations from a few past examples. The issue we highlight here is the amount
of data required by a Transformer-based model for high-accuracy prediction.
According to [38], there exists a big data paradigm around Transform-
ers. Due to their unprecedented size and amount of training data required,
Transformers have developed a reputation for being data-hungry, with many
researchers believing they are more suitable for larger datasets, while smaller
datasets are deemed insufficient [38]. This discussion bolsters our argument

35

that AMI’s information-theoretic security provides it a degree of safety even
against state-of-the-art Transformers, given the minimal data publicly observ-
able during an AMI session, i.e. a single interaction transcript. Although there
are suggested methods for more compact Transformers mentioned in [38], we
believe these have not yet been successfully demonstrated on time series data,
for accurate modeling from fewer samples.

We conclude this section on Transformer-based models for forecasting time series
data, which is the most closely related problem to AMI key recovery. The works
cited show that even those Transformer-based models which are not large-scale
PLMs would still required large amount of training data for AMI key recovery
(i.e. successfully modeling a client agent’s behavioral model from limited ob-
servations). AMI sessions do not require beyond 50-100 samples (in a single
interaction transcript) for successful authentication, and as such do not provide
nearly enough data for a Transformer to be successfully trained on. This abides
by AMI’s information-theoretic security principles, that even a more powerful
adversary with increased computing power, better equipped for the modeling
task, cannot resolve this problem from the data publicly provided by the pro-
tocol.

2.3 Multi-Agent Systems and Modeling

In this section, we describe related work applying multi-agent systems, agent-
based modeling, and game theory to the fields of security and cryptography. We
keep this section more broadly focused outside the specific area of authentication
and key establishment (AKE) because from our findings, multi-agent systems
and agents have yet to be applied towards these specific cryptographic problems.
As such, we discuss broader applications such as network security and risk
assessment.

2.3.1 Multi-Agent Systems and Agent-Based Modeling

While there is, to the best of our knowledge, currently no preceding work on
agent modeling for AKE, there are examples of agent-based modeling for se-
curity risk-assessment. In [42] Janssen et al. provide an agent-based modeling
and simulation approach for security risk management for airport operations
(AbSRiM). The approach models threat scenarios via agents which represent
potential threats in an airport environment. AbsRiM defines functional capa-
bilities for all agents in the system - agents can make observations and perform
actions, store information, maintain goals, and reason about their goals. To fur-
ther break down the components of each agent, each agent is designed as three
layers each consisting of smaller modules: strategic (goals, beliefs, and reason-
ing), tactical (beliefs, interpretation, activities, and navigation), and operational
(perception and actuation).

36

Our own AMI agent architectures are more reactive in nature, with the exception
of the more intelligent decision-making described in Chapter 8. The architecture
in [42] more closely resembles a belief-desire-intention (BDI) style [97]. Another
difference is how AbSRiM defines different agent classes and roles for agents to
support each other in identifying potential adversaries - however, this is intended
for a larger multi-agent system with more than two agents. This setting and
role designation is more similar to the AMI group authentication setting, where
one agent can play the role of a trusted central server to authenticate a group
of client agents.

Agent-based behavioural modeling has also been used to simulate situations
in network and cyber security which include a complex system with a large
number of active users and processes dependent on the order/timing of events.
Agent-based modeling allows for the capture and analysis of highly complex
dynamics. It can be implemented with little or no knowledge of the global inter-
dependencies or aggregate effects of the system - it is also easier to build upon
as model changes require local, not global adjustments [14]. In [92], Wagner et
al. demonstrate such an application to a network security setting by modeling
network users, defenders, and attackers as agents in a prototype simulation for
network risk assessment. Their simulation model uses a decentralized system
control which captures emergent system dynamics that result from the the in-
teractions of the various agents. Such approaches providing agent-based models
for network security are relevant to our own work by detailing how agents are
designed differently based on roles and teams.

Another work by I. Kotenko [51] follows a more teamwork-based approach for
modeling a similar scenario. This agent-based model organizes agents into either
a defense team or an attack team to challenge the system security and expects
team members to fulfill joint operations. Kotenko’s system simulates a denial
of service attack and the response of agent teams to react appropriately. The
model also demonstrates ideas from joint intention theory and the shared plans
theory for realizing effective teamwork. Agents of different teams compete to
reach antagonistic intentions, while agents of the same team cooperate to real-
ize joint intentions. Our own multi-agent protocol does require some degree of
cooperation between server and client agents to reach a certain goal (a complete
AKE protocol run which leads to secure communication), but this does not uti-
lize much further cooperation strategy apart from the multi-agent interaction
stage.

2.3.2 Game Theory for Network Security and Cryptogra-
phy

Game theory provides mathematical methods and models for exploring multi-
person strategic decision making, where the players must compete for limited
and shared resources. There exists much work in applying game-theoretic ap-

37

proaches to the field of security. Some of these applications include: security
of the physical layers, security of self-organizing networks, intrusion detection
systems, anonymity and privacy, and cryptography [62].

Security games are a special case of games which study the interaction between
malicious attackers and defenders. They are used as a basis for formal de-
cision making and algorithmic development, and can also be used to predict
attacker behavior [62]. They also address a need in the network security space
that traditional network solutions lack - a quantitative decision framework for
sophisticated, well-organized adversaries [76]. Game theory suitably addresses
this need by providing a way to sophisticate the decision process of network
administrators by examining possibly thousands of scenarios before taking the
optimal action in response to an attack [76]. It can also provide methods for
suggesting probable actions and predicted outcomes to minimize future threats.
Existing research on game theory for network security falls in the category of
non-cooperative games, and more specifically static or dynamic games [76].

Static games are one-shot games where each player chooses their plan of action
without knowledge of other players’ plans, and all players’ decisions are made
simultaneously. In contrast, dynamic games have more than one stage, where
the sequences of the game can be either finite or infinite. In game theory, a
perfect information game is one in which each player is aware of the moves of
all other players that have already taken place (i.e. chess, checkers, tic-tac-toe).
An imperfect information game is one in which at least one player is not aware
of the moves of at least one other player that have taken place. Static games are
by definition in the latter category of imperfect information games, given that
players act simultaneously. Further more, a game can be either with complete
or incomplete information. In a complete game, every player knows both the
strategies and payoffs of all players in the game, but not necessarily the actions.
Dynamic games can be either with perfect or imperfect information, and either
complete or incomplete information [76].

As mentioned, static games can be with complete imperfect information, which
means that all players are aware of both the strategies and payoffs of all other
players, but not their actions [76]. In [44], Jormakka et al. provide a few
examples of static games with complete imperfect information, where each of
their examples represent a cyber warfare scenario. The work in [44] provides
quantitative ways to describe the most effective strategies for such scenarios,
formulating them as static two-player games where each player is aware of
the other’s strategies and payoffs. Static games can also be with incomplete
imperfect information, where players know neither the strategies and payoffs
of other players, nor their actions taken [76]. In [58], Liu et al. developed a
game-theoretic, incentive-based formalization for attacker intent, objectives and
strategies (AIOS) which captured the inherent inter-dependency between AIOS
and defender objectives and strategies. This method allowed for the defender to
infer the AIOS automatically. The framework contained an ‘uncertainty prop-
erty’ where both parties had incomplete information about each other; they

38

maintained a set of beliefs regarding the other, which were considered to not
always be accurate.

From a game-theoretic perspective, we can view the multi-agent interaction
stage of the AMI protocol as being akin to a static game, where both parties
act simultaneously and each party makes its decision without already knowing
the other party’s decision for that time step. Furthermore, we can describe
the interaction process as being a static game of incomplete information, as an
AMI agent does not know the other agent’s strategy by which it selects actions.
That is, the client agent is unaware of the server agent’s behavioral strategy (its
behavioral model). The server agent expects a certain strategy from the client
agent, but also cannot be sure that the client is not actually an adversary until
the authentication stage. It only posses a hypothesis of the client’s strategy,
which it may use to compare to the actual observed strategy of the client agent.

With regards to the field of cryptography itself, game-theoretic models and def-
initions have been largely applied to multiparty computation (MPC) [48]. Mul-
tiparty computation can be loosely defined as a protocol for multiple parties to
compute a function of many variables, each party providing one or more vari-
ables, yet no party learns about the inputs of any other party other than what is
obvious from the output of the function [79]. Traditionally, cryptographic pro-
tocols like those for MPC assume parties in the group will be honest, and others
malicious, from whom the honest parties must be protected as they faithfully
follow the protocol [48]. Game-theoretic models, on the other hand, propose
that all parties are rational, that is, self-interested. Researchers have sought to
model and design meaningful protocols for such a setting by combining aspects
of both fields as rational multiparty computation [48].

Some research does exist on successfully applying game theory to cryptographic
authentication protocols. Although there exists works on rational game theory
for secret sharing schemes, L. Nguyen in [67] argues that the formulation of ratio-
nal, self-interested parties is not applicable in authentication and key-agreement
protocols. Nguyen states that in an authentication setting, all trustworthy par-
ties should not be framed as self-interested, as authentication means it is in
their mutual interest to agree on the same data. Instead, [67] frames intruders
as rational parties, and uses techniques from game theory to transform authenti-
cation protocols to discourage this kind of rational intruder. Its transformation
method is shown to be suitable for password-based authentication schemes as
well as manual authentication protocols.

2.4 Biometric Authentication

In this section, we discuss recent examples of biometric authentication from the
literature to compare with our own agent-based mechanism. Since the literature
on biometrics is so large, we present select studies which we compare with

39

AMI’s agent-based authentication. We describe the benefits of using agents in
providing an additional layer of autonomy and protection to AKE protocols.

We discuss two strands within biometric authentication - first, mech-
anisms where a human user provides behavior-based biometrics, and
second, those for remote user authentication in a client-server setting,
which is closer to AMI.

2.4.1 Behavioral Biometric Authentication

We begin with recent work on behavioral biometrics, which follow an authen-
tication paradigm similar to AMI’s use of agent behavior for authentication.
Active or continuous authentication is an automated recognition process which
verifies an individual’s identity based on information about their body (i.e. fin-
gerprints, facial attributes, voice, etc.), or their behavior (i.e. gait, touch and
keystroke dynamics, etc.) [60]. Similar to symmetric AKE protocols, an ac-
tive authentication system will first be provided with each legitimate user’s raw
biometric data, which is collected, then has a set of its discriminative features
extracted. Of course, in a symmetric AKE system, during this phase it is the
user’s symmetric key which is agreed upon with a server. However, there is
typically no feature extraction in AKE, as each key is meant to be unique to
the user and generated such that it is ready for further use.

A continuous authentication test (i.e. behavioral biometric authentication test)
performs its authentication decision by either a verification mode, or an identi-
fication mode [60]. In verification mode, the system makes a single comparison
- the biometric of a requesting user u with the pre-shared biometric for user u.
If the matching score is above a pre-defined threshold, then the system accepts,
else it rejects. This verification strategy, employing a binary classification test,
is nearly identical to the AMI protocol in its authentication process.

In identification mode, however, the system compares requesting user u’s bio-
metric data to all other stored users, wherein a matching algorithm estimates
the identity of the data based on the highest matching score and a pre-defined
threshold (i.e. this biometric best matches with user 53). This process is differ-
ent from AMI, as within AMI, a requesting client always notifies the authenti-
cation server which user u it wishes to be authenticated as.

With respect to (behavioral) biometrics, there are certain factors which should
be met by the biometric trait chosen for system users. We now describe some
important trait factors: all users should possess the trait (universality), the
trait should be adequately different among users (uniqueness), the trait should
be consistent over time (permanence), and the trait should not be susceptible
to spoofing or other attack (circumvention) [60]. When comparing these char-
acteristics of human biometrics with those of the AMI agent-based models, we
see that agent behavioral models more or less follow the same characteristics.
Such models are uniquely generate for all users, do not degrade over time, and

40

are difficult to impersonate due to their large size and complexity.

Keystroke/Screen-based Dynamics for Authentication

We now present a study on biometric authention, which uses keystroke dynamics
as its behavioral biometric of choice. In [90], the authors provide a pattern
detection mechanism for Android mobile phone users, wherein a user enters a
swiped pattern in a matrix of dots to login. Their tool is trained on a database
of user login patterns, wherein the time taken between swiped dots is stored,
i.e. [0,0.22,0.15,0.43,0.50] for a single sample. After aggregation of multiple
such samples, two different models are trained on the data. A one-class support
vector machine is trained to distinguish valid samples from invalid ones on a
database with a single class. In addition, a k-means clustering algorithm is
also trained to separate samples into cluster to identify the main cluster group
containing the most valid samples. After training, evaluation shows the tool to
be 93.7% accurate in detecting invalid samples, and 86% accurate in detecting
legitimate samples.

In comparison with AMI, [90] demonstrates behavioral biometrics, i.e. the be-
havior of a human in their swiping patterns, as captured by the time taken
between swiped dots. In AMI, the behavior-based biometrics is of course pro-
vided by an agent acting on behalf of a user. The benefit of this additional
abstracted layer (the agent performing a behavior instead of a human) is that
human behavior can be affected by factors such as distraction, stress, or fatigue.
An agent-based behavior, however, remains consistent and unaffected by such
factors which affect humans. Once an agent behavioral model is set, it remains
unchanged and consistent within a program or protocol until otherwise decided
by its designer.

A similar study can be seen in [52] for analyzing a user’s keystroke dynamics.
This study pays special attention to features such as: dwell time, touch time,
touch area, and average pressure for all keys. It also applied machine learning
to determine which features were most significant for authenticating legitimate
users. In this study, these features were found to be: touch pressure, touch size
and coordinates. In comparison with [90], [52] collected and analyzed a larger set
of user features than just the time taken for keyboard swipes. The latter study
demonstrated the importance of using a wide range of user features in behavioral
biometrics, since human behavior is nuanced and consists of numerous different
components. It indicates to AMI the importance of rich agent behavioral models
which encapsulate several aspects of behavior - perhaps such a model could be
further studied to see if it aids in more secure authentication.

We do, however, point to the intelligent awareness of an agent-based protocol.
In Chapter 8, we demonstrated the importance of probing behavior - that is,
we showed how the server model can probe the client for different behavioral
responses in an intelligent way. In comparison, a human can only be probed for
a limited time due to factors such as fatigue. In comparison, an agent model can

41

be probed rapidly for different responses, numerous time in succession without
being affected by stress or fatigue.

Gait-based Biometrics for Authentication

While keystroke dynamics may be easily captured on a smartphone or screen,
capturing other behavioral biometrics may require more overhead. In gait-based
authentication, for example, it it commonly seen in the literature for one or more
cameras to be used to obtain a sequence of walking video images [89]. However,
this incurs significant overhead, requiring noise preprocessing, motion detection,
motion segmentation, before feature extraction can be done. The captured im-
ages contain a large amount of data, incurring a high computational cost, not to
mention the cost of the video capturing equipment itself. In comparison, AMI’s
authentication strategy requires significantly less data to be captured, as its
multi-agent interaction is quick and sample-efficient. It does so without the use
of expensive equipment since there is no human involved. This discussion also
raises another important point - replacing a human user with an agent acting
on their behalf can reduce some of the associated monetary costs.

We do note that more recent studies such as [89] use wearable inertial sen-
sors instead of vision-based collection to reduce the computational cost. This
study collects biometric features such as step length, cadence, stance phase,
swing phase and the pitch angular from the wearable device. It then applies a
probabilistic neural network to classify different gait patterns for personal iden-
tification. The advantages of this classification method include a quick training
time, good fault-tolerance and more accurate classification. As with other bio-
metric studies, [89] requires a data collection stage from all legitimate system
users, wherein human users must provide up to 20 samples of their demon-
strated gait. We note that this requirement is both time and labour-intensive;
we reiterate our earlier point that in AMI and other symmetric AKE proto-
cols, there is no time-intensive data collection stage. Symmetric keys can be
cheaply and uniquely generated - the only requirement is that the key generator
is statistically random source so that keys are uniformly distributed across the
keyspace.

We also include an interesting study related to gait-based biometric authentica-
tion, wherein a gait-based biometric analyzes human walking patterns to verify
identity. In [35], the authentication system utilizes an LSTM recurrent neu-
ral network for classification decisions. This study develops a black-box attack
on the authentication ‘target’ system, repeatedly sending it adversarial queries
which attempt to cause false acceptances. These queries are then used to con-
struct a ‘shadow’ authentication system which imitates the target system, and is
used to develop higher-quality perturbed queries which can bypass the original
target system.

We include [35] as an example of successful attacks on systems using human

42

behavior biometrics, due to variation within such behavior. We point to the
ability of agent-based behavioral models to be trained and optimized, unlike
human behavior. This provides an additional layer of security against adversar-
ial attacks such as [35]. In Chapter 8, we demonstrate how AMI agent models
can be optimized to quickly reject adversaries mimicking the behavior of legit-
imate users. We do note that part of [35]’s adversarial strategy was to explore
the acceptance region of the target classifier, by querying it to determine clas-
sification boundaries. This approach could also improve AMI classifiers from
Chapter 5 by determining how vulnerable to perturbations they are.

Finally, with respect to behavioral biometric authentication, we briefly dis-
cuss the information-theoretic principles protecting AMI’s agent mod-
els from discovery. AMI is protected in this manner is due to the agent mod-
els’ probabilistic behavior, which protects them from being publicly revealed
(and reconstructed). If a human-based biometric such as keyboard swipe pat-
terns is repeatedly observed, it can certainly be analyzed for recreation, whereas
even multiple observations of AMI agent model’s behavior is insufficient to
recreate the complex probabilistic model (see study on model reconstruction
in Chapter 6). In the study on gait-based analysis [89], we mentioned the data
collection stage required 20 or so gait samples from each user before the fea-
tures were extracted. It is not difficult to imagine an intruder observing this
amount of authentications from the same user. Symmetric AKE protocols like
AMI, however, implement a forward secrecy transform to continuously evolve
master keys via a key evolution scheme, which counteracts this vulnerability.
This raises the question of how many times a behavioral biometric system can
be used to authenticate a user, before further sessions are at risk of provid-
ing enough public data sufficient for an adversary to learn the user’s unique
behavioral pattern its underlying features.

2.4.2 Biometric-based Remote User Authentication

The second strand analyzes research in client-server authentication mechanisms
where biometrics are involved. This setting is closer to AMI’s own format, where
a remote user connects to a server for authentication. The biometrics involved
in these studies are typically hard biometrics rather than soft, i.e. fingerprints,
retina scan, DNA, etc. As literature on biometric authentication in a client-
server setting is also quite large, we present select studies to highlight various
issues of theirs which are also relevant to AMI.

We begin this strand with [10], which provides a remote authentication protocol
utilizing biometrics within a client-server setting. This study provides a protocol
in which the client biometric directly replaces the use of a password. It uses a
digest-based authentication method to protect the client biometric when sent
over an insecure channel. The digest here is a one-way deterministic function
which is computationally difficult to reverse. The scheme in [10] has two parts
- client registration and client authentication. During registration, the client

43

provides its biometrics to a registration server, which computes a digest of the
biometric and forwards it to the authentication server. For authentication,
the client presents its biometrics to a feature extraction module, which acts
similarly as in the continuous authentication systems described in Section 2.4.1.
The module generates a semi-digest, SID, which is then sent over an insecure
network to the authentication server, protected from adversaries by the property
of one-way functions. The authentication server finally converts SID to the
corresponding digest tuple, DID, and compares it with the respective value for
this client, D′ID.

For an authentication decision, the server computes an evaluation score for the
Hamming distance between the values, then accepts if the score is below a pre-
defined threshold, else it rejects. We notice that the authentication mechanism
here is different from both signatures (public-key) and message authentication
codes (symmetric-key), although more similar in design to the latter. We also
analyze the transmission of private biometric data (transformed via one-way
function into a digest) over an insecure channel. The security of the system here
relies on a hard discrete logarithm problem, with the underlying assumption that
an adversary cannot solve problems outside the class P. In contrast, AMI does
not rely on such assumptions of computational security; AMI never transmits
the entire master key over an insecure or secure channel during its protocol run.
Instead, it transmits probabilistically generated samples from the master key,
to minimize public knowledge about the key.

We continue the strand with [77], a study which provides an elliptic-curve based
three-factor authentication scheme for a remote client-server environment. The
multi-factor scheme overcomes some of the vulnerabilities of single-factor au-
thentication, which include data theft and data leakage, to enrich its security
profile. The three factors in the scheme are: a user’s password, biometric, and
smartcard. Although the format of the biometric is not specified, the study
states that an adversary should not be able to guess a user’s biometric within
polynomial time. We see here the assumption of computational security, al-
though it should be noted that AMI also relies on generated master keys which
are computationally infeasible to discover within the keyspace of possible keys.

For user registration, the user’s ID, password, and biometric data are provided
to the server, which encodes it safely into a new smartcard. The smartcard
is then returned to the user. When the user later wishes to be authenticated,
they enter their smartcard into the card reader, and provide their ID, password,
and biometric data. Here, the smartcard itself uses the user-provided details
to compute an authentication code, which it then sends to the server over an
insecure channel. The server verifies the authentication code, and notifies the
smartcard. At this stage, both parties can compute their symmetric session key
for encrypting further communication - notably, the smart card computes the
session key on behalf of the user.

With respect to [77], we first note the additional layer of security the biometric
provides. Requiring a protocol to integrate multiple factors in its authentica-

44

tion assuredly makes it more secure - we do consider this to also be true if
an additional factor were supplied to the AMI protocol. The main concept
for multi-factor authentication is that one or more factors are individually at
risk. For example, the password could be cracked or guessed, or the smartcard
could be stolen. Providing agents in the AMI multi-agent system an extra factor
could certainly provide some benefit, if the existing component (the agent-based
master key) were at risk of being compromised.

We also note the way the smartcard acts on behalf of the user, much like the
abstraction in AMI wherein agents in a multiagent system act on behalf of sys-
tem users. However, the smartcard does not interact with the server
in a strategic way - it simply forwards encrypted information over an inse-
cure channel. This transmission relies on computational hardness assumptions
for the message to not be decrypted. In comparison with the smartcard, the
AMI agent models can encapsulate a range of behavioral objectives incorporat-
ing intelligent behavior. For example, the smartcard cannot proactively defend
against an intelligent attack - it merely follows its designated functions. An
agent model, especially a deliberative agent, can be designed to recognize at-
tacks and pursue a defensive strategy. This highlights the dynamism of agent
behavior, as compared to static programs which do not respond intelligently to
an uncertain environment (i.e insecure channels which adversaries are also privy
to).

We now point to the issue of biometrics being irrevocable, which is highlighted
in [53]. This is a major point of concern for protocols involving biometrics.
Once a fingerprint, for example, is revealed to a server, it can never be changed
or revoked since a person’s fingerprint always remains the same. If the server
is compromised, this user cannot use their fingerprint for authentication again.
This one of the benefits of a knowledge-based authentication mechanism based
on passwords or keys - if the user data is compromised, the user can simply be
issued another such password or key. Indeed, this is also the case with AMI - in
the rare event an agent model is discovered, another model can be quickly and
cheaply generated for the user.

Server-centric Versus User-centric Design

Due to this unique property of biometrics, studies like [53] seek to provide
privacy-preserving biometric authentication, in which the user’s biometrics are
additionally protected. Such schemes typically follow one of two approachs - a
server-centric approach, or a user-centric approach. According to [53], a server-
centric approach has the user send their biometrics to the authentication server,
which then compares it to the stored biometric template for this user. This
approach relies heavily on the server’s responsibility for biometric privacy, and
users depend on the server to protect their biometric data. In a user-centric
approach, however, the user encrypts the biometric template before sending
it to the authentication server. The server will then perform operations on

45

the encrypted biometric template for an authentication decision. This latter
approach is the one favoured in [53], and often employs tools such as secure
multi-party computation and homomorphic encryption. [53] provides a user-
centric protocol in which the authentication server accepts a user if the Hamming
distance between a queried biometric template and stored template is less than
a certain threshold. This study introduces a new cryptographic primitive which
is used both by a user to encrypt their biometrics, and by a server to compute
the Hamming distance between the user’s encrypted biometric and their stored
biometric.

We compare user-centric privacy preserving biometric authentication to AMI
authentication, and more specifically, the information which is sent to the au-
thentication server. In [53], the information sent by the user is an encrypted
biometric, which is compared by the server to a stored biometric via a crypto-
graphic primitive. This is also quite distinct from the MAC-based authentication
seen in traditional symmetric AKE protocols. AMI, on the other hand, never
sends the entire master key over an insecure channel to a server; only a minimal
number of random samples are transmitted instead. This allows for security
even against adversaries which are computationally unbounded. The security of
[53] relies on the hardness of the Learning With Errors (LWE) problem, which is
computationally hard. We have already in Chapter 1 discussed the limitations
of this category of problems.

Whether AMI can be considered user-centric or server-centric is an interesting
question. The concept of user-centric authentication is that the server cannot
be trusted with the user’s personal password, key, or biometric. As mentioned,
AMI users never send their entire master key to the server. However, the AMI
server already possesses the user’s master key in its entirety, as is the case with
most symmetric AKE protocols, which is similar to server-centric authentication
where the server is allowed to view the user data itself. It comes down to the
value of the user’s information - as stated before, biometrics are irrevocable and
hence demand greater user vigilance, while in symmetric AKE the user’s key
can typically be easily and cheaply replaced.

Cancelable Biometrics

Within this strand, we also include mention of cancelable biometrics in bio-
metric authentication systems. This concept refers to authenticating a user via
an intentional distortion of their biometric data or template, such that user’s
privacy is protected, while authentication can still be performed. A cancelable
biometric should fulfill certain properties, including non-invertibility (it cannot
be reverted to the original biometric) and performance (the recognition per-
formance should not deteriorate after the original biometric is distorted) [61].
Such an authentication scheme would first perform feature extraction on an
original biometric, and generate a cancelable biometric using a method such
as hashing or filtering. This generated biometric is then stored by the server.

46

During authentication, the user provides the cancelable biometric to the server,
which tries to match it with the existing one in its database [61]. One such
example for cancelable biometrics which uses deep learning is [41], which pro-
poses a convolutional neural network-based hashing method to extract features
from a facial image. The method employs specific loss functions for training
which lead to cancelable biometrics. In particular, [41] uses noise embedding
and intra-normalization that distorts biometric data, thus enhancing the tran-
formed image’s non-invertibility.

Of course, having a cancelable agent model or master key would not greatly
benefit AMI, since a compromised master key can be replaced. However, we
consider the idea of obfuscating an original user password or key to be relevant to
AMI since agent models can be further obfuscated to leak less data during multi-
agent interaction. This is not exactly aligned with cancelable biometrics, since
the purpose of the latter is using an alternate key, which suffices for the function
of the original. Yet, AMI can also achieve a similar goal of protecting the original
key by obfuscating the sampling parameters of a probabilistic agent model. In
particular, the agent model could be generated such that its parameters contain
a higher entropy measurement. Another method could be to train a neural
network model via a specific loss function which causes the model to produce
interaction transcripts with a high entropy measure.

2.5 Related Cryptographic Protocols

In this section, we discuss some cryptographic protocols bearing similarity to
the AMI protocol, with special focus on its multi-agent interaction. We describe
interactive proof systems, zero-knowledge proofs, and probabilistically checkable
proofs. Of these, the interactive proof system bears the closest resemblance to
the multi-agent interaction in the AMI protocol.

2.5.1 Interactive Proof Systems

Background

In [31], Goldwasser et al. discuss the knowledge complexity of interactive proof
systems, motivated by the question of how much extra knowledge is revealed
in the proof of a theorem, other than the fact that the theorem is true. An
example provided is proving that a graph is Hamiltonian. It is sufficient for
the proof to exhibit a Hamiltonian tour in the graph, but such a proof contains
more knowledge than just a single bit indicating Hamiltonian/non-Hamiltonian.

For this investigation, Goldwasser et al. first state that it is regarded that saying
a language L is in NP is equivalent to saying that there is a polynomial-time
proof system for L. They then generalize a polynomial-time proof system to a
probabilistic version of NP. To begin with, a polynomial-time proof system for a

47

language L consists of two parties, a prover and verifier. On input x, the prover
creates a proof string α, then the verifier computes on (x, α) in time polynomial
in the length of the binary representation of x to verify that x ∈ L. This
standard proof system can be relaxed to an interactive proof system, which
allows the prover and verifier to not only flip random coins (i.e introduce an
element of randomness in their actions), but also to interact with each other.
This system notably permits a small probability of error.

Such an interactive proof system for a language L is said to be zero-knowledge if
for each x ∈ L, the prover reveals essentially nothing to the verifier except
that x ∈ L. Furthermore, the prover must maintain this property even if the
verifier does not follow the proof system, but tries (in polynomial time) to trick
the prover into revealing something else and gain some additional knowledge.
More specifically, the prover should not reveal anything which would help the
verifier compute anything much faster than before.

Interactive Proof System: Design and Example

In [31], an interactive proof system formulates prover and verifier entities as
interactive Turing machines (ITM). A single ITM is a Turing machine equipped
with a a read-only input tape, a work tape, a random tape (this tape contains
an infinite sequence of random bits, and can be scanned only from left to right),
one read-only communication tape, and one write-only communication tape.
An interactive protocol is defined in [31] as an ordered pair of ITMs, A and B,
such that A and B share the same input tape, B’s write-only communication
tape is A’s read-only communication tape, and vice versa. Of course, A is not
computationally bounded, while B’s computations are bounded by a polynomial
in the length of the common input.

Goldwasser et al. formally define interactive proof systems as follows. Let L be
a language over {0, 1}∗, and let (A,B) be an interactive protocol. We say that
(A,B) is an interactive proof system for L if the following is true:

1. For each k, for sufficiently large x in L (x ∈ L) provided as input to
protocol (A,B), B halts and accepts with probability at least 1− |x|−k.

We interpret this condition as: if x ∈ L, B will accept with overwhelming
probability.

2. For each k for sufficiently large x not in L (x /∈ L), for any ITM A′, on
input x to protocol (A′, B), B accepts with probability at most |x|−k.

We interpret this condition as: if x /∈ L, there is no strategy for convincing
B to accept which succeeds with non-negligible probability (i.e. if x /∈ L,
the probability of B being fooled is negligible).

The protocol can also be repeated multiple times to decrease the probability of
error.

48

In [31], there is also an example of a zero-knowledge interactive proof system,
which uses the quadratic residuity problem for the verifier’s challenge-response
(note: we focus the reader on the protocol itself, not the quadratic residuity
problem). The languageQR is defined asQR = {(x, y)|y is a quadratic residue mod x}.
Say that A and B are provided (x, y), where |x| = m, then the following protocol
is run m times:

• A sends B a random quadratic residue mod x, called u

• B sends A a random bit, bit

• If bit = 0, then A sends B a random square root of u mod x, called w. If
bit = 1, then A sends B a random square root of (uy) mod x, called w.

• B checks that either [bit = 0 and w2 mod x = u] or [bit = 1 and w2 mod x =
(uy) mod x].

We see that both A and B use their random tape to make probabilistic choices.
A uses random bits to generate both u and w, the latter as a response to
the verifier’s challenge. B also uses its random bits to generate bit = {0, 1},
the challenge itself. This element of protocol stochasticity means that in each
protocol run, A can initiate with different values and respond to the verifier’s
challenge from a set of possible responses; B can also issue a different challenge
per protocol run. We also see the property of zero-knowledge in the protocol -
the verifier gains only the knowledge of the prover’s solution to its challenge to
determine set membership in QR.

Comparison with AMI

We note many similarities between the AMI protocol’s multi-agent interaction
between server and client and an interactive proof system (IPS) between A and
B. The AMI server is a polynomial-time verifier, following the conditions for B;
the hypothesis testing-based authentication test runs in polynomial time with
respect to the size of an interaction transcript. Also, the nature of multiple
challenge-responses between A and B is much like the server and client ex-
changing actions from their agent models (although in AMI, both parties send
actions simultaneously). The client and server also select actions from proba-
bilistic models, which differ between timesteps; similarly A and B make different
probabilistic choices in each protocol run. One difference here is that the IPS
requires B to verify the challenge response in each protocol run, and B may
halt upon the first failed response.

In contrast, AMI builds an entire transcript of responses from the client (we
can think of these as challenge-response values since the client conditions on the
past server actions in AMI) before the server makes a verification decision. That
is, in AMI, the server’s decision is made on an entire ‘proof string’ cumulatively

49

and it does not halt after any single value. This requirement is due to the
nature of the AMI authentication test, which requires a transcript of sufficient
length, such that the server can make a high-confidence decision for statistical
similarity.

Another difference is that AMI does not have the zero-knowledge property, which
strictly states that the verifier may gain nothing from a proof α for a given
input x apart from its set membership, x ∈ L. In AMI, it is true that we limit
the number of samples seen from a given client model using a key-evolution
scheme, such that the likelihood of the client model being discovered from public
observations is statistically unlikely. However, the fact that agents sample from
the shared secret means that limited information regarding the shared secret
parameters is revealed; this is more knowledge than whether or not the client
posses the shared secret (the set membership question).

We also make note of the conditions for an interactive proof system. For x ∈ L,
the verifier B will accept with overwhelming probability, and for x /∈ L, the
verifier B will accept only with negligible probability. With the AMI protocol’s
hypothesis testing-based authentication test, for a legitimate client (akin to
x ∈ L), the server will accept with high probability; the chance of it failing to
do so is the probability of Type I error in the hypothesis test, as discussed in
Section 4.2. If a client is not legitimate (akin to x /∈ L), we showed empirically
that the AMI authentication test has high accuracy in rejecting adversaries,
whichever adversarial strategy is employed.

2.5.2 Zero Knowledge Proofs

In this section, we include some relevant literature on zero-knowledge crypto-
graphic protocols to acknowledge their presence in cryptography, not to draw
comparisons with the AMI protocol, which we already stated does not posses
the zero-knowledge property.

Bellovin and Merritt were the early pioneers of zero-knowledge password proofs,
a term defined in IEEE 1363.2 [1] as “an interactive zero knowledge proof of
knowledge of password-derived data shared between a prover and the corre-
sponding verifier. They proposed Encrypted Key Exchange (EKE) [11] as a
novel combination of both asymmetric and symmetric-key methods to allow
for the exchange of confidential and authenticated information over an insecure
network. The novelty in the protocol is the counter-intuitive notion of using
a secret key to encrypt a public key. The protocol protects against active at-
tacks as well as off-line dictionary attacks. Bellovin and Merritt’s method uses
a shared secret key to encrypt a randomly generated public key, utilizing a
challenge-response scheme to ensure both parties in the protocol are confident
about the other’s knowledge of the shared secret and the session key [79]. EKE
can also be implemented with Diffie-Hellmann key exchange for a simpler overall
procedure [79]. According to [11], EKE’s primary strength is the combination
of symmetric and public-key cryptography in a manner which strengthens them

50

both, especially if either of them are comparatively weak.

Other related research includes the Secure Remote Protocol [99] as an exam-
ple, developed by T. Wu as a verifier-based, zero knowledge protocol for secure
authentication and (asymmetric) key exchange, with resistance to dictionary
attacks and based on the difficulty of solving the Diffie-Hellman problem. SRP
builds on existing improvements to EKE without sacrificing performance or se-
curity. It protects users’ passwords by storing only a password-based verifier in
the server, and it is by this verifier that the session keys are ultimately computed;
this also protects the password from active dictionary attacks. The verifier kept
by the server, if truly kept secret, also allows for mutual authentication. The
use of a verifier, salts, and select order of inter-party transmission for comput-
ing session keys all create a robust protocol which resists being compromised
even if the parties are not completely reliable or secure. SRP also includes the
forward secrecy feature, meaning that past information is protected from future
compromises.

Another zero-knowledge proof was developed by Feige, Fiat, and Shamir [29] as a
zero-knowledge proof of knowledge, where the prover demonstrates possession of
knowledge without revealing any computational information at all. This prover
does not even reveal the single bit revealed in zero-knowledge proofs of assertions
(or in interactive proof systems to indicate set membership). These notions
are applied to identification schemes, in which parties prove their identity by
demonstrating their knowledge rather than by proving the validity of assertions.
The method in [29] uses modular arithmetic and a parallel verification process
which limits the number of interactions between verifier and prover [79]. The
simplified process involves the verifier delivering a cut-and-choose option to the
prover with a 50% chance of the verifier being fooled. The interaction process
is repeated until the verifier is confident that the probability of being fooled is
very unlikely. Over t iterations, this probability is 1 in 2t. The strength of this
protocol lies in the difficulty in determining a modular square root when the
modulus’ factorization is unknown [79].

2.5.3 Probabilistically Checkable Proofs

The first notion of a Probabilistically Checkable Proofs (PCP) came in the form
of interactive proofs, such as those in [31], where a prover tries to convince a
probabilistic polynomial-time verifier of the soundness of some theorem. How-
ever, PCPs are motivated by the question - how many bits of queries are truly
required to gain some confidence into the correctness of a theorem? They offer a
novel format for writing (or re-writing) proofs, and associated with the format
are probabilistic algorithms which can be used to efficiently verify the proof
[86]. We can also describe PCPs as efficiently checkable membership proofs [8],
where the time taken to assess the proof may be less than the volume of the
proof evidence [86].

More formally, we can define PCPs as done in [8]. A verifier in this context is a

51

probabilistic polynomial-time Turing machine M which is given an input x and
a proof string Π, and must use a random string τ to determine if x belongs in a
language L. In this definition, we say that MΠ(x, τ) = 1 is M accepts x using
τ after examining proof string Π. Else, MΠ(x, τ) = 0.

If we let L be a language, then a verifier M checks membership proofs for L if
it behaves as follows for every input x:

1. If x ∈ L, then Pr
τ

[MΠ(x, τ) = 1] = 1. That is, if x ∈ L, then there is a

proof Π that causes M to accept for every random string τ .

2. If x /∈ L, then then for all proofs Π, Pr
τ

[MΠ(x, τ) = 1] < 1
2 . That is, if

x /∈ L, for all proofs provided to M , M will only accept with probability
less than 0.5, regardless of which random string τ it uses.

We see that in the first condition from [8], the verifier M will always accept an
input which actually belongs in L, even if it uses any random string. In the
second condition, we can say that there is no proof M will accept with more
than 0.5 probability (for any random string it uses).

A further definition in [8] shows how the the PCP verifier randomly selects bits
to query from a given proof:

For integer-valued functions r and q, a verifier M is (r(n), q(n))-restricted if on
an input of size n, it uses at most O(r(n)) random bits for its computation and
queries at most O(q(n)) bits in the proof string. The verifier behaves as such:

1. The verifier reads the inputs x and the random string τ .

2. It computes in poly(n)-time a sequence of locations
i1(x, τ), i2(x, τ), ..., iO(q(n))(x, τ).

3. It reads the bits in the proof string Π[i1(x, τ)], ...,Π[i)(q(n))(x, τ)] onto its
work tape.

4. It computes further for poly(n)-time before deciding to accept or reject.

In this definition, we see how the PCP verifier first computes a set of locations
in the proof before actually querying those bits to assess them for the proof’s
set membership. Of course, we have to keep in mind that the PCP proof itself
is written such that the verifier may query randomly and still be able to uphold
the two conditions for a verifier explained previously (accept valid proofs and
reject invalid proofs with high probability).

Comparison with AMI

We see from the definition for a PCP proof and verifier in [8] that PCP proofs
are designed to be verified in a probabilistic manner, one which does not require

52

the entire proof to be checked. The AMI multi-agent interaction, however,
produces an interaction transcript which is used in its entirety in the AMI
authentication test; this makes it a different formulation from a PCP proof,
where the goal is to not require the entire proof to be checked. The AMI
authentication test is not designed to take in a full transcript of actions from
the client, and selectively (or randomly) query its different aspects to help make
its verification decision more efficient. Hence, we say that the AMI interaction
stage does not produce a probabilistically checkable proof.

Of course, the PCP verifier is still a probabilistic algorithm which uses a random
string in its verification (note the PCP verifier we defined it does not interact
with the prover). In this sense, it is similar to the AMI server, which uses a prob-
abilistic model to randomly ‘query’ the client model (we can say it queries the
client model because in AMI, the client conditions its next action on the server’s
past actions). As such, the PCP verifier’s random string and the server agent’s
random behavioral model shared similar functionality of aiding in querying.

Furthermore, the PCP verifier is intended to have a low decision time - this is
attributed to its random queries and not a more intelligent querying technique,
but we can draw a parallel with the optimized AMI server from Chapter 8. The
optimized server, in this sense, also has low decision time (as compared to a non-
optimized server) since it can make a high-confidence verification decision from
fewer queries to the client. Thus, we can say that the optimized server is more
similar to the PCP verifier, not because of its intelligent queries, but because
it performs verification from fewer queries, which is the motivating question
behind PCPs.

53

Chapter 3

A Multi-Agent Formulation
of Symmetric AKE

3.1 Introduction

We begin this chapter with a brief background of agents and multi-agent systems
to explain why they are an appropriate fit for the cryptographic setting of the
AMI protocol.

3.1.1 Intro to Agents & Multi-agent Systems

Multi-agent systems arose from certain trends in computing which made com-
puter systems more intelligent, independent, and representative of their human
developers and users. As computing became more ubiquitous and the Internet
developed over time, the state of computing systems from a global perspective
became a large distributed system of interconnected nodes [97]. As computer
systems became more intelligent and able to perform increasingly complex tasks,
they began to be delegated more responsibilities by their human operators - for
example, handling the piloting of an aircraft, or more recently, the driving of
an autonomous vehicle. The trends of delegation and intelligence led to com-
puter systems becoming more representative - that is, able to complete certain
objectives independently with minimal input from human operators, on behalf
of their human users [97]. That is to say, for certain tasks, such systems may
be trusted to represent their user’s best interests while interacting with other
human users or even other similar systems [97].

When such independent and representative computer systems, delegated by
their users to accomplish certain tasks on their behalf, are introduced to the
interconnected network of the outside world, it represents a significant shift

54

away from traditional distributed systems. In traditional distributed systems,
the nodes within the system typically share a common goal and work together
to achieve it. In the more complex and dynamic environment of a multi-agent
system, however, the individual entities termed agents represent instead the
individual goals and interests of their designers or users. Furthermore, an agent
entity can no longer be assumed to have full observability or control over the
environment it is situated in - this includes the goals and behavioral patterns of
other agents. Thus, there is a need for the agents within a multi-agent system
to not only perform tasks in the real world for their human operators, but to
socialize for them too. This socialization within a multi-agent system refers to
an agent’s ability to cooperate, coordinate, and negotiate with other agents to
reach its design objectives [97].

It is these unique properties which make agents in a multi-agent system espe-
cially suitable for the cryptographic setting of this thesis. In such a setting,
communicating parties must work together to communicate in a secure man-
ner while being initially uncertain of each other’s identity. This fits well with
the partial observability which agents experience in a multi-agent system, where
they may begin in a state unaware of other agent’s personal intentions and
goals, while needing to coordinate with (or compete against) them. Addition-
ally, agents pursue their own goals due to their property of rational self-interest
[97]. Likewise, in a cryptographic setting, a server may find itself against an
adversary which has no interest in cooperation but instead wants simply to
accomplish something which conflicts with the server’s best interests.

3.2 Agent Architecture

3.2.1 Definitions and Setting

The two key problems in building multi-agent systems are that of agent design
and society design [97]. Agent design refers to building agents which are capable
of independent, autonomous actions and decision-making to carry out their
delegated tasks. Society design refers to equipping agents with social ability
such that they can interact with other agents in a system where agents may not
share goals. In this chapter we address both, but we first turn to the immediate
problem of agent design with respect to symmetric AKE. We begin with the
primary and most basic setting of the AMI protocol, which is a system where a
server party possesses resources desired by a client party. For simplicity’s sake,
and for easier demonstration, we here assume that only a single client party is
currently in the system. The goal of the server party is defined below:

Definition 1: The server goal is to authenticate the single legitimate client
party and then agree upon a session key for encrypted communication with the
client.

The goal of the client party is described below:

55

Definition 2: The client goal is to be authenticated by the server and agree
upon the session key for encrypted communication with the server.

This basic setting of the AMI protocol, consisting of these two agents, we term
as below:

Definition 3: A one-way authentication system consists of a server agent au-
thenticating and agreeing upon session keys with legitimate client parties, where
both agents agree upon keys for encrypted communication, but the authentica-
tion process is done only by the server.

We also provide definitions to describe the server’s view of other agents in the
one-way authentication system. In the server’s view, there are three types of
agents:

Definition 4: A user is any legitimate client party which has already been
registered with the server, and which the server possesses a master key for.

Definition 5: An adversary is a party which has not been registered with the
server, is unauthorized to access the server, and has malicious intentions within
the system.

Definition 6: A client is any party which requests a session with the server as
a given user. This party’s identity is initially unknown to the server - they may
either be a user or an adversary.

3.2.2 Agent State Transition Diagrams

We illustrate the conversion of cryptographic parties to autonomous agents via
state transition diagrams which describe the beginning and end states of the
server and client agents as they proceed through the multi-agent environment.
These diagrams break down the life-cycle of the server and client agent into
sequences of states, the transitions from one state to another, and how they can
reach their desired end state. They include all the stages of an AMI session.

We first address a preliminary question: what does each agent know about the
other ahead of the one-way authentication session? Just as in other symmetric
AKE schemes, the server knows or posses the master key of the registered user.
As for the client, it possesses a master key, which if the client is a legitimate
user, will be identical to the master key known by the server. Over the course
of the session, the server will gather information about the client’s master key
to determine if it is indeed the correct key for this user.

In Figure 3.1, the server party (now an agent) begins in a start state where
it passively waits for a client request indicating that a client wants to begin a
fresh session. Upon session request, the server transitions into an interaction
state, where it interacts with the client to build a joint interaction transcript of
pre-set size, consisting of actions from both agents. Once the transcript reaches
its set capacity, the server transitions into a decision state. Here, we see the
first instance of agent-based decision making in the system.

56

Waiting State

Wait for a client
session request

Interaction State

Build interaction
transcript

Decision State

Process transcript for
auth decision

Key Agreement
State

Generate symmetric
session key

Key Evolution
State

Evolve long-term
master keys

Communication
State

Engage in encrypted
session

Receive client
request

Transcript
complete

Accept
client

Session key
built

Master keys
evolved

Reject client

Figure 3.1: State Transition Diagram of Server

The server uses the interaction transcript to decide whether or not the client
is legitimate - if not, it informs the client of its rejection and returns to the
start state. Otherwise, it informs the client of its acceptance and moves into the
key agreement state, whereby it generates a session key unique to the session.
From there, it transitions to the key evolution state to update the shared secret
- its copy of the client’s master key. Once this operation for forward secrecy is
completed, the server reaches its end state, whereby it can communicate securely
with the client via the generated session key. The reason why the communication
state was chosen as the end state here is because the AMI protocol itself does
not include aspects of symmetric encryption and decryption, so it makes sense
to terminate here.

One of the differences between the server’s state transition diagram and that
of the client diagram in Figure 3.2 is that the client begins in a different start
state. A client will begin in an inactive state, where it is waiting until it requires
server access. Once the client is ready, it moves into its request state sends a
request notification for a fresh session to the server.

Another difference in the client diagram is that the client in one-way authen-
tication possesses no decision state. It moves instead into an approval state
after the interaction state and awaits the server’s authentication decision. If the
server sends an acceptance notification, it moves into the key agreement states
and completes its life-cycle similarly to the server. If, however, the server sends
a rejection notification, the client moves back into the inactive state, where it
will wait until it is ready to try again.

An interesting point here is that a client can also be designed such that after
rejection by the server, it moves back into the request state to immediately
request another session. Although this is not the client design we follow in this
chapter, it is an interesting perspective on a client’s belief regarding its own
legitimacy. Such a client would demonstrate its persistence to achieve a goal

57

Inactive State

Server resource not
yet required

Request State

 Notify server with
request for session

Interaction State

Build interaction
transcript

Approval State

Wait for server
authentication

decision

Key Evolution
State

Evolve long-term
master keys

Communication
State

Engage in encrypted
session

Key Agreement
State

Generate symmetric
session key

Server resource
required

Server ready

Session key
built

Master keys
evolved

Client
rejected

Transcript
complete

Client
accepted

Figure 3.2: State Transition Diagram of Client

despite initial failure. This is an important property of agents - responding to
unforeseen circumstances which may not have been initially anticipated.

3.2.3 Agent Internal Architecture and Reasoning

Given the dynamic nature of a multi-agent system, agents must posses the
ability to reason about when and what to do under certain circumstances -
the foundation of the agent reasoning mechanism is the agent architecture [7].
An agent architecture can be described as a map of the agent’s internal data
structures, the operations which may be performed on these data structures,
and the relationships between them [97]. A key element of agent architecture is
representation - how should an agent’s knowledge and beliefs about the world
be represented, and how should the agent take actions to achieve its goals based
on its reasoning mechanism [94]?

We illustrate in Figures 3.3 and 3.4 internal architectures for the server and
client agents, where the agents’ behavior, knowledge, decision-making, etc. are
organized as different modules which interact and share information amongst
each other.

58

Interaction Module

Behavior
Submodule

Knowledge Module
Decision Module

Session Key ModuleKey Evolution ModuleCommunication Module

Authentication
Submodule

Vector: Interaction
Transcript (HT)

Server Master Key
(πs)

Session Key

Queue: Action
window

Authentication
Test

Session key
function

Key evolution
scheme

Encryption
Submodule

Decryption
Submodule

Input

πs used

Client Master Key
(πu)

Server
decision

(HT, πu)
may be used

(HT, πu)

fresh
session

key

updated
master

key

(HT, πu,
session key)

session
key

'delete'

Input action

Own
action
output

Variable: Client
legitimacy Server

decision

Figure 3.3: Server Internal Architecture

Knowledge Module

We begin the discussion of the architecture with the Knowledge Module, which
represents the agent’s understanding of the world, including other agents. Within
the context of the entire architecture, this module can be thought of as the mem-
ory of the agent, as it contains all the private information the agent wishes to
keep hidden from the system. Firstly, this includes the master keys kept as
shared secrets. In Figure 3.3, the server agent possesses a copy of the client
master key πu and in Figure 3.4, the client agent possesses its own master key
πc. We here term the server’s copy as πu for user, since the server is authorized
to authenticate a pre-specified user party. We refer to the client’s copy as πc
for client since in the server’s view, the client may be either a legitimate user
or an adversary. In this regard, the server also maintains a belief variable in its
Knowledge Module representing its belief in the legitimacy of any connecting
client’s identity.

The server also keeps its own master key πs which will be used by the Interaction
Module for interaction with clients. The client simply uses its master key πc for
interaction. Both agents also store a vector in their Knowledge Module to record
the interaction transcript consisting of both action inputs and action outputs
- it is the Interaction Module which passes these on. Finally, both server and

59

Interaction Module

Behavior
Submodule

Knowledge Module Decision Module

Session Key ModuleKey Evolution ModuleCommunication Module

Vector: Interaction
Transcript (HT)

Client Master Key
(πc)

Session Key

Queue: Action
window

Session key
function

Key evolution
scheme

Encryption
Submodule

Decryption
Submodule

Input

πc used

Server
decision

updated
master

key

(HT, πu,
session key)

session
key

'delete' (HT, πu)

fresh
session

key

Input action

Own
action
output

Variable: Own
authorization Server

decision

Figure 3.4: Client Internal Architecture

client’s Knowledge Module records the session key upon its generation, produced
and delivered by the Session Key Module.

An important note is that the server’s belief variable in Figure 3.1 regarding
a client’s legitimacy, as seen in the Knowledge Module, is short-lived. In the
AMI protocol, this belief does not persist beyond a protocol session, and once
a session terminates, an accepted client must again repeat the entire protocol
for a new session. The same property is true for the client variable in Figure
3.2 which stores the client authorization status - once a session ends, this belief
will be cleared for the next session.

Interaction Module

In an evolving and dynamic multi-agent environment, agents must both take
in perceptual input based on their observations, and respond appropriately by
selecting available actions [97]. For both the server and client, we provide an
Interaction Module which does both tasks. The core of the Interaction Module
is the Behavior Submodule, which uses the secret master keys πu and πc as
behavioral models to produce output actions given specific input. The AMI
protocol is flexible in choice of behavioral model - in this thesis, we primary
use probabilistic decision trees (PDT) as they are easy to generate and well

60

P (A)

t− 1

t− 2

t− 3 2

3

2

Figure 3.5: An example probabilistic decision tree with depth 3 and 3 actions.

illustrates how agents can be stateful. Within the Behavior Submodule is a
queue as a first-in first-out (FIFO) data structure to record past input. This
feature helps the server and client agents be stateful - mindful of observations
from the past to consider while selecting their next action. We refer to the
queue as the action window, consisting of the past k inputs.

The AMI protocol keeps the agent’s shared action space Aact as a global vari-
able so that agents do not need to store it individually - in fact the type and
dimensions of the behavioral models themselves are global variables, in keeping
with Kerschoff’s Principle of transparency.

Figure 3.5 illustrates a PDT being used as an agent’s behavioral decision model
(the master key). Each node in the tree individually specifies a probability
distribution over the action space, Aact = {1, 2, 3}. In this example, the other
agent in the interaction has provided actions {2, 3, 2}. The agent having the
PDT in Figure 3.5 uses the action window of k = 3 most recent actions of the
other agent to traverse its tree. At the end of the traversal, the behavioral model
returns the probability distribution at the leaf node, P (A). This shows how
behavioral models are formalized in the AMI protocol, as functions mapping
inputs to a probability distribution over Aact. The agent can then use the
returned distribution to sample its next action.

A few details are of note here: first, in the AMI protocol, each agent conditions
its next action on the observed actions of the other agent. For example, the client
conditions its next action based on past actions of the server agent. However, as
a general case, it is possible for an agent to condition on any aspect of its past
observations, including its own actions, the entire action history, or some other
specific aspects. We note that however the conditioning happens, this detail is
made public, even to intruders.

Another detail is that the PDT is a purely reactive model. The mapping between
input and output is straightforward and has no deliberation - no input is taken
from the Decision Module responsible for intelligent decision-making. This is
unlike other agent architectures such as the belief-desire-intention model seen
in [18], which constructs sequences of actions as plans and deliberates upon

61

Algorithm 1 AMI Multi-Agent Interaction Protocol

Ht ← ∅
for t in (1, 2, 3, ..., T) do

Ats ∼ πs(Ht) . Server samples from its output distribution.
Atc ∼ πc(Ht) . Client samples from its output distribution.

Ht ← Ht + [(Ats, A
t
c)] . Update the joint transcript.

return Ht as HT

each input as how best to update its action plan in response to the dynamic
environment and input.

3.2.4 Multi-Agent Interaction

In a multi-agent system, agents may differ in their internal representations,
architecture, intentions, and behavior. However, if they share a common goal or
goals, it is important that they posses the ability to communicate and cooperate
so that they can (jointly) fulfill their goal. Now that we have described some
aspects of the Interaction Module for server and client agents, we detail the
multi-agent interaction which takes places using the behavioral models during
the AMI protocol’s interaction stage.

When a client seeks to authenticate, the server initiates an interaction process
which proceeds through time steps t = 1, 2, 3,, T . At each time step t, the
client and server independently choose actions Atc and Ats, respectively, with val-
ues from the shared action space Aact. The agents then send their chosen actions
to each other. At the end of the interaction process, the agents have produced a
shared interaction history or interaction transcript, HT = (A1

s, A
1
c , ..., A

T
s , A

T
c).

This transcript plays a significant role in the AMI protocol, as later protocol
stages such authentication rely on it.

The interaction process is described more formally in Algorithm 1. Figure 3.6
also offers a pictoral perspective of the agents during their multi-agent inter-
action process. The figure details the server agents interacting with the client
agent to form an interaction transcript, by which it can make its authentication
decision. Both agents also posses the key generation function by which they can
compute their session keys.

62

Client
model: πc

Server
model: πs
model: πu

User: u

t = 1: A1
c A1

s

t = T : ATc ATs

...

Auth: yes iff. (A1
c , ..., A

T
c) ∼ πu

session key:
key(HT , πc)

session key:
key(HT , πu)

Figure 3.6: Multi-Agent Interaction Protocol

3.3 Conclusion

In this chapter, we introduced the multi-agent formulation for symmetric AKE,
as defined by the AMI protocol. This formulation includes the conversion of
communicating parties in a cryptographic setting to autonomous agents. For
a one-way authentication setting, we illustrated the internal agent architecture
for both server and client agents, consisting of all the necessary components
required for each agent to achieve its goals for secure communication within the
multi-agent system.

We described aspects of both the Knowledge Module and Interaction Module
for client and server, including the multi-agent interaction stage of the AMI
protocol, by which agent form interaction transcripts used for authentication
decisions. The remaining modules: Decision Module, Session Key Module, and
Key Evolution Module will be detailed in the following thesis chapters.

63

Chapter 4

Primary Authentication
Test and Key Agreement
via Multi-Agent Interaction

4.1 Introduction

In this chapter we discuss both authentication and key agreement methods for
the AMI protocol. Section 4.2 details the primary authentication testing method
via frequentist hypothesis testing and its experimental evaluation. Section 4.3
provides a key agreement scheme by which a session key can be established
between two parties. Both Sections 4.2 and 4.3 provide an initial subsection to
introduce their topic and its motivation, as well as a subsection for final remarks
and considerations.

4.2 Primary Authentication Test: Frequentist
Hypothesis Testing

In this section, we discuss the primary authentication test contained in the
AMI agents’ Decision Module. We begin by introducing different metrics for
evaluating authentication tests, including different metrics for measuring a test’s
resilience to certain adversarial attacks - chief amongst these is the Maximum
Likelihood Estimation attack as an opponent modeling attempt for key recovery
against the AMI protocol.

This section introduces an authentication test which relies on a frequentist hy-
pothesis testing approach [6] designed for verifying the correctness of an agent

64

behavioral hypothesis. We discuss the mechanics of this test, provide results
from its experimental evaluation, and analyze its performance on the given
metrics. We show that via a static computational method combining different
descriptors, the test achieves the expected desirable accuracy in identifying not
only legitimate parties, but also the different adversarial ones.

We note that the authentication test and its subsequent evaluation focus on the
one-way authentication setting of AMI, wherein a server authenticates a client
only.

4.2.1 Metrics for Authentication Tests

Alongside the fact that the AMI authentication process should authorize truly
legitimate parties, it must also be resilient against adversarial parties employing
a variety of strategies commonly seen in symmetric AKE, with respect to the
scope and limitations of the adversary in our security model.

As mentioned in Section 1.4, our adversary may not perform some of the adver-
sarial strategies seen in man-in-the-middle attacks on sessions between a legiti-
mate client and server. These include: delaying messages, replacing or forging
messages, or deleting a message from either party. The adversary may, how-
ever, perform the following: observe all public messages in a session between the
parties, observe an unlimited number of such sessions, or initiate an (unlimited
number of) sessions with the server as a potential client. We chose to focus our
adversary’s capabilities on observation and authentication attempts, as this type
of adversary is suitably designed to test AMI protocol’s information-theoretic
mode of security. It is also appropriate given the nature of the multi-agent
interaction which underpins AMI, and the most straightforward key recovery
attack for such a protocol, which is an opponent modeling attempt.

We now introduce the first evaluation metric for an AMI authentication test for
verifying that it does indeed recognize legitimate clients with high accuracy.

Definition 1: The Real metric evaluates server authentication accuracy on in-
teraction transcripts generated between the server and a population of legitimate
clients.

For the remaining metrics, we test the server’s authentication test against the
following adversarial strategies.

Definition 2: The Random metric evaluates server authentication accuracy
on interaction transcripts generated between the server and randomly gener-
ated client PDT models with the same dimensions (depth and branches) and
temperature (entropy parameter) as a legitimate client model.

In the Random adversarial strategy, the adversary does not make much effort to
create a master key similar to the legitimate user master key possessed by the
server. The adversary simply sets the dimensions and temperature of a PDT,
then randomly generates nodal probability distributions to fill in the model.

65

Definition 3: The Replay metric evaluates server authentication accuracy on
adversarial transcripts containing legitimate client actions from past sessions
between the server and legitimate client.

In the Replay adversarial strategy, the adversary makes a more serious attempt
to mimic a legitimate user without recreating its legitimate master key. It ob-
serves a session (or multiple sessions) between the server and a legitimate client,
and records the interaction transcript(s). It then strips the client actions from
the transcripts, initiates a fresh session with the server as the same user, and
builds an adversarial interaction transcript with the server - it simply replays
the past client actions from the recorded transcript(s). It is this adversarial
transcript, consisting of server actions from the current session and client ac-
tions from the past session(s), which we provide to the server authentication
test for it to identify as adversarial.

Definition 4: The Maximum Likelihood Estimation (MLE) metric evaluates
server authentication accuracy on transcripts generated between the server and
an adversarial client model created from observed past interactions between the
server and a legitimate user.

The MLE strategy is the adversary’s most serious attempt to recreate a legiti-
mate user master key, via opponent modeling. The adversary observes multiple
sessions between the server and a legitimate user, recording the interaction tran-
scripts for each session. It then instantiates an adversarial PDT client model
with the same dimensions (depth and branches) and temperature of the legiti-
mate user model. Using the recorded legitimate transcripts, it finally computes
an empirical frequency distribution for each nodal probability in the PDT. If the
adversary has recorded enough sessions from the past, it can be hopeful that its
recreated agent model is sufficiently similar to the legitimate user model such
that actions from the recreated model in a fresh session will convince the server
that the adversary possesses the legitimate model (i.e. the hidden master key).

An interesting question of significance is whether the frequentist MLE approach
is an optimal method for key-recovery? Although in our experimental evaluation
we permit an attacker to observe multiple session from the same user model,
in a practical setting the AMI protocol applies a key evolution mechanism to
transform the user model πu after each successful session (detailed in Chapter
7). Hence, in a practical setting it is only possible to observe a single session
for any given model πu (the only exception is the event of an error during the
authentication test, the likelihood of which is controllable and quite low, as
described later in this chapter).

If the number of sessions for any user model πu is limited to a single session,
then even under Kerckhoffs’ Principle whereby the attacker is privy to the di-
mensions and temperature of πu (the system’s global variables), the attacker has
only a uniform prior distribution over possible models πu. Thus, we consider
a frequentist approach as the viable strategy for key-recovery attack instead of
a Bayesian method. As such, the best estimate of πu an attacker can formu-

66

late is via Maximum Likelihood Estimation (MLE) estimate; MLE is generally
a preferred estimator among frequentist methods as it is asymptotically unbi-
ased, consistent, and within the class of consistent estimators, a most efficient
(minimum variance) estimator [27].

4.2.2 A Test Based on Frequentist Hypothesis Testing

In this section we introduce the hypothesis-testing algorithm provided by Al-
brecht and Ramamoorthy in [6] for determining the correctness of a behavioral
hypothesis for another agent. The AMI server already possesses the user mas-
ter key, πu, and must determine the correctness of the client’s unknown key,
πc, in comparison. The motivation behind using [6] is that it is suitable for
making a decision on the interaction transcripts from the multi-agent interac-
tion stage; the nature of the random samples from master keys constituting
the transcripts make them unsuitable for a MAC-based direct comparison as
seen in other symmetric authentication protocols. The hypothesis test method
answers the question of: how do we test two separate master keys (πu and πc)
for equivalence when we cannot directly compare their random samples?

As such, the comparison performed by the hypothesis test itself is not an
exact measurement; a standard hypothesis test is better described as an
estimate or approximation for testing the validity of a given hypothesis. The
hypothesis being tested in our context is: is πc == πu? Hence, the server
must use the observed client data from the interaction stage to determine the
statistical likelihood of the client’s data coming from πu.

Frequentist Hypothesis Test for Authentication

From a high level overview, the algorithm from [6] learns the distribution of a
test statistic Tu computed from samples taken from πu

1. The test statistic con-
sists of the weighted average of different score functions, each defining a unique
way to describe the sampling behavior of the model πu. The algorithm then
computes a test statistic Tc from a given interaction transcript HT containing
samples from πc. The Tc value is finally used to compute a p-value, the value of
which corresponds to the probability with which we expect to to observe a test
statistic at least as extreme as Tc, under the null hypothesis, πu = πc. If the
p-value is below a set threshold parameter α, the null hypothesis can be rejected
and the alternative hypothesis, πc 6= πu, is accepted. Else, the null hypothesis
is retained.

We formally define our hypotheses as following:

1Our only modification to the original algorithm is fitting the distribution of the test
statistic with a normal distribution rather than a skew-normal distribution. This allowed
us to compute p-values using the analytic normal CDF instead of the ratio-approximation
proposed in [6], which led to more accurate results in our experiments.

67

Definition 5: The null hypothesis for the hypothesis testing-based AMI au-
thentication test is H0 : πu = πc. This means that client c, who initiated the
session with the server with claimed identity u, is legitimate and is indeed user
u.

Definition 6: The alternative hypothesis for hypothesis testing-based AMI
authentication test is H1 : πu 6= πc. This means that the client c who initiated
the session with the server with claimed identity u, is adversarial and is not user
u.

With these definitions in mind, we proceed to how they are used by the server in
making authentication decisions for the AMI protocol’s one-way authentication
setting. The server agent’s authentication test (within the Decision Module)
uses the hypothesis testing algorithm to compute the p-value for πc, then per-
forms the following decision function:

decision(HT) =

{
1 (authenticate) if p-value ≥ α
0 (reject) if p-value < α .

(4.1)

As defined in Eq. 4.1, if the p-value is greater than or equal to the signifi-
cance threshold2, this means that the samples provided by the initiating client
c are convincing enough for the server to accept the null hypothesis, πc = πu.
Another way to interpret this is that the samples provided by client c are not
statistically unlikely enough for the server to reject the null hypothesis, and give
an authentication failure notice to client c.

On the other hand, if the p-value is lower than the significance level, this means
that the samples provided by client c were statistically unlikely to have been
observed if indeed client c was user u.

Considerations for the Hypothesis Testing Algorithm

An important point to consider when using a hypothesis-testing approach in a
cryptographic protocol is its shortcomings, especially its potential error. In a
standard hypothesis test, there are generally two types of error, called Type I
error and Type II error, respectively. In this thesis, we focus on analyzing Type
I error in both a theoretical and experimental manner.

Definition 7: Type I Error is defined as the scenario in which the null hypoth-
esis is valid, but mistakenly rejected.

In the context of AMI, this occurs during the authentication stage when one
party mistakenly identifies a legitimate party as adversarial.

Definition 8: Type II Error is defined as the scenario in which the alternative
hypothesis is valid, but the null hypothesis is mistakenly accepted instead.

2We typically used a threshold of α = 0.1 for the hypothesis testing-based authentication
decisions.

68

In the context of AMI, this occurs during the authentication stage when one
party mistakenly identifies an adversarial party as legitimate.

The probability of a Type I Error we define as:

Pr(reject H0 | H0) = α (4.2)

where α is the significance threshold.

If the p-value is the probability of observing the given set of samples from
πc under the null hypothesis, we must select the value of α wisely. A lower
threshold (i.e. α = 0.05) means a smaller rejection region; the acceptance region
is then correspondingly larger, so the server is more tolerant in accepting p-
values, even if they indicate lower probabilities of observing the given samples
(more precisely, of observing the test statistic Tc).

A higher threshold (i.e. α = 0.2) means a smaller acceptance region for p-values
and a correspondingly larger rejection region. In the previous example where
alpha = 0.05, a p-value of 0.1 would have been accepted. However, in this
example where the threshold is α = 0.2, the client’s p-value of 0.1 is less than
the threshold and falls into the rejection region; the client is thus rejected.

An important point of note in standard hypothesis testing is that under the
null hypothesis, the p-value is uniformly distributed in [0, 1]. This means
that when the null hypothesis is true, and the connecting client is a legitimate
user, there is still a chance of the client’s p-value falling into the rejection region
purely by chance; the client would then be mistakenly rejected in a Type I error.
In the AMI authentication test, which uses threshold α = 0.1, there is a 10%
chance of this event occurring.

Of course, we could lower the threshold and decrease the Type I error probability
(i.e. α = 5% or 2.5%), but then we would be increasing the chance of an
adversarial client’s p-value falling into the correspondingly larger acceptance
region; this is the event of a Type II error.

We define the probability of a Type II Error as:

Pr(accept H0 | H1) = β (4.3)

This balance between decreasing Type I error while also minimizing Type II
error brings the question of: which type of error is more important to avoid?

Is it better for the AMI authentication test to mistakenly reject a legitimate
party, or mistakenly accept an adversarial party? From a security perspective,
the answer is likely that we prefer a legitimate party to be rejected than an
adversarial party to be accepted. An adversarial party’s acceptance jeopardizes
the security of the authentication server and of legitimate users; for the attacker
to gain access to such users’ master keys within the server is a more undesirable
scenario than a legitimate party’s accidental rejection.

69

If a legitimate party is mistakenly rejected, it can simply initiate another session
and attempt to be authenticated once more. The only caveat is that it will reveal
more data from the same master key. However, if the probability of the Type I
error is set low enough, the event of two mistaken rejections will be significantly
small; the probability of two consecutive Type I errors with our threshold of
α = 0.1 is 0.1 ∗ 0.1 = 0.01. Accordingly, the probability of k consecutive
Type I errors within the AMI authentication test is (α)k or (0.1)k.

Manually Defined Score Functions

An important part of any authentication test is the criteria for quantitatively
comparing the master key πc to the master key πu, based on an interaction
transcript of samples from πc. The manually defined score functions for the hy-
pothesis testing algorithm, whose weighted average constitute the test statistics
Tu and Tc, are defined in [6] as following3:

z1(atj , π
∗
j) =

1

t

t−1∑
τ=0

π∗j (Hτ
i)[aτj]

maxaj∈Aj π
∗
j (Hτ

i)[aj]
(4.4)

z2(atj , π
∗
j) =

1

t

t−1∑
τ=0

1− Eaj∼π∗
j (Hτi)|π

∗
j (Hτ

i)[aτj]− π∗j (Hτ
i)[aj]| (4.5)

z3(atj , π
∗
j) =

∑
aj∈Aj

min

[
1

t

t−1∑
τ=0

[aτj = aj]1,
1

t

t−1∑
τ=0

π∗j (Hτ
i)[aj]

]
(4.6)

Score function z1 : We can interpret Eq. 4.4 as the average (over an entire
interaction transcript) of the ratio pchosen

pmax
, where pchosen is the probability of

the action chosen at timestep τ and pmax is the maximum probability out of all
probabilities in the output distribution at time τ .

For example, if at τ = 0, the output distribution of the model πc was [0.5, 0.2, 0.3]
over the action space Aact = {1, 2, 3}, and the action generated from this dis-
tribution was a0

j = 2, then the ratio would be 0.2
0.5 = 0.4. Continuing over t such

distributions and selected actions aτj , this score function finds the average ratio
for action selected versus the most likely action at each time step.

This is how the score function in Eq. 4.4 compares two models - how does each
model sample according to the output distribution it produces per input? Does
the model select the action of the highest probability pmax? Which action does
it select instead, and what is the probability, pchosen, of that action?

3The notation in Eqs. 4.4, 4.5, and 4.6 follows the terminology in [6]. The multi-agent
interaction occurs between agent i and agent j, using models πi and πj , respectively; π∗

j is

the model agent i carries for agent j’s hypothesized behavior. The term atj refers to a vector
of observed actions from agent j, itself containing multiple actions aτj . The interaction history

is termed Ht
i , and the shared action space is Aj .

70

Score function z2 : For Eq. 4.5, we can interpret it as analyzing the expected
value of the difference between the probability of the sampled action aτj at time
step τ versus the available probabilities in the output distribution π∗j (Hτ

i).

For example, given an output distribution π∗j (Hτ
i) = [0.5, 0.2, 0.3] and sampled

action aτj = 2 at time τ , the probability of the chosen action is pchosen = 0.2.
To compute the expected value term in Eq. 4.5, we do:

= 1− |(0.2− 0.5) ∗ 0.5 + (0.2− 0.2) ∗ 0.2) + (0.2− 0.3) ∗ 0.3|
= 1− | − 0.15 + 0.0 +−0.03|
= 1− 0.18

= 0.82

(4.7)

In comparing two different models, this score function looks at the selected
probability versus the available probabilities for each output distribution. In
computing the expectation, the probability for the selected action (i.e. the 0.2)
will always be discounted, so the calculation really looks more closely at the
remaining probabilities (i.e. the 0.5 and the 0.3). So the score function can be
interpreted as analyzing the remaining probabilities in the output distribution
which were not used for that timestep.

Score function z3 : Finally, for Eq. 4.6, we can interpret it as analyzing
the available actions aj ∈ Aact by comparing each aτj ’s empirical frequency
distribution versus the averaged hypothesized distribution, per timestep, over an
entire interaction transcript of t time steps. To illustrate z3, we provide a brief
example.

Say we have the following interaction transcript of length t = 7, consisting of
both output distributions π∗j (Hτ

i) and their respective sampled actions aτj :

π∗j (H0
i) = [0.2, 0.3, 0.5], a0

j = 2

π∗j (H1
i) = [0.7, 0.2, 0.1], a1

j = 1

π∗j (H2
i) = [0.6, 0.1, 0.3], a2

j = 1

π∗j (H3
i) = [0.2, 0.1, 0.7], a3

j = 3

π∗j (H4
i) = [0.2, 0.4, 0.4], a4

j = 2

π∗j (H5
i) = [0.8, 0.1, 0.1], a5

j = 3

π∗j (H6
i) = [0.5, 0.4, 0.1], a6

j = 3

(4.8)

For each action in Aact = {1, 2, 3}, we need to compute both the first and second
term in the min expression.

For aj = 1, we compute the first term as (0+1+1+0+0+0+0)
7 = 2

7 = 0.29, and

the second term as (0.2+0.7+0.6+0.2+0.2+0.8+0.5)
7 = 3.2

7 = 0.46. We then compute
min[0.29, 0.46] = 0.29.

71

For aj = 2, we compute the first term as (1+0+0+0+1+0+0)
7 = 2

7 = 0.29, and

the second term as (0.3+0.2+0.1+0.1+0.4+0.1+0.3)
7 = 1.6

7 = 0.23. We then compute
min[0.29, 0.23] = 0.23.

For aj = 3, we compute the first term as (0+0+0+1+0+1+1)
7 = 3

7 = 0.43, and

the second term as (0.5+0.1+0.3+0.7+0.4+0.1+0.1)
7 = 2.2

7 = 0.31. We then compute
min[0.43, 0.31] = 0.31.

It is clear that in the case where the empirical frequency distribution is high,
the score function prefers the lower averaged theoretical distribution as a truer
representation of the average probability of that aj over the transcript. This is
how the z3 score function compare two different models; it analyzes the empirical
action frequency versus the theoretical action frequency for each action in Aact.
Roughly speaking, it asks: for each action in Aact, what is the distribution
by which the model generates the action, considered over an entire transcript?
Another way to think about it is: over an entire transcript, what is the model’s
output probability distribution over the action space?

4.2.3 Experimental Evaluation

Training Parameters and Setup

We organize an empirical evaluation for the frequentist hypothesis testing-based
authentication test. We initialize the one-way authentication setting by setting
the protocol’s global variables, which in accordance with Kerckhoffs’ Principle
will be publicly known to all parties in the system, including adversaries.

• Shared action space: Aact = {1, ..., 10}

• All behavioral PDT models: depth = 5

• All behavioral PDT models: branches per node = |Aact| = 10

• All behavioral PDT models: Action window k = 5

• Server PDT model: Temperature τ = 1.0

• User PDT model: Temperature τ = 0.1

We note that the server decision model uses entropy parameter τ = 1.0 for near-
uniform random action selection from each nodal distribution in its model, while
the user model uses τ = 0.1. The user model’s distributions are of lower en-
tropy and will be more skewed to place more weight on certain actions than oth-
ers. The server model’s distribution probabilities will be more equally weighted
across the action space. We found using lower entropy in the user model’s action
selection led to better authentication accuracy with shorter interaction lengths
- it was easier for the server to identify the user model (since its actions were

72

slightly more predicable and less random) without a large number of its actions
in the interaction transcript. Keeping the server model’s action selection closer
to uniform-random is a preference we term model illumination - since the user
model takes in server actions as input, a more uniformly-random input helps
the server more fully illuminate or explore the user model’s parameters. 4

We create a test dataset for each of the four defined metrics, with each dataset
containing uniquely generated interaction transcripts. The dataset generation
process is detailed in Algorithm 2.

4This property is also significant in the security sense - to what extent does a server need
to illuminate or explore a user model’s parameters (via its observed actions) for an efficient
authentication, without revealing too much information to an outside observer?

73

Algorithm 2 Test Datasets for Evaluating AMI Authentication Tests

ntranscripts = 1000
[DataReal, DataRandom, DataReplay, DataMLE]← [∅, ∅, ∅, ∅]
nfake = 100
fake pdts← []
nMLE = 100

for i in nfake do
Randomly generate: πiadv . Use global properties of user model πu.
fake pdts← fake pdts+ [πiadv]

seeds← [1, ..., 100]
for sd in seeds do

Set random seed as sd
[Dsd

Real, D
sd
Random, D

sd
Replay, D

sd
MLE]← [∅, ∅, ∅, ∅]

Randomly generate: πu
Randomly generate: πs

. Generate Real transcripts (for this seed)
for i in (1, ..., ntranscripts) do

hiReal ← f(πs, πu) . Apply Algorithm 1
Dsd
Real ← Dsd

Real + [hiReal]

. Generate Random transcripts (for this seed)
nfake per ← ntranscripts/nfake . i.e. nfake per = 10
for i in nfake do

πiadv ← fake pdts[i]
for j in nfake per do

hiRandom ← f(πs, π
i
adv) . Apply Algorithm 1

Dsd
Random ← Dsd

Random + [hiRandom]

. Generate Replay transcripts (for this seed)
HReplayc ← ∅
for i in (1, ..., ntranscripts) do

hiReal ← Dsd
Real[i]

hiRealu ← hiReal(πu) . Strip client actions only.

HReplayc ← HReplayc + [hiReal(πu)] . Store history of client actions.

for i in (1, ..., ntranscripts) do
πiadv = HReplayc [i] . Set model as fixed history.
hiReplay ← f(πs, π

i
adv) . Apply Algorithm 1

Dsd
Replay ← Dsd

Replay + [hiReplay]

74

Algorithm 2 Test Datasets (cont.)

for sd in seeds do

(...) . Generate Real transcripts (for this seed)
(...) . Generate Random transcripts (for this seed)
(...) . Generate Replay transcripts (for this seed)

. Generate MLE transcripts (for this seed)

dsdReal ∼nMLE Dsd
Real . Sample nMLE real transcripts.

πsdadv = MLE(dsdReal) . Compute MLE estimate from sample.
for i in (1, ..., ntranscripts) do

hiMLE ← f(πs, π
=
advsd) . Apply Algorithm 1

Dsd
MLE ← Dsd

MLE + [hiMLE]

. Record transcripts from this seed.
DataReal ← DataReal + [Dsd

Real]
DataRandom ← DataRandom + [Dsd

Random]
DataReplay ← DataReplay + [Dsd

Replay]

DataMLE ← DataMLE + [Dsd
MLE]

return [DataReal, DataRandom, DataReplay, DataMLE]

Performance on Metrics

Algorithm 2 creates a test dataset for each of the four evaluation metrics, re-
spectively. We provide an overview for the generation processes from Algorithm
2; note that we further expanded each dataset by repeating the generation pro-
cedure for 100 different server and user model pairs.

• Real dataset: Randomly generate a server PDT and user PDT pair
(according to the global variables), then generate n = 1000 interaction
transcripts between them. Repeat the process for 100 different server and
user model pairs.

– The Real dataset will be used in the creation of the Replay and MLE
datasets.

• Random dataset: Randomly generate a server PDT and a population
of 100 adversarial PDTs, then generate n = 1000 interaction transcripts
between server and adversarial PDTs (each adversarial PDT provides 10
transcripts each). Repeat the process for 100 different server models (the
adversarial population is kept the same).

75

5 10 25 50 100 200
Interaction Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
A
cc
ur
ac
y

Real Random Replay MLE

Figure 4.1: Authentication accuracy as a function of interaction length. For
Real, Replay, and MLE metrics, results show accuracy on 1000 histories, av-
eraged over 100 different server and legitimate client pairs. For the Random
metric, results show accuracy on 1000 histories, averaged over 100 different
server models.

• Replay dataset: From each transcript in the Real dataset, strip the
client actions. Then replay each client history back to the server model
to create Replayed interaction transcripts. Repeat the process for 100
different server-user pairs.

• MLE dataset: From the Real dataset, sample 100 transcripts, and use
them to compute a Maximum Likelihood Estimate adversarial model; for
each input in a transcript, compute the empirical frequency distribution
(from the client actions) as the nodal distributions in the adversarial PDT.
Then create 1000 MLE transcripts from the adversarial model and the
server model. Repeat for 100 different server-user pairs.

The averaged results for each of the four metrics are shown in Figure 4.1. The
barplot shows the experiment repeated for different transcript lengths of HT =
{5, 10, 25, 50, 100, 200}.

4.2.4 Analysis of Results

We first analyze the significance of transcript length in achieving high-accuracy
authentication decisions. As expected, the accuracy on Real interactions is
unaffected by the transcript length and always remains around 0.9, due to our
chosen significance threshold. As for adversarial metrics, it is apparent that the
hypothesis testing-based method requires at least 25 actions from both server

76

and client (|HT | = 25) to achieve near-perfect accuracy on Random, Replay,
and MLE interactions. However, it is between 25-50 actions that the accuracy
is shown to be perfect across all adversarial metrics, including MLE interactions.
This is a good result, because it is desirable for the protocol interaction to be
efficient - from Figure 4.1, it is clear that interaction lengths of 100 or 200
actions is not required for high-accuracy authentication.

It is encouraging to see the improvement on correctly identifying MLE attacks
even as transcript length increases and more data is available to build a more
accurate MLE estimate. This indicates that with sufficiently long transcript
length of |HT | = 50, the authentication test is resilient against MLE attacks,
and even as more data is public observed (|HT | = {100, 200}, the accuracy
remains perfect. We emphasize that an MLE adversary cannot successfully au-
thenticate even after observing 100 interaction sessions from a legitimate user.
As described in Chapter 7, the probability of observing these many sessions
from the same user model is significantly low.

Overall, the experimental evaluation in Figure 4.1 indicates that the hypothesis
testing method make for a very feasible and highly accurate authentication
test, if the transcript length is sufficiently large. Its strong performance on the
adversarial criteria is also very encouraging with respect to resiliency against
these attacks.

4.2.5 Remarks on Primary Authentication Test

In Section 4.2, we introduced a principal authentication test appropriate for the
sampling-based multi-agent interaction of the AMI protocol. We described the
manual score functions used by the test to statistically distinguish the samples
drawn from master keys - keys which must be compared for equivalence for the
authentication decision to be made. We discussed the types of error commonly
seen in this method, and how the selection of test parameters affect them.

We provided four different evaluation metrics, the latter three being of an ad-
versarial nature. We rigorously evaluated the hypothesis-testing based authen-
tication test on these metrics and showed it to achieve the expected accuracy on
legitimate users abiding by the test’s tuneable threshold parameter, while be-
ing strongly resilient to adversarial metrics which are permitted in the security
model for AMI. We pay special attention to the test’s accuracy in detecting key-
recovery attacks via Maximum Likelihood Estimation, and demonstrate that
an attacker cannot successfully reconstruct the user’s master key from observed
data even after observing 100 sessions from the same key (the user model), such
that it affects the accuracy of the authentication test.

We now mention that as specified in [6], the hypothesis testing method for deter-
mining the correctness of a hypothesized agent model relies on static, manually
defined score functions to describe the distribution of such models. Although
the score functions provided excellent performance during our evaluation, we

77

note that they do not intentionally probe different features of the model whose
probabilistic behavior they describe; that is, they do not perform model illumi-
nation. For this reason, we had tuned the entropy parameter for the server and
user models during experimental evaluations in this chapter. A more advanced
method for distinguishing between models would intelligently explore which as-
pects of a model should be prioritized for an efficient authentication decision.
We further explore how to overcome this limitation of the hypothesis-testing
method in Chapter 8.

4.3 Key Agreement via Multi-Agent Interaction

In a protocol where two parties share a symmetric shared secret, they may use
it to derive a key intended for different cryptographic purposes; these include
message authentication codes, an integrity protection algorithm, or an encryp-
tion algorithm [20]. Such a key may be generated by a key derivation function
(KDF), which takes a derivation key as input and produces a final derived key.
It is this derived key that may be used, for example, as a session key in a suit-
able encryption algorithm. The cryptographic strength of the KDF is measured
by the work required to distinguish the derived key from a bit string selected
uniformly randomly from the set of all bit strings with the same length as the
output of the KDF, under the assumption that the derivation key is the only
unknown input to the KDF [20].

In this section (Section 4.3), we provide a method for AMI key agreement which
produces a suitable derivation key which can be passed through a KDF. The
final output of the KDF we will refer to as the symmetric session key or session
key. In the symmetric key agreement literature, there exist different methods
for generating a session key from the long-term master key, where the master
key is a standard bit-string of a given length. In the SAKE protocol [9] for
secure authenticated key-exchange, the session key is derived via an applied
KDF: keys ← KDF (keym, f(rA, rB)), where keym is the long-term master
key, rA and rB are random nonces from both parties, and keys is the final
session key. In the FORSAKES protocol [40], the session key is derived via a
random oracle5 implemented by a cryptographically secure ideal hash function:
keys ← O(keym||0||sid), where sid is the session ID, and O() produces the
output of the ideal hash function.

The symmetric AKE protocols in [9] and [40] have one significant similarity -
they both use traditional symmetric keys which are binary-valued bit-strings.
Typical key lengths of such keys can be 128 bits or 256 bits, etc. [80]. The AMI
protocol, however, uses large and complex agent behavioral models as master
keys; the model typically employed in this thesis is a probabilistic decision tree

5In cryptography, the random oracle model is an idealized model which treats a crypto-
graphic hash function H as a truly random function, and provides a formal methodology that
can be used to design and validate a cryptographic scheme [49].

78

Algorithm 3 AMI Session Key Generation

Input: (π,HT)
pall ← ∅
for t in (1, 2, 3, ..., T) do

p← π(At|Ht) . Select probability at index of sampled action at t.
pall ← pall ◦ p . Update list of probabilities.

keyderiv = hash(pall) . Apply hash function for derivation key.
keys = KDF (keyderiv) . Pass hash through KDF for session key.

return keys

(PDT). Given the trade-off between key size and protocol security (a larger
agent model makes a key recovery attack more difficult for an intruder, and
thus strengthens the security of the protocol) it is more prudent to select a sub-
set of parameters from the AMI master keys when building the derivation key,
rather than using the set of all parameters from the agent model. To illustrate,
a PDT of depth 5 and 10 actions has over 100,000 nodal distributions, which
cumulatively contain more than a million probability values. In the following
section, we provide a key agreement algorithm which produces a derivation key
via parameter subset selection, then generate the final session key via applica-
tion of a KDF.

4.3.1 Key Agreement Scheme

Both client and server agents utilize their Session Key Module for key agreement.
This module receives certain parameters from the Knowledge Module, which are
required for generating the session key. After key generation, the Session Key
Module returns the final computed session key to the Knowledge Module, and
it can later be used by the Communication Module in an encryption algorithm.
We provide a viable key agreement method for AMI in Algorithm 3.

Algorithm 3 traverses an agent model (simply termed π since the client and
server use πc and πu respectively) according to the interaction transcript, HT .
For each time step t in (1, ..., T), it access the output probability distribution
from the model, π(Ht). It then selects a probability from the distribution,
indexed by the action At by the agent at that timestep. For example, if at time
t, the π(Ht) was [0.1, 0.6, 0.3] and At = 2, then the algorithm would select the
probability 0.6 at index 2, since π(At|Ht) = π(2 | [0.1, 0.6, 0.3]) = 0.6. These
selected probabilities from traversed distributions are then concatenated (i.e.
0.6 ◦ 0.2 ◦ 0.8 ◦ 0.4...0.3) and hashed. The hash produces the derivation key
which is suitable as input to the key derivation function (KDF). The KDF then
generates the final session key such that it is computationally indistinguishable

79

from truly random data of equivalent length. It is outside the scope of this
thesis to discuss the different types of hash functions and KDF which may be
used in Algorithm 3 - we do, however, suggest PBKDF2 [47] as a suitable key
derivation function for AMI key agreement.

One point of consideration in Algorithm 3 is its use of HT , which contains
publicly observable samples from the master key. Although we consider the
master key to be protected from a key recovery attempt utilizing HT

6, which
in turn protects the session key, we consider AMI to be amenable to alternate
key agreement schemes which do not use HT for parameter subset selection.
If the client and server agents wish to derive the session key without using
any data from the master key which is publicly observable, they may also turn
to a pre-set key derivation algorithm instead. Such a pre-set algorithm would
have to be provided to both parties when the shared secret is first (manually)
distributed. An example of such an algorithm would be to perform a breadth-
first or depth-first search of the agent behavioral model, then select every other
(nodal) distribution from the ordered set. This traversal method would then
be implemented during an AMI session for deriving the session key, once the
authentication stage has completed.

However, the drawback of such a static, pre-set key derivation method in a sym-
metric key protocol is that if the protocol does not implement a key-evolution
scheme for forward secrecy, then the same session key is derived between a given
client-server pair across multiple sessions (i.e. the algorithm selects the same
parameters from the same, unevolved keys). This situation requires the addition
of random nonce(s) for session freshness. The client and server could resolve
this by sampling a random nonce from the very first output distribution in their
probabilistic model, if this distribution is near-uniform. If not, they could also
use pseudo-random number generators with different seeds to provide the ran-
dom nonces. This requirement for random nonces does point to the benefit of
using the interaction transcript in Algorithm 3; the algorithm reveals limited
data from the master keys, but also acts as a random nonce itself, given that
each transcript consists of freshly generated random samples from both client
and server.

4.3.2 Security of the Session Key

For an intruder to discover the session key, the exact parameters of the hidden
master key must be known. To resolve this, the intruder must first attempt
to reconstruct the master key from its random samples contained in the the
public interaction transcript (afterwards, it will need to do parameter selection
by Algorithm 3, compute the derivation key, and run the KDF to get the final
session key itself). As detailed in Chapter 6, this means resolving the opponent
modeling problem; observing sufficient data to even somewhat approximate the
master key this way is near-impossible under AMI. We show empirically that

6See study on key recovery via opponent modeling in Chapter 6.

80

with specified model size, the likelihood of enough data being revealed to esti-
mate the master key with sufficient accuracy to affect the AMI authentication
test is (0.1)500. The AMI protocol also provides a key evolution scheme which
transforms the master key (the shared secret) after each successful session. This
means an intruder will not be able to observe multiple interaction transcripts
from the same agent model (i.e. from the same master key), and observe enough
data to resolve the model reconstruction task. Also as shown in Chapter 6, the
agent model’s size and complexity can be tuned to make the reconstruction task
even more difficult.

4.3.3 Size of Master Keys

We include a brief analysis of the size in memory of the agent models used as
master keys.

The experiments in this chapter were performed in the Python language. How-
ever, in Python it is difficult to compute the size of custom objects, since
Python’s sys.getsizeof() function is designed for built-in objects rather than
third-party ones. We thus use the Python Pympler7 tool, a development tool
to measure, monitor and analyze the memory behavior of Python objects.

actions 3 5 10
depth
0 888 bytes 888 bytes 888 bytes
1 2,408 bytes 3,432 bytes 5,976 bytes
2 6,968 bytes 16,152 bytes 56,856 bytes
3 20,648 bytes 79,752 bytes 565,656 bytes
4 61,688 bytes 397,752 bytes 5,653656 bytes
5 184,808 bytes 1,987,752 bytes 56,533,656 bytes

Table 4.1: Pympler measurement: size in bytes for PDT of specified size.

If we use a conversion of 1000 bytes = 1 KB, then we see from Table 4.1 that the
typical large PDT (used in Section 4.2.3) of depth 5 and 10 actions is roughly
56.6 MB, while a smaller PDT of depth 3 and 5 actions (used later in Chapter
8 for optimization) is roughly 80 KB. For the larger PDT model of around 56.6
MB, we certainly consider this to be larger than a standard symmetric key of
length 256 bits.

Certainly there is a size discrepancy for master keys between AMI and other
symmetric AKE protocols in the literature. However, this is due to the way the
master key is used in AKE operations. In other symmetric AKE schemes, the
entire master key is used for authentication and for key agreement. In AMI,
however, the entire (comparatively larger) master key is not used in the same

7See utility at: https://pypi.org/project/Pympler/.

81

way. Rather, for authentication, AMI relies primarily on a small set of samples
from the master key. For key agreement, a smaller subset of parameters from
the master key is used to generate the session key - entire master key itself is
not used in the key derivation function.

Essentially, we argue that AMI can still provide quick authentication and key
agreement operations. Rather, the main issue for AMI is the storage space of
master keys, and we do not consider storage of even the larger key size to be
infeasible on modern web browsers. Moreover, we reiterate that in symmetric
AKE, the bigger the key, the larger the key space. This makes key recovery
more difficult, especially in the case of AMI where public data is limited, so a
larger key bolsters information-theoretic security in this regard.

It is difficult to state specifically how much more information-theoretically se-
cure an AMI master key is from a traditional symmetric key. As explained in
Chapter 6, information-theoretic security for AMI means a different type of key
recovery problem than brute force search 8. In any case, we certainly consider
the brute force strategy of randomly guessing all combinations of the master key
to be infeasible as well. With a bit-string representation of an agent model’s
parameters, the key space could be up 250MB or 250∗106

, which is much larger
than a traditional symmetric key space of 2256.

4.3.4 Remarks on Key Agreement

In Section 4.3, we provided an algorithm for AMI key agreement which includes
the use of a KDF to produce a secure, random session key suitable for an
encryption algorithm. The provided algorithm is appropriate for generating
session keys from the large and complex agent models used as master keys in
AMI. We note that there are numerous ways to derive a session key from the
agent models in AMI - our algorithm is one possible solution. We also discussed
the security of the agreed-upon session key from a high-level overview, but leave
a more thorough investigation on key security to Chapter 6.

8See Chapter 6 for a deeper analysis on the information-theoretic security of AMI master
keys.

82

Chapter 5

Alternative Authentication
Test: Neural Network
Classifier

5.1 Introduction

In this chapter we investigate an alternative authentication test for the one-
way authentication setting between a server and client. This alternative test is
based on a neural network classifier and relies on a pre-training process which
takes place ahead of the AMI protocol. The benefit of this test is that master
keys are not required at runtime for an authentication decision; the
only input parameter the classifier requires is an interaction transcript from the
AMI interaction stage. This means that the server will use a classifier already
containing prior knowledge of the user model’s expected behavior, and the data
it receives from the multi-agent interaction will be merely an input from the
classifier for its classification decision.

We investigate two different methods for training the classifier. The first method
is based on supervised learning, where the classifier is simply trained on static
datasets of interaction transcripts. The second method trains the classifier
within a generative adversarial network [33] where it learns to distinguish be-
tween the behavior of the true user model and that of a generative adversarial
model attempting to mimic the user model. The investigation on both methods
is primarily to demonstrate their feasiblity as authentication tests, rather
than to compete with the hypothesis testing method in Chapter 4. As such,
we provide experimental evaluation of both training methods on all four evalu-
ation metrics - Real, Random, Replay, and MLE - but focus on the former two
as the primary evaluation criteria for authentication. Finally, we discuss both

83

Decision Module

Authentication
Submodule

Authentication
Test

HT may
be used

Server
decision

Server
decision

Figure 5.1: Server Decision Module for Classifier-based Test

methods’ relative success and shortcomings.

5.2 A Test Based on a Neural Network Classifier

Unlike the hypothesis-testing authentication test, which utilizes manually de-
fined score functions which were fixed regardless of the type of behavioral model,
a neural network classifier learns the features unique to each behavioral
model during its training process. A neural network trained on the actions of
a specific user model πiu will retain parameters which represent the behavioral
function that is πiu. Of course, this begs the question of how the server agent
will handle one-way authentication for multiple registered users (π1

u, ..., π
m
u),

where it must authenticate users for different sessions. For now, we say that the
server agent would possess different classifiers pre-trained for each respective
user model. Whether a single classifier can be trained to encode the behavioral
functions for more than one user, or even the entire set of all users (π1

u, ..., π
m
u),

is an interesting question for further research.

We illustrate how the inclusion of a pre-trained classifier affects the server’s
internal agent design in Figure 5.1. The Decision Module now receives from the
Knowledge Module only the interaction transcript HT without requiring the
master key πu as well.

5.3 Supervised Learning Test

In this section, we introduce a method for training a neural network classifier
based on standard supervised learning techniques. We describe the experimental
setup to train and evaluate the classifier, and analyze its performance on our
metrics.

84

5.3.1 Experimental Evaluation

Training Parameters

For the supervised learning, we found that the neural network classifier was
able to perform well on transcripts of shorter lengths, so we focused on longer
transcripts of length |HT | = {100, 200}, as these were more challenging. We
investigated classifier performance on action spaces of Aact = {1, 2, 3} and
Aact = {1, ..., 10} as an easier and more challenging learning tasks, respectively;
a larger Aact corresponds to larger PDT models, which means the representa-
tive function the classifier has to learn is more complex as it relies on a greater
number of model features.

To train the classifier, we provide two different datasets; one consists of real
transcripts generated from πs and πu, while the other has fake transcripts gen-
erate from πs and a population of 100 different adversarial PDTs. We set πs
and πu to both have depth 5, |Aact| branches from each node, and an action
window of size 5 on which the model conditions its next output. The πs model
is generated with higher entropy parameter of 1.0, while πu uses a lower entropy
parameter of 0.1. The population of adversarial PDTs is randomly generated
using the same dimensions and temperature as πu.

We used a feed-forward multi-layer perceptron as the neural network classifier.
The network’s input layer is designed to take in a complete interaction transcript
at once; actions in a transcript are encoded as one-hot vectors before being
passed into the network. Figure 5.2 illustrates the format of such as input layer
with actions at ∼ {1, 2, 3} encoded by a three-node set. The number of nodes at
the input layer are thus computed as: |HT | ∗ |Aact| ∗ 2; multiply the number of
required nodes by 2 since there are both server and client actions in a transcript.

We provide the network two hidden layers, with a rectified linear unit (ReLU)
activation function at each layer. We set a sigmoid function at the output layer
to compress the output value in the range [0, 1]; this provides a classification
probability, y, which can be interpreted as a binary authentication
decision.

Given that the classification probability is y ∈ [0, 1], we interpret this value
as an authentication decision using a threshold parameter of b = 0.5; this is
described in Eq. 5.1.

decision(y) =

{
1 (authenticate) if y > b

0 (reject) if y ≤ b .
(5.1)

For the easier learning task where Aact = 3, we train on transcript lengths
|HT | = {100, 200}. Depending on the length, a different sized network is used.
For |HT | = 100, the network has 100 ∗ 3 ∗ 2 = 600 input nodes, 300 nodes per
hidden layer, and 1 output node. For |HT | = 200, the network has 200 ∗ 3 ∗ 2 =
1200 input nodes, 600 nodes per hidden layer, and again 1 output node.

85

ns_1

ns_1

ns_T

. ..
Hidden Layers

Input Layer

Output Layer

ReLU() ReLU()

Sigm()

[0,1]

ns_1

nc_1

nc_1

nc_1

ns_T

ns_T

nc_T

nc_T

nc_T

one
hot

vector

one
hot

vector

one
hot

vector

one
hot

vector

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

Figure 5.2: Classifier With One-Hot Encoded Input

For the more difficult learning task where Aact = 10, we again train on transcript
lengths |HT | = {100, 200}. For |HT | = 100, the network has 100 ∗ 10 ∗ 2 = 2000
input nodes, 1000 nodes per hidden layer, and 1 output node. For |HT | = 200,
the network has 200 ∗ 10 ∗ 2 = 4000 input nodes, 2000 nodes per hidden layer,
and again 1 output node.

For all experimental settings, the classifier uses a learning rate of lr = 0.005 and
the Adam optimization algorithm [50] for updating parameters during training.

Training Procedure

We begin the training process by creating training datasets for both real and fake
transcripts, each of 100,000 transcripts, via Algorithm 1. For the real dataset,
transcripts are generated from πs and πu. For the fake dataset, transcripts are
generated from πs and the population of 100 adversarial PDTs, with each of
the adversarial PDT contributing 1,000 histories. We then train the classifier
via supervised learning for 100,000 iterations. In each iteration, we randomly
sample a minibatch of 50 transcripts from each dataset and then train the
classifier on them, updating the network parameters at the end of the iteration.

Classifier’s Performance on Metrics

For the evaluation stage, we create four different test datasets, each of 100
transcripts. We create a real and fake test dataset in a similar manner to

86

|Ht|=100 |Ht|=200
Supervised Learning Test (3 Actions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M
ea

n
A
cc
ur
ac
y

Real Random Replay MLE

(a) Learning Task with Aact = {1, 2, 3}

|Ht|=100 |Ht|=200
Supervised Learning Test (10 Actions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
A
cc
ur
ac
y

Real Random Replay MLE

(b) Learning Task with Aact = {1, ..., 10}

Figure 5.3: (a) Figure 5.3(a) shows the SL-based authentication test’s accuracy
on evaluation metrics for the easier learning task. (b) Figure 5.3(b) shows the
test’s accuracy for the more difficult learning task. The results are averaged
across 10 different server-user pairs, with the standard error shown on graph.

the training datasets. However, we use a different population of 100 randomly
generated adversarial PDTs. Of course, the transcripts in these test datasets
have not been seen before by the classifier in training. We also generate two
test datasets of Replay transcripts and MLE transcripts, respectively, using
the transcripts from the real test dataset. All four test datasets contain 100
transcripts.

Figure 5.3 depicts the trained classifier’s performance on the four test datasets,
for both the easier and more difficult learning tasks, respectively. In both Fig-
ures 5.3(a) and 5.3(b), we take the average accuracy for each metric across 10
different server-user pairs (and different populations of adversarial clients).

5.3.2 Analysis of Results

As expected, the SL-based authentication test performed better on the easier
learning task, where the agent models were smaller and each PDT had only
3 branches per node (|Aact| = 3). Figure 5.3(a) shows that the classifier had
above 90% accuracy on Real transcripts and near-90% on Random transcripts.
This is expected as the supervised learning training process was performed over
two datasets with these categories of transcripts.

It is interesting to note the classifier’s performance on the Replay and MLE
transcripts (Fig 5.3(a)), considering that it was never exposed to these attacks
during training. The classifier had around 90% average accuracy on MLE at-
tacks for both transcript lengths, which we consider a strong result. However,
its important to note that these MLE attacks were constructed from 100 Real
transcripts; the question here is what number of transcripts is required to mean-
ingfully challenge the authentication test for a PDT model of depth 5 and 3

87

actions. In other words, the strong result on MLE attacks may be attributed
to a lower quality or lower strength MLE attack rather than the test’s innate
resiliency to this metric. The performance on Replay attacks was not as strong
for the shorter transcript length of |HT | = 100 as it was for length |HT | = 200.
We speculate that this may be due to the classifier making more a accurate
authentication decision when provided with more data in the transcript.

In Fig 5.3(b), the authentication accuracy is shown to be comparatively lower
for all metrics, as the learning task is more difficult, even with when using a
larger neural network. As expected, the classifier had around 85% accuracy on
Real transcripts and 75% and > 80% on Random attacks, for |HT | = 100 and
|HT | = 100 respectively. Just as in Fig 5.3(a), we see high accuracy in iden-
tifying MLE attacks and lower accuracy on Replay attacks. We follow similar
reasoning in explaining both these results.

Although the focus of this chapter is the Real and Random evaluation metrics,
it would be interesting to further explore how to improve the supervised training
process for the Replay and MLE metrics. For Replay attacks, we recommend
including a dataset of Replay transcripts during training - this can easily be
done by following Algorithm 2. This would give the classifier a better chance
at learning the function which represents the correct client action selection for
given server actions.

For MLE attacks, we recommend first measuring the statistical similarity be-
tween the user model and the constructed MLE model; this would give an idea
for the number of interactions required to construct an MLE model with suffi-
cient similarity such that it can meaningfully challenge the authentication test1.
Then, the classifier would be trained on a dataset of transcripts from this model,
to learn the features describing the fine-grained differences between the user and
MLE models. A thorough investigation would detail the type and size of neural
network which appropriately captures these differences.

5.4 Generative Adversarial Network Test

In this section, we introduce generative adversarial networks as a training ar-
chitecture for the neural network classifier. We explain how we modify the
standard GAN architecture to accommodate our classifier and the algorithm
used for training. We also analyze the classifier’s performance on our evaluation
metrics and suggest ways for it to improve its results.

1We investigate this measurement in Chapter 6

88

Generator
Model

Discriminator
Model

Noise Prior

Generated Example Real Example

Binary Classification
(real/fake)

Feedback
for Updating
Generator

Update Model

Target
Distribution

Figure 5.4: Standard GAN Architecture

5.4.1 Introduction to GANs

Generative Adversarial Networks (GAN) were first introduced in [33] to train a
generative model, G, to replicate a specified target distribution. The uniqueness
of the GAN training architecture is that it corresponds to a minimax two-
player game, wherein two networks train against each other in an adversarial
process. While the generator G attempts to replicate the target distribution, a
discriminator model, D, acts as a critic to distinguish between samples from the
generator and samples from the target distribution. The discriminator provides
feedback to the generator such that it may improve its performance. As the
training proceeds and G improves, producing more realistic samples, D also
theoretically improves as it faces a more fine-tuned discriminative task.

The classic architecture for a GAN is shown in Figure 5.4, which illustrates the
adversarial training process. The generator model G uses a noise prior as input
and generates fake examples intended to resemble the real examples produced
from the target distribution. The discriminator model D, a neural network
classifier, takes in both types of examples and makes classification decisions to
identify them as either real or fake.

The training process then updates D based on the correctness of its classifica-
tion decisions on both real and fake data. It then updates G based on D’s
classification decisions on fake data from G. This method for updating
G reflects how G is expected to improve in performance...as D improves as a
critic, G also receives higher quality (i.e. more accurate) feedback to update its
own network.

89

Generator
(fake client)

User PDT

Server PDT Discriminator
(Server's classifier)

authentication
probability

update for classification

feedback on fake transcripts

real transcipt

fake transcript

Figure 5.5: Server’s Classifier Trained in a GAN

5.4.2 GAN-Based Authentication Test

We investigate how effective the GAN-based adversarial process is in train-
ing a discriminative classifier against our Random adversarial metric. We use
the Generator model to produce the adversarial Random transcripts instead of
sampling from a population of adversarial random PDT models, as done in the
supervised learning-based test. We are also interested to see if the Generator
can produce transcripts which resemble the Replay and MLE metrics, although
it is not explicitly designed for this. We intend the Generator model to attempt
to mimic Real transcripts from the server PDT model, πs, and user PDT model,
πu.

This architecture is shown in Figure 5.5, where we train the Discriminator model
in the GAN training process to learn both the Real metric and Random metric
simultaneously; after the training completes, the model can then be used as the
server agent’s classifier in its authentication test.

5.4.3 Experimental Evaluation

Training Parameters and Setup

For the GAN training, we initially conducted an investigation across different
transcript lengths, but decided to focus on length |HT | = 5 as this provided
the best performance results on our metrics. We also set the action space to
Aact = {1, 2, 3}; actions will be represented by one-hot vectors by the neural
network models.

We use feed-forward multi-layer perceptrons as the neural network models for

90

both G and D. Both models have an input layer capable of taking in a complete
interaction transcript with each action, at, in the transcript encoded as a one-
hot vector. Thus, the number of nodes in the input layer is: |HT |∗|Aact|∗2 = 30
(multiply by 2 since there are both server and client actions in a transcript).
Both models use two hidden layers, each with 15 nodes and a rectified linear
unit (ReLU) activation function. As for the output layer, G needs to generate
actions over Aact, so it has 3 output nodes. D outputs a classification probability
between [0, 1] so it only has a single output node which applies a sigmoid function
to squeeze the output value in this range; D follows Eq. 5.1 to make a binary
classification decision on the output probability. Finally, both models G and D
use a learning rate of lr = 0.005 and the Adam optimization algorithm [50] to
update their parameters during training.

The server PDT πs and and user PDT πu are each of depth 5 with 3 branches
per node. The πs model has temperature of a higher entropy parameter of
1.0, while πu has a comparatively lower entropy parameter of 0.1. Both use an
action window of k = 5 by which they record past actions and condition their
next action output on.

The GAN training process is outlined in Algorithm 4. We begin the training
process by creating a training dataset of 50,000 Real transcripts from πs and πu;
the user actions within these transcripts represent the target distribution G will
attempt to replicate. We train the GAN for 50,000 epochs overall. We follow
the recommendation of [33] and train D multiple times within each epoch, while
training G only once per epoch. We found training D 4 times per epoch yielded
the best results during later evaluation.

When the D network is being trained, it gets updated on two different types
of loss criteria, which we notate DlossR and DlossF , respectively. We use the
label of 1 to indicate real transcripts, and label of 0 to indicate fake transcripts.
DlossR refers to whether D classified Real transcripts correctly, and DlossF refers
to D’s correct classification of fake transcripts. In both cases, the loss function
used, lossbce, computes the cross-entropy between the correct class label and
model’s output probability; we notate this as binary cross-entropy since there
are only two classes.

When the G network is being trained, however, the loss is first computed for
D’s classification decisions on fake transcripts generated between πs and G. It
is the intended goal of G to minimize this loss; when D outputs a label of 1
more frequently for fake transcripts, that means G is replicating the target data
more accurately. This loss is then used to update G’s parameters for the next
epoch.

91

Algorithm 4 Train Classifier in a GAN

1: n← 50, 000
2: epochs← 50, 000
3: m← 4
4: dR, dF , gF ← (500, 50, 50)
5: DataReal ← []
6:

7: for i in (1, ..., n) do . Build target dataset of Real transcripts.
8: hiReal ← f(πs, πu) . Apply Algorithm 1
9: DataReal ← DataReal + [hiReal]

10:

11: for e in (1, ..., epochs) do
12:

13: for i in (1, ...,m) do . Train D m times per epoch.
14: dataR ∼dR DataReal . Sample dR Real transcripts.
15: dataF ← []
16: for j in (1, ..., dF) do . Generate fake transcripts from G.
17: hiFake ← f(πs, G) . Apply Algorithm 1
18: dataF ← dataF + [hiFake]

19:

20: . Compute D’s loss on Real and Fake data.
21: DoutR ← D(dataR), DoutF ← D(dataF)
22: DlossR = lossbce(DoutR , 1)
23: DlossF = lossbce(DoutF , 0)
24: . Update D network.
25: Dloss = DlossR +DlossF

26: D.update(Dloss)

27:

28: . Train G once per epoch.
29: dataG ← []
30: for j in (1, ..., gF) do . Generate fake transcripts from G
31: hiFake ← f(πs, G) . Apply Algorithm 1
32: dataF ← dataF + [hiFake]

33: . Computer G’s loss on Fake data.
34: DoutF ← D(dataF)
35: Gloss = lossbce(DoutF , 1)
36: . Update G network.
37: G.update(Gloss)

38:

39: return D

Generative adversarial networks have a delicate training stage due to the ad-
versarial process, wherein the two networks compete against one another. It is
often seen in GAN training that one networks outperforms another, leading to

92

Figure 5.6: Discriminator Performance on Metrics During Training

an unbalanced and possible unstable training process where one network con-
tinues to improve while the other does not. It is a common problem to find
a relative equilibrium in the training such that both networks improve with-
out destabilizing other’s progress. To help track the discriminator’s training
progress, we tracked its performance on held-out test data from our evaluation
metrics during training itself, as shown in Figure 5.6.

Classifier’s Performance on Metrics

After the training stage, we evaluate the GAN-trained classifier on data from
the same server-user pair used for training. Just as for the supervised learning
evaluation, we create four different test datasets, each of 100 transcripts - Real,
Random, Replay and MLE - using the same data generation methods. We did
not train and evaluate multiple GANs to average over, as each GAN training
process is delicate and expensive with respect to training time. Figure 5.7 shows
the classifier’s performance on the evaluation data.

5.4.4 Analysis of Results

Since we tracked the classifier’s performance on evaluation data during the train-
ing stage itself, we expect from Figure 5.6 that it performs best on Real data,
followed by Random and Replay data. We expect the lowest performance to

93

Adversarial Training
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
A
cc
ur
ac
y

Real Random Replay MLE

Figure 5.7: Performance of GAN-trained Classifier (|HT | = 5)

be on MLE attacks. Figure 5.7 validates our expectations, showing that our
training setup yielded an 80% accuracy on Real data, and about 70% accuracy
on Random data. Also as expected, it performed more poorly on the Replay
and MLE metrics; we expect that it would perform better on Replay than MLE
as the classifier at least saw similar data during training (Replay transcripts
contains the client actions from Real transcripts) thus it has some training to
recognize similar interactions outside of this set as adversarial.

On the MLE transcripts, it is notable that the GAN-trained classifier performed
worse than the supervised learning-trained classifier. One point we mentioned
was that the MLE attacks from the test dataset may not be strong enough to
challenge the classifier - why then, however, would the GAN-trained classifier
perform much worse on such attacks? We theorize that this may be due to
the GAN-trained classifier’s relatively lower performance on Real and Random
data; as this classifier did not learn these basic metrics as well, it may be more
likely to classify interactions outside the set of Real data as real.

We note that the performance on Replay and MLE attacks was expected to be
low, since the adversarial data seen by the discriminative network was only that
which was produced by the generator network, G. The role of G in the training
architecture is to mimic the target distribution, not to produce a wide range of
adversarial data. As such, one area for improving the GAN-based training is to
develop a generator which can aptly train the discriminator against a variety
of pre-defined adversarial categories. One way to achieve this is to modify the
generator’s loss function to include its performance error on Replay and MLE
data. However, whether a single neural network can approximate or capture
multiple such representative functions is a separate research question itself.

We also recommend for a more advanced GAN architecture be used to help

94

the classifier reduce loss (Fig 5.6) on the evaluation metrics during training.
In the literature on GANs, using a semi-supervised learning approach [78] has
shown promising results for improving the fine-grained classification abilities
of a discriminator. In the semi-supervised GAN architecture, the discriminator
functions as a multi-class classifier instead of a binary classifier; it outputs logits
over a set of multiple output nodes, each node corresponding to a unique class or
category from the training data. Instead of a sigmoid function to represent two
classes (real or fake), it uses a softmax function to compute probabilities over
the output set to indicate the class of highest probability for any given input.
We suggest investigating the application of semi-supervised GAN to train a
discriminative classifier capable of distinguishing between different categories of
data, real and adversarial, with improved performance.

5.5 Conclusion

In this chapter we introduced an alternative authentication test for the one-way
setting of the AMI protocol, and provided two different training methods for
the neural network classifier which provides the authentication decisions for the
test. We reiterate the implications of such a test within the larger context of the
protocol; this test does not require master keys as input when making decisions.
Rather, the only requirement is the interaction transcript from the multi-agent
interaction stage.

Our evaluation of both the supervised learning-trained classifier and GAN-
trained classifier show that this authentication test can achieve sufficient re-
sults as a feasible method for the AMI protocol. There is, certainly, room
for further improvement, especially for the secondary evaluation criteria of Re-
play and MLE attacks. We suggested including the secondary metrics in the
training datasets for supervised learning; the area of concern would be how the
discriminative classifier can learn the different functions representing the sepa-
rate adversarial metrics. For GAN training, we recommended a more advanced
GAN which improves the classifier’s performance across all metrics; a more ad-
vanced generator capable of imitating a variety of adversarial data is one possible
method. Another is the semi-supervised learning approach for boosting the dis-
criminator’s classification ability on a wider variety of input data representing
the separate metrics.

95

Chapter 6

Protocol Security

6.1 Introduction

This chapter provides evidence for the AMI protocol’s information-theoretic
security against model reconstruction attacks for recovering an AMI master
key from its observed samples. It presents an experimental investigation into
the amount of data required for a model reconstruction attack to meaningfully
challenge the AMI protocol’s security. The attack studied in this chapter is for-
mulated via Maximum Likelihood Estimation (MLE). The experiments indicate
that a very large amount of data is required for MLE to break AMI’s security; it
is also shown that the likelihood of AMI actually revealing this much data during
a session is negligible. Towards the end of the chapter, it is also discussed how
AMI’s information-theoretic alignment offers security against quantum-based
attacks.

6.1.1 Intro to Information-theoretic Security

Modern systems implementing either a symmetric or asymmetric AKE protocol
typically get their security from a computationally hard problem which cannot
be efficiently solved by an adversary. For a symmetric protocol, this hard prob-
lem is usually the brute-force search within the keyspace. For an asymmetric
protocol, there are a variety of different one-way trapdoor functions which are
computationally infeasible to revert. The main concept here is that both rely
on some key assumptions regarding the problem or cipher underpinning their
security [74]:

• There is no possibility that the problem can be solved using limited com-
putational resources (usually in polynomial time).

• If the cryptographic key is known, the problem can be solved in polynomial

96

time.

• The adversary’s computational power is limited; it is unable to solve prob-
lems outside of the computational class P.

One point of concern for such computationally hard problems or ciphers is the
implication that typical ciphers belong to a set of problems in the computational
class NP, and that while it is widely believed NP-complete ciphers cannot be
broken in polynomial time, P/NP equivalence remains an unsolved problem.
Another related point is the assumption of the adversary’s limited computa-
tional power; in principle, a protocol relying on this assumption can theoretically
be broken [74].

Given the shortcomings of computational security, we turn to another branch
of cryptographic security in the literature, one which relies not on the com-
putational infeasiblity of being broken, but rather the theoretical impossibility
of being broken even when facing an adversary with infinite computing power
[63]. We refer to information-theoretic security or unconditional security. An
information-theoretically secure protocol retains its security even when the ad-
versary is unbounded in its computational power. This is a better fit for the
AMI protocol’s model of security. The AMI adversary may observe an unlimited
number of sessions between any client party and server party1 and then perform
an unlimited number of computations on the observed data. It may also initiate
an unlimited number of sessions with the server, and provide it data which was
prepared by an unbounded number of computations (i.e. for model estimation).

6.1.2 Information-theoretic Key Agreement Protocols

Information-theoretic security was first introduced by Shannon in [83], which de-
veloped secure communication methods for noiseless (error-free) channels. Such
methods required a shared secret key between two parties for them to have some
information advantage over an intruder. Shannon measured the level of secu-
rity in a protocol by the statistical independence between a confidential message
and the intruder’s observations; more precisely, this was the mutual information
I(M ;C) between the plaintext message M and the ciphertext C received by the
intruder [74, 64]. A protocol achieved what Shannon termed perfect secrecy if
I(M ;C) = 0. Another way to interpret the property is when after a cryptogram
is intercepted by an intruder, the a posteriori probabilities of this cryptogram
representing different messages would be identically the same as the a priori
probabilities of the same messages before the interception [83]. Unfortunately,
perfect secrecy was shown to require a secret key equal to or greater in length
of the message itself.

1This is not equivalent to saying that the intruder has unlimited access to a specific
client model. As will be explained in this chapter, the AMI protocol’s key evolution scheme
is intended to restrict observations from any specific client to a single session. Hence, the
intruder may observer an unlimited number of sessions, but theoretically, each session will
involve a different shared secret.

97

To overcome this limitation and achieve an improved secret key rate, information-
theoretic key agreement protocols turned to the medium of noisy channels in-
stead, where a cryptographic key could be established between two parties not
already possessing a shared secret (i.e. a symmetric master key). In this method,
Shannon’s assumption of the shared secret was replaced by the use of a random
process which an intruder had only partial access to [74]. We mention two
existing models from the literature which implement this method to establish
a symmetric cryptographic key - the source model and the channel model [4].
Both models situate communicating parties Alice and Bob in the presence of a
third party, the intruder Eve. We follow their description from [74]:

In the source model, Alice, Bob, and Eve observe the realizationsXn = (X1, ..., Xn),
Y n = (Y1, ..., Yn), and Zn = (Z1, ..., Zn), respectively. The source of these real-
izations are three correlated random processes, represented by pXY Z . Alice and
Bob have also been provided a noise-free authenticated public channel by which
they can exchange messages; the transmissions on this channel are denoted V .
Via the messages passed through this shared public channel, Alice generates
the bitstring SA based on (Xn, V), and Bob generates SB based on (Y n, V).
In the channel model, there is no common source of randomness available, so
Alice transmits Xn; Bob and Eve both obtain respective observations Y n and
Zn from realizations of Xn through their own separate noisy channels. Again,
Alice and Bob also share an authenticated noise-free channel by which they can
exchange additional messages, which helps Bob retrieve the original transmitted
message Xn so that both parties can established a symmetric key.

The main concept in both models is similar - realizations Yn of a random variable
or random process are obtained by Bob via a noisy channel, then Bob cleans up
Y n to make it similar to, or to retrieve Xn. Once Alice and Bob have similar
data, they can use it to generate their symmetric cryptographic keys, SA and SB ,
where SA = SB . The source model uses a three-step procedure [74] for Alice and
Bob to generate identical keys SA and SB , once all parties have obtained their
sequences from the random source. The first step is advantage distillation, where
Alice ad Bob exchange parity bits via their noise-free side channel to locate the
positions in which their sequences, Xn and Y n, are likely to be similar, until they
know more about each others’ observations than Eve does. The second step is
information reconciliation, where Alice sends Bob error-correction information
via their side channel, to help him adjust his sequence until it is identical to
Alice’s. The third and final step is privacy amplification, where Alice and Bob
need to distill from their common sequence a shorter and provably secure key,
to ensure the final output is truly concealed from Eve (given that Eve is privy
to the messages exchanged via the side channel). Alice and Bob distill the final
key by applying a sensitive deterministic hash function to their partially secure
common sequence, such that the possible outputs are equiprobable for Eve.

This is, of course a notably different construction from traditional symmetric key
agreement protocols, as well as the AMI protocol, given that the noisy channel-
based methods were developed as ways to establish a symmetric key without

98

the prior shared secret. There is, however, some similarity with AMI, as the
AMI parties receive observations from random sources (the probabilistic agent
models); the difference is that the AMI channels are noise-free and observations
do not require error-correction to retrieve the original generated values.

6.1.3 Requirements for Information-theoretic Security

Information-theoretic key agreement protocols such as the source model and
channel model measure their security via the key rate - that is, the rate at
which a secret key can be generated, wherein the goal is to produce a key with
a high level of security, from the fewest number of observations. For these
protocols, a weak secret key rate R is achievable if Alice and Bob can compute
from Xn and Y n, respectively, two keys SA and SB which belong to a set S of
size 2nR, such that the following properties [74] hold :

Pr(S = SA = SB)→ 1 (6.1)

Eq. 6.1 refers to the property that the generated cryptographic key must be
‘almost’ symmetrical. We note that although it may seem contradictory to have
a nearly symmetrical established key, this is a property of the weak definition
for information-theoretic security.

1

n
I(S; Zn, V)→ 0 (6.2)

Eq. 6.2 is similar to Shannon’s original measurement of information-theoretic
security, which was taken via the statistical independence between the plaintext
message and the corresponding ciphertext. Here, the statistical independence is
measured between the established secret key, S, and the intruder’s observations;
the latter includes Zn observed from the random source, and the public obser-
vations V from Alice and Bob’s noise-free channel. The property desires that
the secret key be nearly statistically independent of the intruder’s information.
We note that the calculation is technically of the rate of the mutual information,
not just the mutual information itself.

1

n
H(S)→ R (6.3)

Eq. 6.3 refers to the entropy of the secret key, H(S). This property requires
that the secret key be nearly uniformly distributed, and thus be of high entropy.

If a key agreement protocol satisfies all three properties, then the secret key can
be said to be effectively concealed from the intruder, Eve, in such a way that the
security is not predicated on any computational assumptions (i.e. information-
theoretically secure) [74].

99

6.2 The AMI Protocol’s Information-theoretic
Security

We now analyze how the AMI protocol satisfies the requirements for weak
information-theoretic security, with respect to the one-way authentication set-
ting.

The first requirement is that that secret key established between two parties be
almost symmetrical on both sides. As detailed in Section 4.3, the AMI protocol
mandates that the server and client parties generate identical session keys, via
key(HT , πu) and key(HT , πc), respectively. The AMI key generation function
in Algorithm 3 mandates that exact parameters (i.e. probabilities) from the
agent master key be used, for the session key to be truly symmetric. Else, if
even a single selected parameter is incorrect, the final session key will not be
symmetric; this is especially true considering the application of a sensitive hash
function to the concatenated parameters from key(HT , πu). Thus, AMI achieves
the desired property from Eq. 6.1.

We now jump ahead to address the third requirement, that of Eq 6.3, which
requires that the secret key be nearly uniformly distributed within the keyspace.
With respect to AMI, we first note that the agent model πu used in the key gen-
eration function is randomly instantiated. For the PDT models typically used,
their nodal distribution parameters are produced from a uniform random dis-
tribution2, and entropy tuning is only applied after the parameters are already
generated. These randomly generated model parameters are then used in AMI’s
key generation function, key(HT , πu), where parameters are selected according
to the client actions in HT (in one-way authentication). The key generation
function also applies not only a hash function to the selected parameters, but
also a key derivation function (KDF); the purpose of the KDF is to produce
a final session key which is computationally indistinguishable from a uniform
randomly-distributed sequence with the same length as the key. With this in
mind, we say that AMI meets the third requirement for a key which is nearly
uniform distributed.

We return now to the second requirement in Eq. 6.2, which desires that the se-
cret key and the intruder data be nearly statistically independent, as measured
by the mutual information, I(key, intruder data). For the AMI intruder to
recover the session key, it would have to acquire the inputs for the protocol’s
key generation function, (HT , πu), since the session key itself is computed by Al-
gorithm 3 as session key = KDF (hash(key(HT , πu))). This begs the question
of what is the statistical independence between the intruder data, HT , and the
session key? We interpret this question in light of [83], where Shannon intro-
duces information-theoretic security as the difficulty an intruder with unlimited
time and manpower has in computing from their intercepted observations the
a posteriori probabilities of the possible keys which might have produced the

2See random generation in: https://pytorch.org/docs/stable/generated/torch.rand.html

100

observations. Within the context of the AMI protocol, we look at the resolution
of the opponent modeling problem as the aim of the computationally unbounded
intruder, in order for them to retrieve the session key from intercepted observa-
tions, HT .

6.2.1 Resolution of the Opponent Modeling Problem

There are two ways to gauge the success an intruder has in solving the oppo-
nent modeling problem within the context of AMI. One is the degree to which
they are able to exactly compute the session key. This, however, we consider
an unrealistic goal for the intruder, with respect to the AMI session key. For
example, consider the nodal distributions constituting the the PDTs which are
typically used in AMI as agent models. By simply increasing the size of the
floating point values (the number of digits after the decimal point) for probabil-
ities in a distribution, the given distribution is much more difficult to estimate
with perfect accuracy. An intruder would find it would more difficult to ex-
actly estimate the distribution [0.7529, 0.0059, 0.2412], than [0.75, 0.01, 0.24], or
even [0.7, 0.0, 0.3]. We also note that only exact probability values inputted
to the AMI key generation function result in correct key computation. Thus,
we consider correct computation of the session key opponent via an opponent
modeling attempt to be unrealistic, given a master key πu having parameters
with a relatively large floating point size 3.

The other aspect of a successful opponent modelling attempt is the degree to
which it is able to bypass the AMI authentication test. For such an attempt,
an intruder would observe multiple sessions from the same client (and the same
client model πc), recording each interaction transcript. The set of transcripts
would then be used to compute an estimate of πc. However, we note that the
AMI protocol does employ a key-evolving scheme (KES) to evolve the model πc
to π′u at the end of each successful session (successful indicates the legitimate
client passed the authentication test). This is intended to limit the use of a
given client model πc to a single session; that is, the intruder can only record
a single transcript per model πu. The only exception to this is the event of an
error in the authentication test - more specifically, the event of a Type I error
in the hypothesis testing-based authentication method. As defined in Section
4.2, a Type I error occurs when a legitimate client fails the authentication test,
and must attempt to be authenticated again. In this scenario, the KES will
not be applied given that the initial session was denied, and thus the same,
unpermuted model πc will be used in the subsequent session.

In our investigation, we analyze this worst-case scenario where the intruder is

3An interesting further research question would be: for an agent model of fixed size, how
many interaction transcripts are required for an opponent modeling attempt to exactly repli-
cate its parameters, as we increase the floating point size (i.e. the number of digits after the
decimal) of the parameters? And is this even achievable for a larger sized model, as used in
our experiments (PDT of depth 5, with 10 actions)?

101

able to observe multiple transcripts from the same given model, πc, for opponent
modeling. We formulate this scenario in the form of the question: how many
interaction transcripts Hn = (H1

T , ...,H
n
T) from the same client model are re-

quired for an opponent modeling attempt, via Maximum Likelihood Estimation,
to meaningfully challenge the AMI protocol’s one-way authentication test?

6.2.2 Experimental Setup

We conduct an experiment to evaluate this question. We first fix the size of
the action space for a random server and client PDT pair to |Aact| = 10; we
choose this PDT model size to be consistent with the authentication test ex-
periments in Section 4.2. We also wanted a PDT model large enough to be
a sufficiently challenging task for the MLE estimate. Then, for an increasing
number of legitimate interaction transcripts {250, 500, ..., 5000}, we compute an
MLE estimate of the user model πu, called πmle, and evaluate the authentica-
tion accuracy on 100 adversarial transcripts produced between πs and πmle. We
repeat this experiment for 100 different server-client pairs, and take the average
authentication accuracy over all pairs.

We also study the average authentication accuracy on such adversarial tran-
scripts for different transcript lengths of |HT | = {50, 100, 200}, to see if a larger
transcript with more client actions aid the intruder in computing a more accu-
rate estimate, πmle.

Figure 6.1 shows this evaluation, with different colored lines for the different
respective transcript lengths. The x-axis shows the number of legitimate tran-
scripts used to build πmle. We also include on the plot a measurement for the
probability of observing the given number of transcripts from the x-axis; we
did this to illustrate that despite an MLE attack’s apparent success against the
AMI authentication test when given enough legitimate transcripts, in reality the
probability of as much data being publicly revealed is significantly low. This
probability is shown by the secondary y-axis on the right-hand side of the Figure
6.1 plot. It was computed using the hypothesis test parameter for Type I error,
α = Pr(Type I Error), where α = 0.1 and thus the probability of observing k
transcripts from the same client model under AMI is (0.1)k−1. For example,
the probability of observing two transcripts from the same client model is the
probability of a single Type I error, (0.1)1.

We also include an additional experiment (Figure 6.2) to show how even further
protection against MLE attack can be assured by simply increasing the size of
the user model. We fix the transcript length to |HT | = 100, then vary the size
of the action space, |Aact| = {7, .., 13}. Again, the results are averaged across
100 different server-client pairs.

102

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Observed Histories for ML Estimate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ut
h
A
cc
ur
ac
y
on

 M
LE

 A
tta
ck

Data
|H|=50
|H|=100
|H|=200

10^-5000

10^-4000

10^-3000

10^-2000

10^-1000

P
ro
ba

bi
lit
y
of
 O

bs
er
vi
ng

 H
is
to
rie

s
(lo

g
sc

al
e)

Figure 6.1: Average authentication accuracy against MLE attacks versus num-
ber of transcripts used for the MLE attack. Results averaged across 100 differ-
ent server-client pairs. Standard error not show due to low variation (< 0.01).
Dashed red line shows probability of observing the given number of transcripts
from the same client model, under AMI.

6.2.3 Experimental Results and Analysis

In Figure 6.1, we are able to see how the authentication accuracy is affected
by a more rigorous MLE attack. We also see how a larger transcript length
provides more data to the intruder for a more effective MLE attack. To lower
the authentication accuracy from 100% to 90%, an MLE attack using |HT | = 50
(blue line) requires over 1500 transcripts, |HT | = 100 (orange line) requires over
1250 transcripts, and |HT | = 200 (green line) requires over 750 transcripts.
We focus on the worst-case |HT | = 200 (green line), which reveals the most
data from πc in a single interaction session. The plot shows that even for this
case, at least 500 transcripts are required for an MLE attack to begin to affect
the authentication test accuracy; at this point the accuracy drops below 100%
for the first time (the lines in the figure were plotted for increments of 250
transcripts, and accuracy at 500 transcripts was still 100%).

The corresponding probability measurement (dashed red line) for the MLE at-
tack using |HT | = 200 is encouraging. Given that it takes at least 500 transcripts
to affect the authentication test accuracy (to lower it from 100%), the proba-
bility of observing 500 transcripts from the same client model is (0.1)499 under
AMI. This is an encouraging result, as it indicates the near-impossibility of such
a scenario.

In Figure 6.2, it is straightforward to see how varying the action space parameter
in the PDT model affects the effectiveness of the MLE attack, for a fixed tran-

103

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Observed Histories for ML Estimate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ut
h
A
cc
ur
ac

y
on

 M
LE

 A
tta

ck
|A|=7
|A|=8
|A|=9
|A|=10
|A|=11
|A|=12
|A|=13

Figure 6.2: Average authentication accuracy against MLE attacks versus num-
ber of transcripts used for the MLE attack (for |HT | = 100). PDT model size
is varied by tuning action space size |Aact| = {7, .., 13}. Results averaged across
100 different server-client pairs. Standard error not shown due to low variation.

script length of |HT | = 100. Authentication accuracy on smaller sizes of {7, 8, 9}
drops relatively quickly as compared to the larger sizes of {11, 12, 13}, where
the accuracy remains relatively high even as the number of transcripts increases
on the x-axis. In comparison to Figure 6.1 (orange line), where the MLE attack
requires 1500 transcripts to lower the accuracy to 80%, the accuracy in Figure
6.2 is still above 95% for higher action spaces sizes |Aact| = {11, 12, 13}. This
illustrates the effectiveness of parameter tuning in decreasing the effectiveness
of even a strong MLE attack.

The experimental results from Figures 6.1 and 6.2 indicate that in a practical
setting, the authentication test is strongly resistant to the MLE attack, given
the near-impossibility of an intruder observing enough data to actually affect
the test accuracy. The further use of parameter tuning, specifically the size of
the PDT models, makes the model reconstruction task even more difficult. Our
experiments were aligned with information-theoretic security in depicting how
even a computationally-unbounded intruder cannot solve the opponent modeling
problem effectively enough to significantly challenge the AMI authentication
test; this is due to the limited public information revealed by the protocol. We
thus use these results to resolve the investigation into the opponent modeling
problem within AMI - that of the difficulty an intruder has in computing the
user’s master key from intercepted observations, in order to retrieve the session
key itself.

104

6.2.4 Further Improvements for MLE Attack

There is a natural question which arises from the MLE-based attack. Since πmle
is constructed from a training dataset of observed values from πc, wherein πmle
estimates πc’s nodal distributions by the relative frequency of its actions, how
does it fill in the nodal distributions which did not occur in a specific observed
dataset?

For example, during a particular session, at timestep t = 1, πc produces action
c1 = 3, and πs produces action s1 = 2. Then at t = 2, we see c2 = πc(s1 = 2) = 2
and s2 = πs(c1 = 3) = 2. Then at t = 3, we see c3 = πc(s1 = 2, s2 = 2) = 3 and
s3 = πs(c1 = 3, c2 = 2) = 2. Afterwards, when πmle is trying to reconstruct the
nodal distribution at t = 2, it only has from πc the action πc(s1 = 2) = 2, with
which to estimate a distribution over 10 actions.

Of course, the depth of πc as a PDT is limited, so certainly there will be multiple
traversals of the πc model. But there may still be certain sequences which remain
unobserved, or observed a very small number of times. At t = 3, the adversary
may try to estimate:

P (c3 = 3|s1 = 2, s2 = 3) =
C(s1 = 2, s2 = 3, c3 = 3)

C(s1 = 2, s2 = 3)

where C() is the count of a certain sequence. However, if in this session, the
sever and client never generated these exact sequences, i.e. C(s1 = 2, s2 =
3, c3 = 3) = 0, then the adversary has no way to compute this probability value
at the traversed node.

To solve the problem of lack of variability of sequences due to the small size
of the training dataset, smoothing can also be applied. Essentially, smoothing
modifies the counts of the training dataset to account for the appearance of zero
counts or low counts. Smoothing strategies typically re-distribute some of the
probability mass from higher count sequences onto the zero or low counts [45].

We leave for further work a more improved MLE attack which incorporates
smoothing, whether it be by Good-Turing [32] or Kneser-Ney smoothing [66],
etc. We would expect an MLE attack adjusted by smoothing to produce a bet-
ter estimation of πc; however, we do not expect the improved MLE attack to
dramatically reduce the number of interaction transcripts required to meaning-
fully challenge the AMI authentication test, such that it threatens the protocol’s
information-theoretic security.

We consider the fact that if shorter interaction transcript lengths are used in
AMI, even the more frequently occurring sequences with non-zero
counts still have relatively low counts themselves. If the server model is
generated with high-entropy distributions (as seen in Chapter 4 experiments),
this indicates a more balanced traversal of the client model which does not often
repeat certain nodes. Hence, during any particular session, we expect that a
very large client model does not produce high counts for observed sequences.

105

Thus, the fact remains that there is still too little data for model reconstruction,
especially from smaller transcript such as |HT | = 50, which is sufficient for high-
accuracy authentication, as seen in Chapter 4.

6.3 Conjecture for Quantum Security

Traditional symmetric AKE schemes rely on the computational infeasibility of
resolving the brute-force key-search problem within the keyspace of a given
symmetric session key. In the presence of quantum search algorithms providing
a quadratic speedup over classical search, researchers have recommended in
[19] that such schemes retain their security by simply doubling their symmetric
key length (increasing the key length dramatically increases the size of the key
space and makes the key search problem much more difficult). These types
of symmetric-key cryptography are believed (but not proven) to be quantum-
resistant [19]. AMI’s alignment with information-theoretic security, however,
means that speedup in search does not provide any extra benefit to an intruder in
resolving the opponent modeling problem. As shown empirically in section 6.2.3,
the resolution of this problem requires a certain amount of publicly observable
data (i.e. random samples from an agent behavioral model). As explained
previously, the probability of this required amount being observed under AMI
is significantly unlikely - an event with near-zero likelihood.

In the relevant cryptography literature, there are some forms of symmetric-
key cryptography guaranteed to be quantum-safe. Such primitives, such as
the one-time pad analyzed by Shannon [83] to achieve perfect secrecy, make no
computational assumptions and are thus information-theoretically secure; by
this property they also guarantee quantum-resistance. Use of the one-time pad
means that an intercepted ciphertext gives absolutely no additional informa-
tion about its original plaintext. Another example apart from the one-time pad
Wegman-Carter authentication [95], a provably-secure authentication technique
resistant to even an arbitrarily powerful intruder. This scheme is also known
to be quantum-resistant under information-theoretic principles [19]. Also fol-
lowing information-theoretic principles, we conjecture for the AMI protocol’s
quantum-resistance, given the AMI intruder’s inability to meaningfully chal-
lenge the protocol’s authentication test even by the most straightforward key-
recovery method, and even with infinite computing power.

Finally, we also point to the lack of available quantum algorithms in resolv-
ing the AMI protocol’s underlying problem under information-theoretic secrecy
(solving the opponent modeling problem from limited data), at the time of this
thesis’s writing. Quantum-resistant public-key algorithms such as those in [21]
are stated to be secure against quantum attack by similar reasoning - quan-
tum algorithms have not been developed which effectively solve the unique con-
structions underlying lattices, error-correcting codes, and multivariate quadratic
polynomials.

106

6.4 Conclusion

In this chapter, we discussed the motivations for information-theoretic security,
and explained how it is different from computational security. We also detailed
the design of existing information-theoretic key agreement protocols, and the
criteria by which they are considered information-theoretically secure. We ana-
lyzed the AMI protocol’s satisfaction of these criteria, and provided a rigorous
empirical evaluation of its resilience to key recovery attempts (via Maximum-
Likelihood Estimation). We used these results to explain how the difficulty of
resolving the opponent modeling problem is an empirical argument for satisfying
the criteria regarding an established secret key’s safety from an intruder. We
also provided an experiment to demonstrate how tuning the parameters such
as the size of an agent model (the master key) makes key-recovery more diffi-
cult. Finally, we explained why the AMI protocol’s security differs from that
of traditional symmetric-key cryptography, and how its information-theoretic
alignment is a conjecture for quantum-resistance.

There is certainly room for future work in proving AMI’s information theoretic
security against adversaries more powerful than the strategy employed in this
Chapter. As per the literature discussed in Chapter 2, state-of-the-art language
models, especially large pre-trained language models (PLMs) based on Trans-
formers, could be used to replace the MLE strategy. Such an investigation
would fine-tune a PLM on a labeled dataset of multiple client sessions, where
the same client model is used (i.e. forward-secrecy is disabled). We suggest a
causal language model such as GPT-2 [72], which is designed for text generation
and can be applied to such a dataset as a time series forecasting problem.

It would then be interesting to see how many interaction transcripts the PLM
requires before it begins to generate transcripts which seem legitimate enough to
challenge the AMI authentication test. However, we note that state-of-the-art
language models require vast amounts of training data even for fine-tuning on
time series data; they face the same issue as a standard MLE strategy for solving
AMI key recovery. We also recall that AMI key recovery only permits training
on data from a single observed session, due to the key evolving scheme. The
lack of training data in a single session from the same client is thus a prohibitive
factor, hence we consider AMI secure against such state-of-the-art models, and
secure even against unconditionally powerful adversaries.

We include a final thought for further study. The AMI protocol’s security
model permits an arbitrarily powerful intruder to initiate an unlimited number
of sessions with an AMI authentication server. An interesting question is: is
it possible for an intruder to keep randomly guessing client actions for a given
registered user until they hit upon a correct guess? If so, how many such guesses
would it take, and is there a way for the intruder to make more intelligent guesses
to improve their guess-probability? This is analogous to using the Random
adversarial strategy repeatedly.

This helps us formulate a more specific research question: for a specific fixed

107

client model size, and specific action space size, how many sessions does a Ran-
dom strategy need to accidentally guess a sufficiently accurate client response?
The most straightforward way to address this problem is to permit registered
AMI users only a limited number of login attempts before a secondary authen-
tication method is required. For example, an AMI server would permit a client
only three authentication attempts before it blocks that user from initiating
sessions. We also consider that an intruder does not gain much feedback from
failed login attempts under AMI. The authentication server does not provide a
measure of failure to a client - rather, it simply informs it of a binary decision.
As such, an intruder attempting a very large number of random guesses would
be hard-pressed to improve the quality of guesses over time. The only such
advantage it would have is a recorded transcript from a given client which it
can use to compare against its guesses.

108

Chapter 7

Key Evolution Scheme

7.1 Introduction

In this chapter, we provide a key evolution scheme for the AMI protocol, by
which a shared secret is updated by both parties such that the protocol achieves
the property of forward secrecy. Forward secrecy, also called perfect forward se-
crecy is a very strong form of long-term security which guarantees that future
disclosures of a long-term secret key (i.e. the shared secret) does not compro-
mise past session keys [9]. To address this, symmetric-key protocols apply a
key-evolution scheme (KES) to continually evolve the long-term master keys
possessed by both parties, such that if a master key is compromised at given
session i, the previous master keys from sessions i − 1, i − 2, etc. cannot be
computed since the key evolution scheme is non-invertible. This means that
session keys from sessions i− 1, i− 2, etc., derived from those respective master
keys, are also safe.

Key evolution schemes play a significant role in the AMI protocol, especially
given the protocol’s alignment with information-theoretic security (rather than
computational security). Not only does applying a KES to evolve an agent
master key (the shared secret) provide forward secrecy by protecting past session
keys, but it can also be intended to restrict the number of sessions from
the same client model, which can be publicly observed. In Chapter 6, we
discussed the difficulty of resolving the opponent modeling problem from limited
data - it is this key evolution mechanism which is applied in AMI to limit
publicly observable data from a given client model to a only single
session. If a KES is applied after each successful client-server session i, and
the client model πic is successfully evolved, then theoretically an intruder would
be able to observe data from πic for session i only. Subsequent sessions i + 1,
i+ 2, etc. between client and server would use evolved models πi+1

c , πi+2
c , etc.

Key-evolution schemes may be applied either after a complete session, or at

109

specific time intervals [40]. One issue which may arise for either case is that of de-
synchronization. If one party fails to update its master key at a required interval
i, and this key is compromised later at interval i+1, it may be used to compute
the ith session key, breaking the protocol’s forward secrecy. Protocols such as
[9] provide a mechanism to address a possible synchronization gap between the
two parties. In this chapter, we do not address de-synchronization with respect
to the AMI protocol - rather, we focus on the key evolution scheme itself.

Key evolution may be implemented in different ways. The important point is
that the evolution function be non-invertible, such that an evolved master key
cannot be reverted to a past one. The SAKE protocol [9] implements key evolu-
tion using a non-invertible pseudo-random function (PRF). It does so by simply
providing the long-term master key as input: key′m ← PRF (keym). The PRF
produces a key′m which is computationally indistinguishable from truly random
data of the same length. This ensures that after multiple protocol session, the
evolved master keys retain the property of appearing uniform-random to out-
side observers. Another example of a KES can be seen in the FORSAKES
protocol [40], which implements the key evolution using a random oracle1 to
compute: key′m ← O(keym), where the random oracle O() may be implemented
by a cryptographically secure ideal hash function. It produces an output key′m
such that it reveals no information about keym, meaning that the process is
non-invertible.

7.2 Key Evolution Scheme

Both client and server agents utilize their Key Evolution Module to evolve the
shared secret master key. This module borrows the required parameters along-
side the shared secret from the Knowledge Module, then returns to the Knowl-
edge Module the updated shared secret. We provide a viable key evolution
method for AMI in Algorithm 5.

1In cryptography, the random oracle model is an idealized model which treats a crypto-
graphic hash function H as a truly random function, and provides a formal methodology that
can be used to design and validate a cryptographic scheme [49].

110

7.2.1 Key Evolution Algorithm

Algorithm 5 AMI Key Evolution Scheme

Input: (π,HT , seed,Aact, τ)

RNG(seed) . Seed the random generator.
for t in (1, 2, 3, ..., T) do

ptdist ← RNG(|Aact|, τ) . Generate fresh prob. distribution over Aact.

π(Ht) = ptdist . Update prob. distribution in model.

return π as π′

Algorithm 5 is a simple transformation for a given shared secret, πu (notated
in the algorithm simply as π, as client and server parties use πc and πu respec-
tively). It begins by seeding a random generator by the provided seed value.
It then traverses πu by the interaction transcript HT , visiting each (nodal) dis-
tribution, πu(Ht), for t = (1, ..., T). At each time step, it generates a fresh
probability distribution over the action space, ptdist. The generation is done
by the random generator which generates uniform-random values (in practice,
this would likely be implemented by a pseudo-random generator (PRNG) whose
output is computationally indistinguishable from uniform-random values [49]).
This random generator uses the same entropy parameter which describes πu
when generating the fresh distributions. Hence, RNG(|Aact|, τ) creates a prob-
ability distribution over the same action space and with the same temperature
as the original πu. Once all distributions have been replaced over all the time
steps, Algorithm 5 returns the evolved model π′u.

In Figure 7.1, we show an example shared secret, πu, being transformed via
Algorithm 5. The red highlighted nodal distributions in πu are those traversed
by the interaction transcript in the diagram. In the evolved model π′u, those
traversed (and now updated) nodal distributions are highlighted in blue. For
illustration, we left out a few nodal distributions in πu which were not evolved,
as the interaction transcript did not traverse them. These are the distributions
left unhighlighted in black, and their values remain the same from πu to π′u.

Algorithm 5 differs from the SAKE protocol’s key evolution scheme [9], which
transforms the entire SAKE master key via a PRF into a near-uniform random
output value. Algorithm 5 typically transforms a subset of the parameters in
the AMI master key - however, with a sufficiently long and diverse2 interaction
transcript, it is possible to transform nearly all or even all of its parameters.
Its similarity with [9] lies in the uniform-random generation (or statistically

2Near-uniform random actions from the server model πs means the user model will be
more fully explored.

111

[0.8, 0.1, 0.1]

[0.3, 0.5, 0.2] [0.4, 0.3, 0.3][0.7, 0.2, 0.1]

[0.6, 0.2, 0.2] [0.3, 0.3, 0.4] [0.3, 0.6, 0.1] [0.6, 0.1, 0.3] [0.2, 0.6, 0.2][0.5, 0.2, 0.3][0.4, 0.5, 0.1] [0.3, 0.6, 0.1] [0.7, 0.2, 0.1]

1 2 3

1 1 12 2 23 3 3

Ht_server = [1, 2, 3, 1, 1, 3, 2, 2]

[0.05, 0.9, 0.05]

[0.45, 0.1, 0.45] [0.25, 0.25, 0.5][0.1, 0.5, 0.4]

[0.3, 0.2, 0.5] [0.7, 0.1, 0.2] [0.2, 0.2, 0.6] [0.2, 0.6, 0.2][0.6, 0.3, 0.1][0.4, 0.5, 0.1] [0.2, 0.7, 0.1] [0.3, 0.3, 0.4]

1 2 3

1 1 12 2 23 3 3

[0.5, 0.25, 0.25]

Legitimate Client Model

Transformed Client Model

RNG(seed = session key)

Figure 7.1: AMI Key Evolution Scheme for Forward Secrecy

uniform-random generation via PRNG) of the parameters which constitute the
evolved key. As for the FORSAKES protocol, Algorithm 5 obviously does not
use a random oracle (implemented by an ideal hash function) in its key evolution
- it relies on the random number generator, which carries different properties.

7.2.2 Considerations for the KES

An interesting point in Algorithm 5 is the choice of seed value for the random
generator. Of course, this must be a seed value which both client and server
agents agree upon, else they would produce differing evolved shared secrets when
using Algorithm 5. In the current version of AMI, we provide the established
session key as the seed value. One consideration with this approach is that the
session key is a function key(HT , πu) of the public interaction transcript. It may
appear more preferable, from a security standpoint, to use a seed value which
does not rely on publicly observed data. However, we point out that the key
derivation function (KDF) applied at the final stage of the AMI key generation
method establishes a session key computationally indistinguishable from a truly
random bit-string. To an intruder, no matter which transcript HT they observe,
the final session key will appear uniform-random.

An alternate seed value could be a selection of parameters from the shared secret
master key which does not rely on the interaction transcript. This selection
would be pre-set and specified at the time when the shared secret is agreed upon
and distributed to both parties. For example, such a pre-set parameter selection
could be: select every other (nodal) distribution from the set of distributions

112

gathered via a breadth-first search of the shared secret PDT. With this alternate
selection in mind, the client and server agents can also perform key evolution
without using the public interaction transcript.

7.2.3 Security of the Evolved Master Key

How difficult is it for an intruder who has somehow captured an evolved master
key, πi+1

u from session i+ 1, to revert it to the previous version, πiu from session
i? This reversion requires knowledge of the RNG seed for πiu (note that this
is not the same as the seed for πi+1

u). In order to find the seed value purely
from a captured πi+1

u ’s distributions, the intruder would have to do a brute-
force search in the space of all possible seeds. Resolution of the search problem
would require trying different possible seed values for the RNG to discover
which input produces the values seen in the output distributions of πi+1

u . This
problem is computationally infeasible given a seed value of sufficient length, and
is analogous to recovering a hidden symmetric key of the same length n, where
the key space is of size 2n.

7.3 Conclusion

In this chapter, we described the forward secrecy property and its relevance to
symmetric AKE protocols. We also discussed the significance of a key-evolution
scheme for forward secrecy with respect to information-theoretic security, and
how this mechanism is intended to protect client agents from revealing too much
data from their master key. We provided a viable KES for the AMI protocol’s
agent-based probabilistic models used as master keys, as seen in Algorithm 5.
We detailed some of the algorithm’s considerations, was well as the difficulty of
reversing its key evolution. Reversing the evolution would be a similar problem
to breaking the security of a sufficiently long symmetric key, which is computa-
tionally infeasible.

113

Chapter 8

Protocol Optimization

8.1 Introduction

The purpose of this chapter is to provide a training procedure for the server
agent which optimizes the AMI protocol - more specifically, which optimizes
the protocol’s interaction stage. The procedure detailed in this chapter was
developed in collaboration with Josiah P. Hanna, who helped design the training
environment and evaluation experiments.

AMI’s alignment with information-theoretic principles means that from a multi-
agent interaction process, we wish to produce a high-confidence authentication
decision while using the least possible number of samples from the agent
master keys. The fewer samples exchanged, the less data is seen from master
keys, which makes for a more secure interaction. Motivated by this concept of
using a minimal number of samples, we aim to develop an optimization proce-
dure for the server model (i.e. the server master key πs) to achieve this goal.
For this task, we now use a trainable neural network for πs instead of a
probabilistic decision tree.

In a standard AMI interaction process, the server agent uses behavioral model
πs, and possesses the shared secret (user model πu). The client agent uses
behavioral model πc, which may or may not be identical to the shared secret.
Recall that this shared secret model πu was initially randomly generated from
the space of all possible models, Πu. If we look closer at Πu, we can say that
within this set, there are many different models, some which resemble πu and
others which do not. Let us say that all models in Πu are probabilistic decision
trees (PDTs). Then, we can say more specifically that some models πiu ∈ Πu

have nodal distributions which are near-identical or similar1 to their respective

1We can here define similarity as a low Kullback–Leibler divergence between distributions.
We can apply this to also define dissimilarity or uniqueness. Another perspective is that
models which make the same action choice for the same input (on average) are similar.

114

distributions in πu. In the same vein, we can say that there is an ordering or
subset of nodal distributions within πu which make it unique among all the
models in Πu. We can call this subset of nodal distributions Ωu, and their
nodal indices or positions within πu we call ωu.

During AMI interaction, when the server is facing an unknown model, πc ∈ Πu,
it is desirable for the server to produce actions, which when taken as input by
πc, will cause πc to traverse to those nodal locations which are in ωu, whose
distributions Ωu make πu unique to other models in Πu. Hence, we wish for πc to
repeatedly visit and sample from nodes in ωu. We recall that in the frequentist
hypothesis test [6], for each timestep in the interaction, the server entity will
use the sampled action from πc and the distribution for that timestep from πu
as input (atc ∼ πc[t], πu[t]) to the test. Thus, we want, for as many timesteps as
possible during the interaction, for (πc[t], πu[t]) to come from ωu.

Recall that πs is randomly generated and typically performs a near-uniform
random action selection. As such, in an interaction between a standard, non-
optimized server model πs and client model πc, πs performs a balanced or near-
uniform traversal of πc which does not focus on visiting any specific nodes in πc.
Accordingly, we assume that for an given interaction transcript HT generated
by a non-optimized server, some actions atc ∈ HT are from nodes in πc which
belong to ωu, and others are not. We refer to the former type as ‘significant
actions’. We wish to maximize the number of actions atc ∈ HT which
are ‘significant actions’, theorizing that this can reduce the size of HT

while still achieving a high-confidence authentication decision.

In the following sections, we will provide a method for optimizing a neural
network server model πs such that it intelligently probes a client to elicit
samples which result in high-confidence authentication from fewer interactions
(we expect that the server will probe πc for the nodes in ωu). Our method
is a reinforcement learning approach which allows the server agent to explore
the space of possible actions in a custom environment in order to maximize
the notion of cumulative reward. The server agent will learn a behavioral policy
which produces actions resulting in a maximum cumulative reward for achieving
the optimization objective.

8.2 Optimization Methodology

In this section, we introduce reinforcement learning, then detail our own training
environment and learning objective for training the server model to optimize the
multi-agent interaction.

115

8.2.1 Reinforcement Learning Basics

As described in [87], reinforcement learning (RL) is a straightforward framing
of the problem of learning from interaction to achieve a goal. Within this
framework, an agent is the entity which is learning and making decisions. It
interacts with the environment, which provides it states and rewards based on
the agent’s decisions. It is the environment which is generally tailored towards
helping the agent learn a specific task, such as learning to walk, or finding a
path through a maze. Since the environmental feedback is not controlled by
the agent, it is said that the agent-environment boundary represents the limit
of the agent’s absolute control.

Environment states can be represented in a variety of ways. They can consist
of low-level sensations such as sensor readings or visual data, or higher-level ab-
stractions such as symbolic descriptions of objects. On the other hand, rewards
are typically simpler numerical values. They are computed in the environment
and formalize the idea of a goal. We formalize these terms as following, using
the description from [87]:

During training, the agent and environment interact at each of a sequence of
discrete time steps, t = (0, 1, 2, ..). At each time step, the environment provides
a representation of the environment’s state, st ∈ S, where S is the set of all
possible states. Accordingly, the agent selects an action, at ∈ A(st), based on
the state, where A(st) is the set of available actions in state st. At the very
next time step, the agent receives a reward signal, rt+1 ∈ R, corresponding to
its past action decision and finds itself in a new state, st+1. The entire agent-
environment interaction can be separated into subsequences called episodes,
each of which begins at the start state, s0, and ends in a specially designated
terminal state.

How does the agent make its decisions? At each time step, the agent implements
a mapping from each state to the probability of selecting each action at ∈ A(st).
This is called the agent’s policy, which can be denoted πt, where πt(s, a) is the
probability of the agent selecting action at when in state st. The purpose of the
reinforcement learning training is for the agent to modify its policy as a result of
its experience, and achieve an optimal or near-optimal policy which maximizes
the total amount of reward received over the long run.

Reinforcement learning differs from other machine learning methods such as
supervised learning, which requires labeled input/output pairs to be present.
Its training is shaped by trial-and-error, and the focus is on finding a balance
between the exploration of uncharted territory (making different decisions which
expand the range of the policy) and the exploitation of current knowledge.

116

Agent Environment

action at

reward rt

state st

rt+1

st+1

Figure 8.1: RL-based Interaction between Agent and Environment (image
adapted from [87]).

8.2.2 Training Setup

RL Environment

For this procedure, we design our own RL training environment in which the
server model can take actions to proceed through various environment states,
finally receiving a reward value at the end. We first randomly generate a le-
gitimate user model, πu, which will remain fixed during the training process.
We then generate 100 random adversarial client PDTs, (π1

adv, ..., π
100
adv), with the

same dimensions and temperature as the legitimate model πu. During training,
the server interacts with these adversaries over a series of episodes. At the start
of each episode, the training environment samples an adversary πadv from the
set of adversaries. The server then interacts with this πadv to build an interac-
tion transcript HT which, when complete, is used in the frequentist hypothesis
test to compute a p-value.

As discussed in Section 4.2, the p-value represents the probability of observing a
test statistic at least as extreme as the one computed from client actions seen in
HT , under the null hypothesis, πu == πadv. The authentication test from Eq.
4.1 will make a decision for πadv based on its p-value and a given significance
level α:

decision(HT) =

{
1 (authenticate) if p-value ≥ α
0 (reject) if p-value < α .

An example of the training environment is illustrated in Figure 8.2 (with smaller
agent models). It shows the server model interacting with an adversarial client,
πiadv. For all state inputs, the server may chose any action from the action space,
Aact. Note that in our environment, the action space is fixed, regardless of the
current state. For each chosen action per time step, the server receives a state
representation St of πiadv’s empirical action count for each node. For example,
the initial values St = [13, 4, 11] are the empirical action counts for πiadv’s root

117

[13, 4, 11]

[4, 32, 7] [8, 3, 9] [17, 5, 13]

[0.7, 0.2, 0.1]

[0.6, 0.2, 0.2] [0.3, 0.3, 0.4] [0.3, 0.6, 0.1]

[0.8, 0.1, 0.1]

[0.1, 0.8, 0.1] [0.3, 0.5, 0.2] [0.7, 0.1, 0.2]

Adversarial Client

Legitimate Client
Server

St = [13,4,11 4,32,7 8,3,9 17,5,13]

At = 2 Hypothesis Test

Environment

At = 2

At = 2

p-value

[0.3, 0.3, 0.4]

1 ~ [0.3,0.5,0.2]

Figure 8.2: Example of RL Training Environment for Server Model

node. In this way, each node’s empirical action count of sampled actions are
contained in the state representation2. Figure 8.2 also shows the hypothesis
test receiving information from both πiadv and the fixed πu, which is used to
compute the p-value and subsequent reward, RT , for each model update.

We pose the server optimization problem as follows. During training, the
server interacts with adversarial models, πiadv ∼ (π1

adv, ..., π
100
adv), over a series

of episodes in which each episode performs the AMI authentication test with
πiadv and the fixed legitimate model, πu. At the end of the interaction stage,
the server will receive a reward, RT = 1 − p, where p is the p-value from the
hypothesis test. The server is trained to minimize the p-value for the adversarial
clients it interacts with (which corresponds to a higher reward). We formulate
the learning objective as:

πs ∈ arg max
π

Eπ

[
RT

∣∣∣∣ HT ∼ ps,adv, πadv
]
, (8.1)

where the πadv is samples from the adversarial set. This training process selects
the behavioral policy for the server which maximizes the reward RT received
from the hypothesis test.

The custom environment trains the server model to achieve a p-value which is
below the significance level in the fewest number of timesteps. As a result,
the server model learns to produce actions which can achieve this goal; we refer
to these as intelligent probing actions. This is the optimization process which
results in a shorter interaction transcript while still achieving a high-confidence
authentication decision.

Since the server is optimized against different adversarial clients, while the le-
gitimate model is kept fixed, for each πiadv-πu pair, the server model learns how

2In an experimental setting, the values in St are actually normalized.

118

to distinguish πu from πiadv. That is, what are the features (i.e. nodal distri-
butions) in πu which make it different from πiadv? As training repeats this over
a number of different adversarial clients, the server model is intended to learn
many of πu’s unique such features. That is, it is optimized with respect to the
unique features which make πu different from many other random such models.

Training Parameters

For the server model, we use a feedforward neural network which outputs the
logits of a softmax distribution over the action space. The legitimate client PDT
we use to train the server with has the following dimensions: depth 3, 5 actions
per branch, and temperature 0.5 (we found using a higher entropy selection more
clearly showed the benefits of the training). This is also a noticeably smaller
client model than the one used in Chapters 4 and 5, which was of depth 5 and
10 actions. The action space for both client and server here is sized |Aact| = 5.

We use the PPO reinforcement-learning algorithm [81] to train the server model
in the custom RL environment. The training proceeds for 5 million steps overall,
which consisted of 5,000 environment steps across three parallel processes for
each model update. The interaction transcript length was kept at |HT | = 50.

8.2.3 Experimental Results and Analysis

To analyze the success of the training, we evaluate the rate of p-value con-
vergence for the optimized server model, as shown in Figure 8.3. We record
the average p-value per timestep, between the server and an adversarial client
model, πiadveval , over 100 different held-out adversarial client models, which we

notate as (π1
adveval

, ..., π100
adveval

). This is shown as the blue line in the figure. We
also evaluate the rate of p-value convergence for a uniform-random server policy
interacting with the same population of adversarial clients, as a baseline for the
optimized server policy. This is shown as the red line in the figure.

We also repeat the training experiment (the server optimization) 10 times for
different randomly generated fixed legitimate client (and unique populations of
adversarial clients) to show that the optimization procedure from Section 8.2.2
was not just effective for a specific server-legitimate client pair. In each of the
10 experimental runs, the server model was trained afresh for each specific le-
gitimate client model, πiu ∼ (π1

u, ..., π
10
u). Figure 8.3 depicts the averaged results

across these 10 experimental runs (i.e. across 10 different server-legitimate client
pairs).

From Figure 8.3, we see that the optimized server policy far outperforms the
uniform-random server policy, with respect to efficiency. To reach a significance
level of α = 0.1 (the black dashed line), the optimized server requires on average
around 29 time steps, while the uniform-random server requires around 59 time
steps. This is a reduction of 51% fewer time steps. If the significance level

119

0 25 50 75 100 125 150 175 200
Timestep (t)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
ve
ra
ge

 p
-v
al
ue

Threshold 1 (α=0.1)
Threshold 2 (α=0.05)
Uniform Random
RL

Figure 8.3: The average p-value per timestep over 10 different optimized servers
interacting with Random adversaries (in blue). For comparison, a uniform ran-
dom server policy interacting with the same adversaries is also shown (in red).
The standard error is shown for both.

is lowered to α = 0.05 (the dotted black line), the optimized server requires,
on average, around 50 time steps. In comparison, the uniform-random server
requires around 88 time steps. This is a reduction of 43% fewer time steps.

We see that the optimization process formalized in Eq. 8.1 is very effective in
training a server model to reach high-confidence authentication decisions from
a reduced number of interactions, which means the AMI authentication test
can be done with a shorter interaction transcript. As discussed in Chapter 6,
shorter transcripts mean less public observations from an agent’s master key,
which is important for information-theoretic secrecy.

8.3 Further Considerations for Optimization

A natural question which arises from the server optimization is: a trained server
can now intelligently probe an unknown client agent for efficient authentication
- if the unknown client is actually legitimate, then does the server’s probing
reveal more information about the legitimate model πu? Are interaction tran-
scripts built from a trained (more intelligent) server and a legitimate client more
susceptible to model reconstruction attacks?

8.3.1 Experimental Setup

We investigate this question by formulating Maximum Likelihood Estimation
attacks on two different server policies - an optimized server policy, and a
uniform-random server policy. We then evaluate the authentication accuracy of

120

Algorithm 6 Build MLE Attacks on Optimized and Random Servers

Input: (πsoptim , πsrand , πu)

nReal ← 100
ntranscripts ← 1000
DRealoptim , DRealrand ← ∅, ∅
DMLEoptim , DMLErand ← ∅, ∅

for i in (1, ..., nReal) do
. Generate Real transcripts from πsoptim

hiReal ← f(πsoptim , πu) . Apply Algorithm 1
DRealoptim ← DRealoptim + [hiReal]

. Generate Real transcripts from πsrand
hiReal ← f(πsrand , πu) . Apply Algorithm 1
DRealrand ← DRealrand + [hiReal]

πmleoptim = MLE(DRealoptim) . Compute MLE estimate from DRealoptim .
πmlerand = MLE(DRealrand) . Compute MLE estimate from DRealrand .

for i in (1, ..., ntranscripts) do
. Build MLE transcripts from πmleoptim

hiMLE ← f(πs, πmleoptim) . Apply Algorithm 1
DMLEoptim ← DMLEoptim + [hiMLE]

. Build MLE transcripts from πmlerand
hiMLE ← f(πs, πmlerand) . Apply Algorithm 1
DMLErand ← DMLErand + [hiMLE]

return (DMLEoptim , DMLErand)

the hypothesis test on both. We set up this experiment according to Algorithm
6 by first generating Real transcripts from both the optimized server policy
and a random server policy. Then, we formulate two different MLE estimates
from these two Real datasets. Each estimate is then used to generate MLE
histories with the respective server models, producing datasets DMLEoptim and
DMLErand . Finally, the primary AMI authentication test (based on frequentist
hypothesis testing) is run on these datasets to evaluate its authentication accu-
racy; this provides some insight into the strength of the respective MLE attacks.
We repeat this experiment for transcript lengths |HT | = {25, 50, 100, 200}.

121

Figure 8.4: Authentication accuracy on MLE attacks built with interactions
from optimized server (RL Stochastic) versus uniform-random server (Uniform
Random). Accuracy is evaluated across different transcript lengths. Results
averaged across 10 different server-legitimate client pairs (standard error shown).

8.3.2 Experimental Results

Figure 8.4 clearly compares the strength of MLE attacks from the optimized
server, πmleoptim , versus the MLE attacks from the uniform-random server,
(πmlerand). For all transcript lengths, the AMI authentication accuracy is sig-
nificantly lower on πmleoptim than on πmlerand . For example, for |HT | = 200, the
accuracy is above 80% on πmlerand , but less than 20% on πmleoptim . We interpret
this as indicating that πmleoptim was a much stronger MLE attack which made it
difficult for the AMI authentication test to distinguish between the user model,
πu, and πmleoptim .

We do note from Figure 8.4 that for either MLE attack, the authentication ac-
curacy increases with increasing transcript length, especially for πmlerand . We
speculate that as more public observations are revealed, the MLE attack be-
comes stronger; however, upon evaluation, the AMI authentication test is also
able to see a longer interaction transcript containing more samples from πmle.
The test is hence is provided more data with which to help it distinguish between
πmle and πu.

We conclude our investigation by noting that an optimized server utilizing in-
telligent probing actions when interacting with a legitimate client does leak the
sort of data which aids an intruder in constructing a more effective model re-
construction attack, than if a random server is used. However, we make note
of some factors when seeing how poorly the AMI authentication accuracy is on
the MLE attack πmleoptim in Figure 8.4, especially when compared to the per-
fect accuracy on MLE attacks achieved by the same AMI authentication test in

122

Section 4.2. The experiment in this section used much smaller and less complex
agent models (PDT of depth 5 and 3 actions rather than PDT of depth 5 and
10 actions) than the experiments in Section 4.2; the model reconstruction task
is certainly easier for a smaller model. Of course, the model can be much much
larger and more complex - we showed in Section 6.2 how tuning the model pa-
rameters can mitigate the effectiveness of an MLE attack. Hence, it should not
be taken away from Figure 8.4 that use of an optimized server always means
that AMI can only detect an MLE attack less than 20% of the time.

8.4 Conclusion

In this chapter, we explained the motivation behind protocol optimization, and
how we wished to achieve it from an intuitive perspective. We provided an op-
timization methodology via a reinforcement-learning technique, applying a cus-
tom training environment which uses our frequentist hypothesis test to provide
feedback with which to update the server model. We evaluated the optimized
server policy’s rate (i.e. number of required timesteps) for rejecting adversarial
clients, comparing it to the rate of a uniform-random server policy. We also
investigated whether the optimization makes interaction transcripts more vul-
nerable to MLE attacks. However, we theorize that parameter tuning can help
mitigate the strength of such an attack; in any case, AMI’s key-evolution scheme
is a strong defense against model reconstruction.

We now mention some considerations for this chapter. To begin with, our opti-
mization training procedure updates the server model to require fewer interac-
tions overall while still producing a low p-value (below the threshold α) when
interacting with a random adversarial client, πadv. This means that for the fixed
legitimate client in the training, πu, the server produces actions (used as input
by both πadv and πu) which visit the significant nodes in πadv belonging to ωu,
to highlight the difference between πadv and πu. We did find, in Section 8.3,
that this server optimization results in interaction transcripts which are more
vulnerable to MLE attacks. What makes this so? One possible reason could
be that that the optimized server repeatedly samples from only a few select
nodal distributions in ωu enough times for the MLE attack to estimate them
accurately.

An interesting further study could perform server optimization for a larger set of
legitimate clients (π1

u, ..., π
m
u) and repeat the experiments from Section 8.3 across

this larger set. The study would analyze the interaction transcripts from the m
different models to see why each one is more vulnerable to MLE attacks, and
whether there are different reasons for this vulnerability (i.e. the optimizations
resulted in their servers discovering different ways to uniquely identify πu). It
would be interesting to compare and contrast the different server policies to see
whether they implement the same strategy or not, and among these policies, to
investigate which policy is more resilient to MLE attack.

123

A further consideration is the role of optimization within the larger context of
the AMI protocol. In Section 8.2, a certain server model (a neural network)
is trained with respect to a specific fixed legitimate model πu. However, the
neural network πs is not only parameterized for the specific πu model, but it
can only be used, in its current form, for this πu. The AMI protocol employs
a key-evolution scheme (KES) after each successful client-server session (more
specifically, after the session key is computed). After a given ith session, the
KES transforms the shared secret πiu into an evolved model πi+1

u via a non-
invertible function for forward secrecy. This means that the server model πs
which was trained with respect to πiu is no longer attuned to the updated model
πi+1
u .

There are two ways to handle this scenario. One approach is to continually
re-train the server model πs after each client-server session with respect to the
newly evolved model πi+1

u . This would be cumbersome, even for a symmetric
protocol, as it involves: securely receiving πs and πi+1

u from the server, per-
forming optimization training, then securely returning the models. Perhaps a
fast, efficient optimization procedure apart from reinforcement learning could
provide this in a feasible amount of time in between sessions. It would be even
more beneficial for the server agent itself to be capable of performing such a
procedure.

Another approach would be to continually evolve the server model πs in corre-
spondence with the transformation of πiu, such that the optimization is retained.
It may be thought that since the server can predict the transformation of πiu,
it can develop several optimized versions if its own model, (πis, π

i+1
s , ...), for

each respective evolution, ahead of the protocol itself. It can then simply apply
the correct server model for each ith session. However, this cannot be done in
advance since the random seed provided to the KES’s random generator (the
generator which produces new parameters for πu) is theoretically different per
session, whether it is value of the session key or the value of an exchanged
random nonce. As such, we leave this direction open to further investigation.

124

Chapter 9

Extension to AMI: Mutual
Authentication

9.1 Introduction

In this chapter we extend the AMI protocol beyond the basic setting of one-
way authentication. In this extension, we describe mutual authentication, which
consists again of a single server-client pair, but in this setting, the client party
authenticates the server party as well.

We define this setting as:

Definition 1: A mutual authentication system consists of a server and client
agent wherein both parties authenticate each other and establish a common
session key for encrypted communication.

9.2 Agent State Transition Diagram

In the mutual authentication setting, both parties move past the interaction
state once the interaction transcript is built, as before. However, now the client
agent also moves into a decision state just as the server. Both agents make
an authentication decision regarding the legitimacy of other’s identities, via the
interaction transcript, then both move into an approval state. Unlike the one-
way setting, the server must now also participate in the approval state while it
waits to receive an authentication decision from the client. The client also waits
in its approval state for the server’s authentication decision.

As a preliminary, we mention what the server and client agents know about
each other, ahead of the AMI session. The server agent knows the user master
key, πu, and the client agent knows the server master key, πs. They each expect

125

Waiting State

Wait for a client
session request

Interaction State

Build interaction
transcript

Decision State

Process transcript for
auth decision

Key Agreement
State

Generate symmetric
session key

Key Evolution
State

Evolve long-term
master keys

Communication
State

Engage in encrypted
session

Receive client
request

Transcript
complete

Server
accepted

Session key
built

Master keys
evolved

Reject client

Approval State

Wait for server
authentication

decision
Accept client

Server
rejected

Figure 9.1: State Transition Diagram of Server (Mutual Setting)

Request State

Notify server with
request for session

Interaction State

Build interaction
transcript

Decision State

Process transcript for
auth decision

Key Agreement
State

Generate symmetric
session key

Key Evolution
State

Evolve long-term
master keys

Communication
State

Engage in encrypted
session

Server ready Transcript
complete

Accept
server

Session key
built

Master keys
evolved

Reject server

Inactive State

Server resource not
yet required

Server resource
required

Approval State

Wait for server
authentication

decision
Client

accepted

Client
rejected

Figure 9.2: State Transition Diagram of Client (Mutual Setting)

to gather sufficient data from the other during interaction, such that they can
determine the statistical likelihood of the opposing agent’s behavioral model
being identical to the master key they posses.

With respect to making or receiving a rejection decision, in the decision and
approval states respectively, the server transitions back to the waiting start
state. Facing a similar scenario in its transition diagram, the client transitions
back to to its own start state, the inactive state.

9.3 Agent Internal Architecture

While the internal architecture for the server agent is mostly similar to the
one-way setting, the chief difference being with the Decision Module receiving

126

Interaction Module

Behavior
Submodule

Knowledge Module
Decision Module

Session Key ModuleKey Evolution ModuleCommunication Module

Authentication
Submodule

Vector: Interaction
Transcript (HT)

Server Master Key
(πs)

Mutual Session Key

Queue: Action
window

Authentication
Test

Session key
function

Encryption
Submodule

Decryption
Submodule

Input

πs used
Client Master Key

(πu)

Server
decision

(HT, πu)
may be used

(HT, πs, πu)

fresh
session

key

updated
master

key

(HT, πs, πu,
session key)

session
key

'delete'

Input action

Evolution
Submodule (πs)

Evolution
Submodule (πu)

Key evolution
scheme

Key evolution
scheme

Client
decision

Variable: Client
legitimacy Server

decision

Own
action
output

Variable: Own
authorization Client

decision

Figure 9.3: Server Internal Architecture (Mutual Setting)

a client authentication decision (Figure 9.3), the client’s Decision Module is
more developed than its one-way authentication version. In Figure 9.4, it now
contains an Authentication Submodule which makes authentication decisions
based on the interaction transcript it receives from the Knowledge Module.

The client’s Knowledge Module (in Figure 9.4) also now stores a variable for its
authorization status, dependent on the server’s authentication decision, and re-
ceived from the Decision Module. Just as in one-way authentication, these vari-
ables for an agent’s own authorization and its belief regarding another agent’s
identity are not persistent and only last for the duration of an AMI session.

9.4 Session Key Module

In this section we provide an algorithm for building a mutual session key via the
Session Key Module, by which the client and server can encrypt their subsequent
communication.

Algorithm 7 extends the session key generation from AMI’s one-way setting, this
time computing the key as function key(HT , πs, πc)

1 of both master keys as well

1The server agent uses πu in place of πc here.

127

Interaction Module

Behavior
Submodule

Knowledge Module
Decision Module

Session Key ModuleKey Evolution ModuleCommunication Module

Vector: Interaction
Transcript (HT)

Client Master Key
(πc)

Mutual Session Key

Queue: Action
window

Session key
function

Encryption
Submodule

Decryption
Submodule

Input

πc used

updated
master

key

(HT, πs, πc,
session key)

session
key

'delete'
(HT, πs ,πc)

fresh
session

key

Input action

Server Master Key
(πs)

Authentication
Submodule

Client
decision

Authentication
Test

(HT, πs)
may be used

Evolution
Submodule (πs)

Key evolution
scheme

Evolution
Submodule (πc)

Key evolution
scheme

Server
decision

Variable: Server
legitimacy Client

decision

Own
action
output

Variable: Own
authorization Server

decision

Figure 9.4: Client Internal Architecture (Mutual Setting)

as the interaction transcript. It implements the key function by concatenating
the probabilities from the server and the client master keys; the server is first
in the ordering. This combined set of probabilities is then hashed to produce
a derivation key which can then be passed through the key derivation function
to produce the final derived key, or more specific to this context, the mutual
session key. We note that both master keys are now being used to generate the
mutual session key, primarily for security reasons. The use of both master keys
strengthens the security of the final session key, as an intruder cannot compute
it by acquiring just one of the master keys.

9.5 Conclusion

In this chapter, we introduced the AMI protocol’s mutual authentication set-
ting, wherein the server and client can authenticate each other and generate
an identical mutual session key based on both server and client master keys.
We detailed how the server and client state transition diagrams are affected in
this setting, and provided the updated agent internal architectures as well. In
Chapter 10, we provide a further extension where the AMI protocol is applied
to a group of users beyond a single server-client pair.

128

Algorithm 7 AMI Session Key Generation: Mutual Setting

pserv, pcli, pboth ← ∅, ∅, ∅
HTs ← HT (πs) . History of server actions only.
HTc ← HT (πc) . History of client actions only.
for t in (1, 2, 3, ..., T) do

ps ← πs(A
t
s|Htc) . Select probability at index of sampled action at t.

pc ← πc(A
t
c|Hts) . Select probability at index of sampled action at t.

pserv ← pserv ◦ ps . Update list of server probs.
pcli ← pcli ◦ pc . Upate list of client probs.

pboth ← pserv ◦ pcli . Concatenate server and client probabilities.
keyderiv = hash(pboth) . Apply hash function.
mkey = KDF (keyderiv) . Pass hash through KDF.

return mkey

129

Chapter 10

Further Extension to AMI:
Group Authentication

10.1 Intro to Group Authentication

In this chapter we extend the AMI protocol for symmetric multi-party AKE,
which we term group authentication, in which a group of multiple (more than
two) users wish to form a private network and communicate securely amongst
themselves. Unlike the one-way authentication and mutual authentication set-
tings, the goal of the AMI protocol in a group setting is for group communication
via a session key shared among all members.

We define this setting as:

Definition 1: A group authentication protocol provides a method to authen-
ticate a system of more than two users, and establish a common group session
key by which all users can exchange messages securely among themselves.

In the literature, there are two common models for group authentication: the
first model involves a centralized authentication server, and the second model
accomplishes the same goal without such an entity [36]. We provide the following
definitions for these settings of symmetric group AKE:

Definition 2: A centralized group authentication protocol relies upon a central
server authority to authenticate and establish a shared group session key among
all users in the system.

Definition 3: A decentralized group authentication protocol provides methods
for all users in a system to individually authenticate each other and establish a
common group session key.

130

10.1.1 Centralized Group AKE Protocols

An example of a centralized authentication protocol can be seen in [13], which
provides a mechanism for a server node in a wireless ad-hoc network to select an
appropriate authentication protocol for clients with differing authentication ca-
pabilities. This system relies on the Extensible Authentication Protocol (EAP),
which allows clients to authenticate themselves to a server by an EAP authen-
tication method specified by the server. [13] provides a way to extend the
EAP design to allow clients to select from the available authentication proto-
cols supported by the server, as best suited for their own capability and design.
The difference between this design and the centralized authentication by AMI
described later in this chapter is that AMI fixes the authentication protocol
between server and client for whichever client requires authentication in this
setting.

Another work providing AKE services for the group setting of an ad-hoc net-
work is [69], which uses a variant of Kerberos, the symmetric-key based in-
direct authentication mechanism (indirect means a third-party is present for
authentication and session key establishment). This protocol, called Kaman
(Kerberos-assisted authentication in mobile ad-hoc networks), provides secure
key exchange for a group setting of mobile nodes. Similar to the original Ker-
beros protocol, Kaman relies on an authentication server to generate and provide
the session key. A client must request the authentication server with the identi-
ties of all (registered) clients it wishes to securely communicate with. The server
will verify all client registrations, then issue copies of the session key, encrypted
by the long-term master key it shares with the registered clients. The requesting
client can then distribute the encrypted session keys to the clients intended to
participate in the communication.

The chief difference between this Kerberos-based centralized design and the
AMI centralized setting described later in this section is that the AMI authen-
tication server individually distributes the (encrypted) session key to clients in
the group itself. It does not delegate this responsibility to one of the clients.
Furthermore, all AMI clients are individually authentication in a mutual authen-
tication session with the central server before the group authentication stage
begins.

10.1.2 Decentralized Group AKE Protocols

For some application such as a wireless ad-hoc network, however, mobile users
may not have access to a centralized authentication server - this is where a de-
centralized group AKE protocol is of importance. For such a system, protocols
such as [36, 37, 55] provide methods based on Lagrange polynomial interpola-
tion.

This technique begins with general manager or server which selects a random
polynomial f(x) = a0 + a1 ∗ x + ... + at−1 ∗ xt−1 containing a hidden secret

131

s = f(0) = a0. The manager publishes a one-way hash of the secret, H(s). The
manager then computes m tokens using the public information of each registered
user in the group, f(xi), i = 1, ...,m. It then securely sends the tokens to each
user. This procedure is based on Shamir’s secret sharing scheme [82]. After this
step, the manager is no longer involved in protocol.

When users wish to authenticate and establish a group key, they send each
other their secret token and then each reconstruct the original polynomial via
the Lagrange interpolating formula, to recover the hidden secret s′ = f(0) = a0.
This value can be verified by comparing its hash with the published hash - if
H(s′) == H(s), then this confirms that each group member contributed a valid
token, thus verifying the identity of the entire group.

It should be noted that this technique typically performs a group authentication
all at once, but does not identify the invalid group members - its final result
merely indicates whether or not all the tokens are valid. An additional step
must be taken to identify which members, if any, provided an invalid token.

In contrast, in chapter we provide a decentralized extension of AMI by which
users may instantly identify a legitimate or illegitimate group member during
the authentication phase. Unlike the Langrage interpolation schemes, however,
it does not perform the group authentication in a single step - the users sequen-
tially authenticates others one after the other.

10.2 Extension: Centralized Group Authentica-
tion

In this section we describe the internal architecture, modules, and algorithms for
authentication and key establishment in the AMI centralized group authentica-
tion setting. From a high-level overview, the main difference from the one-way
and mutual authentication settings is the inclusion of more than two users in the
system, wherein the goal of the AMI protocol is to authenticate and establish
a group session key among all users. In this section, we represent a system of:
a single central server and three registered users. The users are named a1, a2,
and a3. Their subscripts refer to their group index within the group of m = 3
users.

132

Interaction Module

Behavior
Submodule
(for client a1)

Knowledge Module Decision Module

Session Key ModuleKey Evolution ModuleCommunication Module

Client Master Key (πu_a1)

Mutual Session Key (a1)

Queue: Action
window

Client a1
Action Input

(πs_a1,πs_a1,πs_a1)
used

updated
master
keys

(transcripts,
own master keys,
client master keys,

mutual session key)

mutual/group
session

keys

'delete'
(transcripts,

own master keys,
client master keys)

(fresh mutual session key,
fresh group session key)

Own Master Key (πs_a1)

Authentication
Submodule (a1)

Client a1
decision

Authentication
Test

(HT
a1, πs_a1),

(HT
a2, πs_a2),

(HT
a3, πs_a3)

may be used

Key Evolution
Submodule

(πs_a1, πs_a1, πs_a1)

Key evolution
scheme

Key Evolution
Submodule

(πu_a1, πu_a2, πu_a3)

Key evolution
scheme

Server
decision

Group Session Key

C. Submodule
(for client a1)

Encryption
Submodule

C. Submodule
(for client a2)

Encryption
Submodule

Own
action output

Behavior
Submodule
(for client a2)

Queue: Action
window

Behavior
Submodule
(for client a3)

Queue: Action
window

Vector: (HT
a2) for client a2

Vector: (HT
a3) for client a3Client a2

Action Input

Own
action output

Client a3
Action Input

Own
action output

(a1 action,
a2 action,
a3 action)

Vector: (HT
a1) for client a1

Own Master Key (πs_a2)

Own Master Key (πs_a3)

Client Master Key (πu_a2)
Client Master Key (πu_a3)

Mutual Session Key (a2)

Mutual Session Key (a3)

Authentication
Submodule (a2)

Authentication
Test

Authentication
Submodule (a3)

Authentication
Test

Client a2
decision

Server
decision

Client a3
decision

Server
decision

Mutual Session Key
Submodule

(for a1, a2, a3)

Group Session Key
Submodule

Mutual session
key function

Group session
key function

C. Submodule
(for client a1)
Encryption
Submodule

Group
session

key

Group
session

key

Group
session

key

Variables: own
authorizations

Variables: other agents
legitimacies

Clients a1,a2,a3's

decisions

Server decisions
for a1,a2,a3

Figure 10.1: Server Internal Architecture (Centralized Setting)

10.2.1 Agent Internal Architectures

Upon first glance, Figure 10.1 immediately reflects the increased responsibility
of the central server. The server is now no longer necessarily a part of the final
encrypted communication session - rather, its role is to facilitate the earlier
stages of the system so that registered users may communicate between each
other. Figure 10.2 reflects the comparatively lower responsibility upon clients,
and how they are abstracted apart from other clients in the system until the final
communication stage - that is, their involvement in the AMI protocol focuses
on interaction with the central server only.

133

Knowledge Module

To ease the burden on the system clients, the central server’s Knowledge Module
contains the master keys (πu a1 , ..., πu am) for all clients in the system. It also
carries its own master keys (πs a1 , ..., πs am) to interact with each respective
user. During the interaction phase of the AMI protocol, the server will interact
with each client on a one-to-one basis, so the Knowledge Module also carries m
vectors for the different interaction transcripts built during that stage. It can
be seen in Figure 10.2 that each client (i = 1, ..,m)’s Knowledge Module carries
only a single pair of master keys. It carries the server master key for the ith
client, πs ai , and its own master key, πai , which is identical to the key πu ai
carried by the server.

The server’s Knowledge Module also carriesmmutual session keys, (mkey1 , ...,mkeym)
built between itself and each client by the Session Key Module. These mutual
session keys are for one-on-one encrypted communication between itself and
any particular client. Appropriately, the client Knowledge Module carries only
a single mutual session key, mkeyi .

Finally, the server carries a single group session key, gkey, intended not for its
personal communication purposes, but rather for secure communication between
authenticated clients. This group key can also be seen in the client Knowledge
Module, acquired via the Communication Submodule by which it communicates
with the server.

Interaction Module

The server’s interaction module in Figure 10.1 contains a separate Behavior
Submodule for each client in the system. During the AMI interaction stage, the
server uses a separate master key (πs a1 , πs a2 , ..., πs am) from the Knowledge
Module to interact with each client, building m total interaction transcripts. In
the centralized system, the clients interact only with the central server until the
final communication stage, where they may engage in group communication.
As such, the client Interaction Module in Figure 10.2 contains only a single
Behavior Submodule to interact with the server.

This interaction procedure is shown in Algorithm 8, where the server builds a
different transcript Hai

T for clients (a1, a2, .., am). For each ith client, the server
generates actions from its ith master key πs ai , and the client responds to the

server alone. Once all client transcripts are completed as [H
(a1)
T , H

(a2)
T , ...,H

(am)
T],

the server can store the list in its Knowledge Module and later represents it sim-

ply as H
(a1,a2,...,am)
T .

134

Interaction Module

Behavior
Submodule

Knowledge Module Decision Module

Mutual Session Key
Module

Key Evolution ModuleCommunication Module

Vector: Interaction
Transcript (HT)

Client Master Key
(πa1)

Mutual Session Key

Queue: Action
window

Mutual session
key function

Server
Action
Input

πa1 used

updated
master
keys

(HT, πs_a1, πa1,
mutual

session key)
mutual/group

session
keys

'delete'

(HT, πs ,πc)

fresh
mutual
session

key

Server
Action Input

Server Master Key
(πs_a1)

Authentication
Submodule Client

decision

Authentication
Test(HT, πs_a1)

may be used

Key Evolution
Submodule (πa1)

Key evolution
scheme

Key Evolution
Submodule (πs_a1)

Key evolution
scheme

Server
decision

Group Session Key

C. Submodule
(for server)

Decryption
Submodule

C. Submodule
(for other clients)

Decryption
Submodule

Encryption
Submodule

Group
session

key

Own
Action
Output

Variable: own
authorization

Variable: server
legitimacy Client

decision

Server
decision

Figure 10.2: Client Internal Architecture (Centralized Setting)

Decision Module

In the centralized setting for AMI, one of the central server’s primary tasks is
to authenticate each client in the group, to ease the burden on the clients and
relieve them of having to authenticate the others clients themselves. They must,
however, each perform a mutual authentication with the server to be assured of
the server’s legitimacy. We describe this process of m authentications between
server and clients as the AMI group authentication in the centralized setting.

The server’s Decision Module in Figure 10.1 thus contains m Authentication
Submodules to authenticate m clients (the Figure itself represents a system of
m = 3 users). Each client’s Decision Module in Figure 10.2 contains only a
single Authentication Submodule to verify the server’s identity. After the AMI
interaction process for the centralized setting, the system performs a mutual
authentication between the server and each client, following the mutual authen-
tication process detailed in Chapter 9.

135

Algorithm 8 AMI Multi-Agent Interaction Process: Centralized Setting

[H
(a1)
t , H

(a2)
t , ...,H

(am)
t]← [∅, ∅, ..., ∅]

for t in (1, 2, ..., T) do . For every timestep, server interacts with each client.

for i in (1, ...,m) do

Ats ai ∼ πs ai(H
(ai)
t) . Server samples from master key for ith client.

Atai ∼ πai(H
(ai)
t) . Client ai samples from its output dist.

H
(ai)
t ← H

(ai)
t + [(Ats ai , A

t
ai)] . Update history for this client.

H
(a1,...,am)
T ← [H

(a1)
T , H

(a2)
T , ...,H

(am)
T] . Record transcripts for all clients.

return H
(a1,...,am)
T

Mutual Session Key Submodule

In the AMI protocol, mutual session keys are intended for communication be-
tween a single server and client pair, typically used by the server to securely
transmit a group session key to a client.

The Mutual Session Key Submodule in both Figures 10.1 and 10.2 provides the
method for computing the mutual session key over a single interaction transcript
and pair of server and client master keys. The algorithm used is the same as in
AMI’s mutual authentication setting.

Group Session Key Submodule (server agent)

The Group Session Key Submodule in Figure 10.1 provides a method for the
server to compute a group session key based on all interaction histories, server
master keys, and client master keys kept in the Knowledge Module. For each
interaction history Hai

T (termed Hi
T or HT s ai), Algorithm 9 concatenates all

server probabilities and client probabilities as pboth. For example, if T = 3 then
for a certain history, pboth could be:

pboth = {(0.8, 0.4, 0.2) ◦ (0.7, 0.1, 0.6)} (10.1)

It then concatenates all histories’ pboth lists together as p
(1,...,m)
both . For example,

if m = 3 then p
(1,...,m)
both could be:

p
(1,...,m)
both = {(0.8, 0.4, 0.2) ◦ (0.7, 0.1, 0.6)} ? {(0.3, 0.5, 0.9) ◦ (0.2, 0.4, 0.8)} ?

{(0.8, 0.8, 0.7) ◦ (0.1, 0.6, 0.6)} (10.2)

136

Algorithm 9 AMI Group Session Key Generation: Centralized Setting

Inputs: (H
(1,...,m)
T , (πs a1 , ..., πs am), (πc a1 , ..., πc am))

p
(1,..,m)
both ← ∅

for i in (1, 2, ...,m) do . For each history, collect probs. from agents.
pserv, pcli, pboth ← ∅, ∅, ∅
HT s ai ← Hi

T

HTs ← HT s ai(πs ai) . History of server actions only.
HTc ← HT s ai(πc ai) . History of client actions only.

for t in (1, 2, 3, ..., T) do
ps ← πs ai(A

t
s|Hts) . Select prob. at index of sampled action at t.

pc ← πc ai(A
t
c|Htc) . Select prob. at index of sampled action at t.

pserv ← pserv ◦ ps . Update list of server probs.
pcli ← pcli ◦ pc . Upate list of client probs.

pboth ← pserv ◦ pcli . Concatenate server and client probabilities.

p
(1,...,m)
both ← p

(1,...,m)
both ◦ pboth . Update overall list with this history’s probs.

keyderiv = hash(p
(1,...,m)
both) . Apply hash function.

gkey = KDF (keyderiv) . Pass hash through KDF.

return gkey

where ‘◦’ is an inner concatenation of a single history and ‘?’ is an outer con-
catenation of multiple histories.

Key Evolution Module

In the AMI centralized setting, all master keys in the system are evolved using
the key evolution scheme described for one-way authentication.

As described in Algorithm 10, for each index i = (1, ...,m), the server and ith
client ai update their shared master keys (πs ai and πc ai) by first resetting a
random generator seed to the value of their mutual session key, mkey ai . They
then evolve the two master keys by passing them through the key-evolution
scheme for one-way authentication in Algorithm 5. The interaction transcript
passed to the function is the one generated between this server-client pair during
the interaction stage, Hai

T .

137

Algorithm 10 AMI Key Evolution: Centralized Setting

Inputs: (H
(a1,...,am)
T , (πs a1 , ..., πs am), (πc a1 , ..., πc am), (mkey a1 , ...,mkey am))

for i in (1, 2, ...,m) do . Each server-client pair evolves its shared keys.

seed← mkey ai . Set ith mutual key as random seed.

πs ai ← φ(Hai
T , πs ai) . Evolve server master key.

πc ai ← φ(Hai
T , πc ai) . Evolve client master key.

Communication Module

Once the server has built a mutual session key for each client, a1, .., am, and a
single group session key, it passes these to the Knowledge Module for storage.
The Communication Module (Figure 10.1) can then take them for use by its
Communication Submodules. The server’s Communication Submodules encrypt
a copy of the group key, gkey, by each mutual key mi

key, for i = (1, ...,m). It

then transmits each encrypted group key, mi
key(gkey), to the respective client.

At the receiving end, the client’s Communication Module (Figure 10.2) passes
it to the Communication Submodule for the server. This submodule decrypts
the received package, mi

key(gkey), by the mutual key in the Knowledge Module,
to finally possess the group session key, gkey. This key may then be used by the
Communication Submodule for other clients, so that all clients in the group,
(a1, .., am), can pass encrypted messages amongst themselves securely.

10.3 Extension: Decentralized Group Authenti-
cation

In this section we describe the internal architecture, modules, and algorithms for
authentication and key establishment in the AMI decentralized group authenti-
cation setting. The high-level overview of this setting emphasizes the exclusion
of a central server entity entrusted with authentication and group session key
distribution - these responsibilities now fall upon the individual clients within
the system. Just as for the centralized setting, again we represent in this section
a system of three users, again named a1, a2, a3, and subscripted by their group
index.

10.3.1 Agent Internal Architectures

In Figure 10.3, we provide the internal architecture for a user in the decentralized
multi-agent system. This architecture reflects the increased responsibility of

138

Interaction Module

Behavior
Submodule

Knowledge Module Decision Module

Group Session Key
Module

Key Evolution Module
Communication Module

Vector: Joint Group
Transcript (HT

(1,2,3))

Own Master Key (πa1)

Group Session Key

Queue: Action
window

Group session
key function

Input action
(from a2)

πa1 used

updated
master
keys

(HT
(1,2,3), πa1 ,

πa2, πa3,
group session key)group

session
key

'delete'

(HT
(1,2,3), πa1 , πa2, πa3)

fresh
group

session key

Input actions
(from a2, a3)

Master Key (πa2)

Authentication
Submodule (πa2)

decision
(for a2)

Authentication
Test

(HT
(1,2,3), πa2, πa3)
may be used

Key Evolution
Submodule (πs)

Key evolution
scheme

Key Evolution
Submodule (πc)

Key evolution
scheme

Master Key (πa3)

Input action
 (from a3)

Own
output
action

Authentication
Submodule (πa3)

Authentication
Test

decision
(for a3)

a2
decision

a3
decision

C. Submodule (a2)

Encryption
Submodule

Decryption
Submodule

C. Submodule (a3)

Encryption
Submodule

Decryption
Submodule

Variables: own
authorizations

Variables: other agents
legitimacies Decisions for a2,a3

a2,a3 decisions

Figure 10.3: User Internal Architecture (Decentralized Setting)

each client with the AMI protocol (as compared to the centralized setting).

Knowledge Module

To fulfill an increased responsibility, the client Knowledge Module carries its
own master key, πai , as well as the master key for all other clients in the system
as shared secrets, ((πa1 , ..., πam) \ πai). As described in the Interaction Module
section, the client’s own master key must be modified to handle multiple simul-
taneous inputs during the interaction stage. This is a departure from the central
server design in Figure 10.1, where the server carries a separate own master key
to interact with each client.

The Decision Module in Figure 10.3 provides the authentication decisions by
which the client’s Knowledge Module can update the variables for its own au-
thorizations (which of the other clients authenticated me?) and variables for
beliefs regarding other clients (which of the other clients are legitimate?). The
Knowledge Module also now carries a vector for the joint interaction transcript,
which includes actions from all agents during the interaction stage. Finally, it
also contains a group session key, produced by the Group Session Key Module.

139

Algorithm 11 AMI Multi-Agent Interaction Process: Decentralized Setting

H
(a1,...,am)
t ← ∅

for t in (1, 2, ..., T) do . For each timestep, every user generates an action.

for i in (1, ...,m) do

Atai ∼ πai(H
(a1,...,am)
t) . User ai samples from its output dist.

Atgroup ← Atgroup + [Atai] . Record group actions for this timestep.

H
(a1,...,am)
t ← H

(a1,...,am)
t + [Atgroup] . Update joint group transcript.

return H
(a1,...,am)
T . Return completed joint group transcript.

Interaction Module

The AMI interaction process among m users in the group now formulates a
joint group transcript. In algorithm 11, for every time step t in (1, 2, ..., T), each
agent ai generates an action conditioned on the past joint interaction transcript.

The growing joint transcript H
(a1,...,am)
t could be of the form: H

(a1,...,am)
t =

[[A1
a1 , A

1
a2 , A

1
a3]t=1, [A2

a1 , A
2
a2 , A

2
a3]t=2, [A3

a1 , A
3
a2 , A

3
a3]t=3, ...], assuming group

size of m = 3. An example with sample actions from an action space Aact =

{1, 2, 3} could be: H
(a1,a2,a3)
t = [[2, 3, 1], [1, 1, 2], [3, 2, 3], ...].

It’s important to note that the Behavior Submodule now takes in as input a
sublist of actions instead of a single agent. In Figure 10.3, which assumes a
system of three users, (a1, a2, a3), the agent a1’s submodule conditions its next
action on the input sublist [at2, a

t
3] at time t in the interaction process. To handle

this extended input, we provide a modified probabilistic decision tree, which we
call a multitree. Figure 10.4 illustrates a simple multitree for agent a1 which
conditions its output distribution on the input sublist [at2, a

t
3]. If, for example,

agents a2 and a3 generate action sublist [at2 = 3, at3 = 3] at a given time step,
the multitree for agent a1 will traverse the right-most branch (labeled (3, 3)) to
its leaf node and output the probability distribution contained therein.

As with the standard PDT, the agent maintains the queue data structure for
an action window of size k. To more easily store the input sublist, the Behavior
Submodule converts the input sublist to a single value we call a branch code. The
submodule may maintain a list of branch codes computed using the powerset of
the action space. For example, if Aact = {1, 2, 3} and the group size is m = 3,
the multitree has to handle an input sublist of two actions. The list of branch
codes is then: [(1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = 4, (2, 2) = 5, (2, 3) =
6, (3, 1) = 7, (3, 2) = 8, (3, 3) = 9], which takes all elements of size m − 1 from
the powerset P(Aact).

If the Behavior Submodule receives, for example, action sublist [2, 3], it uses

140

(1,2) (1,3) (2,1) (2,3)(1,1) (2,2) (3,1) (3,2) (3,3)

Figure 10.4: Example of a Probabilistic Decision Multitree (with ordered branch
codes)

the branch codes list to store the single value ‘6’ instead of ‘(2, 3)’ in the action
window queue. Thus, the submodule’s queue for the multitree in Figure 10.4
could be, for example, [6, 2, 8, 4, 1] given window size k = 5.

Decision Module

Given the lack of a central server to do so on the group’s behalf, all clients must
individually authenticate each other. A client does so via its Authentication
Submodules, one per other client in the group. Once each client completes its
m− 1 authentication tests, it releases its decision to the others, informing them
of their authorization status. The Decision Module then sends the sent and
received authentication decisions to the Knowledge Module so it can update the
appropriate variables.

Group Session Key Module

In the decentralized setting, users generate a common group session key over the
joint interaction transcript (from Algorithm 11) and the master keys of all m
users in the group. Algorithm 12 provides a way for users to compute such a key.
The agent which implements the algorithm goes over the entire history for each
agent in the group (taken from the joint history variable), including itself. For
each agent’s history, Hai

T , it records the probabilities indexed by the sampled
action at every time step, for T time steps, as pai . Then, it concatenates the
selected probabilities from each history together, indexed by the agent’s group

index in i = (1, ...,m), as p
(1,...,m)
group . This is then hashed to produce a derivation

key suitable to pass through the KDF for the final group session key.

Once more, the use of all agents’ master keys in the Algorithm 12 is chiefly for
security reasons with the intention that even with multiple compromised master
keys, an intruder can still not construct the group session key - this requires
possession of all m master keys.

141

Algorithm 12 AMI Group Session Key Generation: Decentralized Setting

Inputs: (H
(a1,...,am)
T , (πa1 , ..., πam))

p
(1,..,m)
group ← ∅

for i in (1, 2, ...,m) do . For each agent, collect probs. from its history.
pai ← ∅
Hai
T ← H

(a1,...,am)
T [i] . History of ai actions only.

for t in (1, 2, 3, ..., T) do
p← πai(A

t
ai |H

ai
t) . Select prob. at index of sampled action at t.

pai ← pai ◦ p . Update list of agent probs.

p
(1,..,m)
group ← p

(1,..,m)
group ◦ pai . Update overall list with this agent’s probs.

keyderiv = hash(p
(1,...,m)
group) . Apply hash function.

gkey = KDF (keyderiv) . Pass hash through KDF.

return gkey

Communication Module

Once the group session key has been built by each user in the group, it can be
used for encryption and decryption by any of the Communication Submodules
in Figure 10.3.

10.4 Conclusion

The goal of this chapter was to show how the AMI protocol is scalable for
(multi-agent) systems beyond just two agents. In this chapter we provided ar-
chitectures for such systems of more than two parties, which support symmetric
AKE according to the AMI protocol. We extended the AMI protocol to provide
both centralized and decentralized group authentication, as per the two gen-
eral models of group authentication in the literature. We detailed the internal
architecture for agents in the two protocol variations, as well as the modules
and algorithms which they encompass. These algorithms allows the parties in
each setting to interact, authenticate, and agree upon key(s) for secure commu-
nication. Importantly, this chapter illustrates how the AMI protocol may be
suitable for systems with multiple users - some such systems in the literature
include wireless ad-hoc networks consisting of several mobile nodes.

142

Chapter 11

PyAMI: Open-Source
Framework

11.1 Introduction

In this chapter, we provide an open-source framework to demonstrate how the
AMI protocol can be implemented in a realistic setting. We call this prototype
PyAMI1, as it developed in the Python language. PyAMI allows remote virtual
machines to implement the AMI protocol’s multi-agent interaction over a live
network (i.e. the Internet), then perform authentication and key establishment.
The package supports different designs of a multi-agent system, including: a
mutual architecture, a centralized architecture, and decentralized architecture.

The centralized architecture is intended for more than two remote machines
interacting between themselves. When this setting is run with only two remote
machines, it becomes the mutual architecture which represents the default two-
party (i.e. client and server) interaction this thesis describes for AMI. The
mutual architecture implements the AMI protocol according to Chapter 9; it can
easily be further simplified to AMI’s one-way authentication setting in Chapter
3 if the client machine does not perform authentication while the server does.
The centralized and decentralized architectures, intended for a larger multi-
agent system, follow the extended AMI protocol according to Chapter 10.

1Package available at: https://github.com/uoe-agents/PyAMI

143

11.2 PyAMI: Architectures and their Implemen-
tation

When the PyAMI application is launched, the host machine sends relevant
scripts to user-provided remote machine addresses. This initializes the multi-
agent system as a collection of machines which include the local host and also
remote machines. Each machine in the system then launches a run script which
creates an agent object that ‘lives’ on the machine. PyAMI provides three agent
classes which inherit from a common base class SystemAgent:

• CentralServerAgent: this class represents the central server in the mutual
or the centralized architectures.

• CentralizedSystemAgent: this class represents a client in the mutual or
the centralized architectures.

• DecentralizedSystemAgent: this class represents a client in the decen-
tralized architecture.

The run script then performs four basic functions which constitute the life-cycle
of the protocol2:

1. Socket connections: Each remote machine must have a mechanism to
establish network connections and exchange messages (i.e. data packets)
with other machines.

2. Remote interaction: Each remote machine must perform a multi-agent
interaction process with other machine(s), which is done via message ex-
change over the sockets to build the interaction transcript(s).

3. Authentication: The remote machine must be capable of verifying the
identity of other machine(s).

4. Session key establishment: The remote machine must be able to partic-
ipate in a key agreement process to establish a session key for secure
communication. This may be just a mutual session key, or (also) a group
session key, depending on the architecture.

To connect the different remote machines, PyAMI employs Python’s socket li-
brary3, a low-level networking interface providing socket objects by which each
remote machine can establish a network connection with other machines and
communicate by exchanging data packets. PyAMI uses only sockets which ap-
ply the TCP protocol [70] for network transmission. TCP is preferred over its

2The PyAMI package does not yet include an implementation of the AMI key evolution
scheme for forward secrecy. This is the next step towards extending the package.

3See sockets library documentation: https://docs.python.org/3/library/socket.html

144

counterpart, UDP, due to its reliability (all packets which are sent are guaran-
teed to be delivered) and in-order packet delivery (packets arrive in the order
they were sent). These properties are very important for AMI’s multi-agent
interaction, given that authentication and key establishment are performed on
the ordered interaction transcript.

We describe these PyAMI functionalities, as implemented by each architecture,
in the following sections.

11.2.1 Centralized Architecture

Socket Connections

In the centralized architecture, mutual socket connections are made between the
central server (CentralServerAgent) and each client (CentralizedSystemAgent)
in the group, for each client-server pair. For each remote client, the central
server will, in order of client group ID, initialize a {send socket, receive socket}
pair and prepare them for connection. The client agents, on their respective
machines, will initialize their {send socket, receive socket} pair and connect to
the established central server sockets intended for them. The central server and
the remote clients know which sockets to connect to since all machines posses
the required IP address and port number for their respective connections.

Remote Interaction

For remote interaction, the central server will proceed through an interaction
process with the different remote machines of the clients. It will use a different
model πsi from its set of behavioral models (πs1 , ..., πsm) to interact with each
client ci; the client will use its sole model πci to interact with the central server.
For each time step in t = (1, 2, ..., T), the central server will do the following:

1. Select its next set of actions from (πs1 , ..., πsm) as (ats1 , ..., a
t
sm).

2. Broadcast each action atsi to the respective client using the appropriate
{send socket, receive socket} pair.

3. Wait via a blocking call until it receives a full set of actions (atc1 , ..., a
t
cm)

from the clients. A blocking call means the receive socket will halt the
program until it receives an expected transmission.

When the remote interaction is complete, the central server will have a set of
transcripts [Hc1

T , ...,H
cm
T] for the different clients.

On the remote machines, the clients will perform a similar interaction process,
except that they each interact only with the central server. For each time
step in t = (1, 2, ..., T), a client ci will select action atci from πci to respond

145

to the server. It will use its own {send socket, receive socket} pair for remote
interaction. When the remote interaction is complete, each client will have a
single interaction transcripts, Hci

T .

Authentication

The central server must authenticate in turn each client ci in the system; as
it does so, the respective client will also authenticate the central server in a
mutual authentication. This is the default setting in PyAMI. In the centralized
architecture, clients do not authenticate each other, trusting the central server
to do so.

PyAMI by default implements the frequentist hypothesis test from [6] as the
primary authentication test. This means that authentication requires use of
a shared secret model from which samples will be drawn to learn the model’s
distribution. Then, the interacting agent’s actions will be used to compute a
p-value used in the final authentication decision, as described in Section 4.2.

A centralized system with m clients will perform m mutual authentications,
wherein a mutual authentication consists of the central server and ith client
will authenticate each other. Both entities will use the appropriate interaction
transcript Hci

T for this decision.

Session Key Establishment

For group key establishment, the central server will do three operations:

1. Create a mutual key for each client in the system.

2. Create a group key over all clients in the system.

3. For each client, it will encrypt the group key with the client-specific mutual
key, then transmit to the client the encrypted group key.

For each client ci, the central server will create the mutual key using the inter-
action transcript generated between its model πsi for ci, and ci’s model for the
server, πci . We call this transcript Hci

T . The mutual key is created according to
the key generation algorithm (Algorithm 7) in Chapter 9, where the probabili-
ties from first πsi , then πci are concatenated together. This can be formalized
in shorthand notation as: mkeyi = kdf(πsi [H

ci
T] ◦ πci [H

ci
T]).

To then create the group key, the central server uses all the histories created
by each of its models and the respective clients, [Hc1

T , ...,H
cm
T]. It applies the

same key generation function as for the mutual key, but this time, we can write
the shorthand notation to include all the transcripts: gkey = kdf(πs1 [Hc1

T] ◦
πc1 [Hc1

T] ◦ πs2 [Hc2
T] ◦ πc2 [Hc2

T]... ◦ πsm [Hcm
T] ◦ πcm [Hcm

T]).

146

Finally, the central server will encrypt the group key by each mutual key, and
send the package mkeyi(gkey) to the respective client.

While the central server is performing these three functions, on the separate
remote machines, the clients will also compute the same respective mutual key,
mkeyi , and wait to receive the encrypted package mkeyi(gkey). Upon receiving
this, they can decrypt by their mutual key and collect the group key.

PyAMI uses the Python Fernet library4 for cryptographic encryption and de-
cryption. It applies a key derivation function, PBKDF2, from Fernet to com-
pute mutual and group keys. PyAMI applies PBKDF2 using SHA256 as the
hash function parameter, and runs the algorithm for 100,000 iterations for pro-
tection against brute-force attacks on the derived key.

11.2.2 Mutual Authentication Architecture

If we reduce the centralized architecture to simply a server and a single client,
each hosted on separate machines, this is the mutual architecture. It is the
two-party version of the centralized setting.

Socket Connections

Just as in the centralized architecture, mutual architecture has socket con-
nections made between the central server (CentralServerAgent) and the lone
client (CentralizedSystemAgent). Both machines set up their respective {send
socket, receive socket} pair and then connect them. The server will transmit to
the client over its send socket, which the client will receive in its own receive
socket. Likewise, the client will transmit from its send socket for the server to
receive in its receive socket.

Remote Interaction

The remote interaction process in the mutual architecture consists of a sin-
gle interaction transcript generated from actions exchanged between the client
and server. Similar to the centralized architecture, for each time step in t =
(1, 2, ..., T), the server will do:

1. Selects its next action from πs as ats.

2. Transmit the action ats to the client using its send socket.

3. Wait via a blocking call until it receives the client’s response, the client
action atc, in its receive socket.

4See documentation at: https://cryptography.io/en/latest/fernet/

147

On the other remote machine, the client will perform the same procedure per
time step, selecting an action atc from its model πc, transmitting the action via
its send socket, and waiting until its receive socket gets server action ats.

When the remote interaction stage is finished, both server and client will have
an identical interaction transcript, HT .

Authentication

In PyAMI, the mutual architecture by default has both the server and client
perform authentication. It can also be further simplified into AMI’s one-way
authentication setting if the client’s authentication process is halted.

As mentioned, the primary authentication test in PyAMI is the frequentist
hypothesis test. In the mutual architecture, both server and client will run this
test to verify each other’s identity. The server will perform the test as a function
of the interaction transcript and the client model as the shared secret. The client
will do the same, but it will use the server model as the shared secret instead.
Both parties will by default use the same significance threshold parameter to
make a final authentication decision.

Session Key Establishment

In the mutual architecture, no group key needs to be established. A mutual
session key is sufficient for the client and server’s secure communication. Both
parties will compute the mutual session key as a function of the transcript
HT , the server model pis, and the client model πc. They will follow the key
generation procedure in Algorithm 7, where the probabilities from pis, then pic
are concatenated together. This can be formalized in shorthand notation as:
mkey = kdf(πs[HT] ◦ πc[HT]).

11.2.3 Decentralized Architecture

Socket Connections

In the decentralized architecture, each client (DecentralizedSystemAgent) ini-
tialize a {send socket, receive socket} pair for all other client machines, so that
all machines in the group are inter-connected. This can be done since each client
possesses the IP addresses and port numbers for the others. The client coordi-
nate the socket connections by prioritizing group ID. For example, in a group of
three clients, (c0, c1, c2), clients c0 and c1 will have lower priority compared to
client c2. Hence, c2 will initialize it sockets and set them to wait for incoming
connections. Clients c0 and c1 will send connections via their respective sockets
to c2, then c2 will accept to bind both the waiting and signaling sockets. Fol-
lowing this priority method, client c1 will set up waiting sockets for client c0,

148

which has less priority, and wait for it to connect. But for client c2, client c1
will not wait, but signal the connection to the waiting c2 socket on the other
end.

Remote Interaction

The clients in the decentralized architecture will build a joint interaction tran-
script to which all clients will contribute and share. By default, PyAMI im-
plements a probabilistic decision multitree (as described in Section 10.3) for
the DecentralizedSystemAgent class’s model, which can take in a set of ac-
tions from other clients and produce an output decision. For each time step in
t = (1, 2, ..., T), each client ci will do the following:

1. Selects its next action atci from πci .

2. Broadcast the single action atci to all other clients using the appropriate
{send socket, receive socket} pair.

3. Wait via a blocking call until it receives an action from each other client.

This way, each client builds an identical joint transcript, H
(c1,...,cm)
T , which con-

sists of m actions per timestep. Thus, H
(c1,...,cm)
T = [(a1

1, ..., c
1
m), ..., (aT1 , ..., a

T
m)].

Authentication

In this architecture, there is no central server to perform authentication, so
each client must handle all others individually. Each client ci possesses the

joint transcript, H
(c1,...,cm)
T , so it can authenticate all other clients in order of

group ID. It does this by using the actions from H
(c1,...,cm)
T required for each

authentication. For example, to authenticate client c2, client c1 will use actions
Hc2
T . It will also use the shared secret it possesses for client c2. These parameters

will be provided to the default frequentist hypothesis test for the authentication
decision.

Session Key Establishment

In the decentralized architecture, each client will compute the group key over the

joint group transcript, H
(c1,...,cm)
T , computed during the interaction stage. There

are no mutual keys required in this architecture. The group key is constructed
over the joint transcript in order of group ID, using each client’s individual
transcript Hci

T from the joint transcript. We can formalize its construction in
the shorthand notation: gkey = kdf(πc1 [Hc1

T], ..., πcm [Hcm
T]). The KDF used is

the same as in the centralized architecture.

149

Architecture |HT | Mean Time (stdev)
Mutual 50 0.028s (0.001)

100 0.054s (0.002)
200 0.112s (0.005)

Centralized 50 0.029s (0.002)
100 0.069s (0.002)
200 0.125s (0.003)

Decentralized 50 0.034s (0.002)
100 0.100s (0.148)
200 0.136s (0.007)

Table 11.1: Timing tests for PyAMI’s interaction process in same geographic
region of us-west1 (results averaged over 100 trials).

11.3 Evaluation of Remote Interaction Process

In this section, we investigate whether PyAMI’s multi-agent interaction be-
tween remote machines via a live network is performed in a feasible amount of
time. Certainly, one of the chief differences between the AMI protocol and other
symmetric AKE protocols such as [9, 40] is the number of exchanged messages
between parties. AMI does require at least 25 exchanged actions in the interac-
tion transcript for high-accuracy authentication decisions, as seen in Section 4.2.
We anticipate this stage to require the most time of the functions provided by
PyAMI. Hence, we study the time required for the remote machines in PyAMI
to complete their interaction transcript, for an increasing number of transcript
lengths.

11.3.1 Realistic Network Scenario

For our experiments, we use virtual machines on Google Compute Engine5,
which permits the user to specify the geographic location of each virtual ma-
chine, among the available regions.We first situate our virtual machines within
the same geographic region, ‘us-west1’, and measure the time taken for an en-
tire interaction transcript to be built for T timesteps. We set up three different
architectures, each with its machines in the ‘us-west1’ region. We set up a mu-
tual authentication architecture of two machines, a centralized architecture of
three machines, and a decentralized architecture also of three machines. For
transcript lengths |HT | = {50, 100, 200}, we measure the time in seconds for the
transcript(s) to be built in each architecture. The results are shown in Table
11.1.

Table 11.1 indicates that for each of the three architectures, the interaction pro-
cess is fairly quick. If we look at the |HT | = 50 length, PyAMI took, on average,

5Google Compute Engine at: https://cloud.google.com/compute.

150

0.025 seconds for the mutual architecture, 0.029 seconds for the centralized ar-
chitecture, and 0.034 seconds for the decentralized architecture. While it is true
that the architectures contained only three remote machines at maximum, this
still demonstrates the framework’s feasibility for this group size. We note that
the increase in required time from two machines to three was not dramatic.

11.3.2 Increased Distance Test for Network Latency

We then perform a further experiment to gauge the time required for remote
machines which are geographically far from each other. This time, for the mu-
tual architecture, we place two virtual machines in [‘us-west1’, ‘europe-west2’],
and for the centralized and decentralized architectures, we place three virtual
machines in [‘us-west1’, ‘southamerica-east1’, ‘europe-west2’]. The virtual ma-
chines in this experiment are noticeable farther away from each other, spanning
different continents. We elect to measure the time required for an interaction
transcript of length |HT | = 200 this time, as a worst-case scenario in the more
distant geographic setting.

Architecture Geography |Ht| Mean Time (stdev)
Mutual Near 200 0.11s (0.01)

Far - 26.94s (3.57)
Centralized Near - 0.13s (0.00)

Far - 34.31s (0.09)
Decentralized Near - 0.14s (0.01)

Far - 40.93s (0.03)

Table 11.2: Timing tests for PyAMI’s interaction process for distant geographic
distances (results averaged over 100 trials)

Table 11.2 shows the results for this transcript length, including the results from
the near geographic distances as well, for comparison. The results do show that
for this worst-case scenario where |HT | = 200, the network carried more latency,
requiring around 27 seconds for the mutual architecture, around 34 seconds for
the centralized architecture, and around 41 seconds for the decentralized archi-
tecture. We do not evaluate these results as particularly discouraging because
PyAMI as a prototype is intended for closer geographic distances (i.e. users
will likely wish to authenticate to more local servers and services, which are
available in many countries). We simply note reflect on this experiment that
increasing physical distance between machines (at least, as seen by the Google
Compute Engine environment) does increase network latency, which affects the
time efficiency of our framework.

151

11.4 Local Simulation Mode

PyAMI also provides a way for the AMI protocol to be run entirely on a single
machine, without the use of remote machines. This is intended to make it easier
for a user to simply run the protocol one any of the three architectures, and
manually view the results of the authentication and key agreement, including the
value of the computed session key(s). PyAMI provides two different multi-agent
system classes for this simulation: a CentralizedLocalSystem class (which can
be simplified to the mutual architecture if only two parties are specified) and a
DecentralizedLocalSystem class.

Since both multi-agent system classes run locally, there is no use for the instanti-
ation of remote machines, nor are there any network sockets for the transmission
of messages. Instead, the core functionalities are:

1. Local interaction: all parties interact to build the interaction transcript(s).

2. Authentication: parties perform an authentication test via the frequentist
hypothesis test.

3. Session key establishment: Parties compute session keys for secure com-
munication. This may just be a mutual session key, or also a group session
key, depending on the architecture.

When the life-cycle of the AMI protocol on the local machine has finished (by
either the CentralizedLocalSystem or the DecentralizedLocalSystem), the
system prints out the authentication decision(s) from each party, as well as
the computed session keys. Session keys are printed as the result of model
parameter subset selection instead of the final result of the KDF, for the purpose
of illustration.

11.5 Conclusion

In this chapter, we described our open-source software package, PyAMI to
demonstrate the feasibility of using the AMI protocol in a realistic setting.
We discussed the architectures PyAMI supports for different types of multi-
agent systems. We detailed the core functionalities of the system, and how each
architecture implements them, including the low-level network sockets used to
transmit and receive data packets over the Internet, following the TCP network
protocol. We also mentioned the Python Fernet library used for cryptographic
functions, including the key derivation function (KDF) which generates a suit-
able session key for use in an encryption algorithm.

We also evaluated PyAMI’s remote interaction stage, to gauge whether the AMI-
formatted interaction transcript was being generated in a reasonable amount of

152

time. The evaluation showed that when remote machines (from Google Com-
pute Engine) are within the same geographic distance, the time required is
quite reasonable, considering how unlike other symmetric AKE protocols, AMI
requires more than few exchanged messaged for its authentication and key es-
tablishment. We also performed a worst-case test for network latency just for
comparison, where remote machines are positioned very geographically distant
from each other, to see how the required time increases.

153

Chapter 12

Conclusion

This thesis was motivated by the introduction of agents and multi-agent systems
to symmetric authentication and key establishment (AKE) in cryptography, to
provide an information-theoretic secure protocol against recent increases in com-
puting power. It applied autonomous agents as communicating parties, which
permitted the use of powerful agent models as the long-term master keys in-
tegral to a symmetric cryptosystem. It also provided agent-based methods to
handle the party-to-party interaction, cryptographic authentication, derivation
of session keys for an encryption algorithm, and key evolution for the transfor-
mation of master keys to protect past session keys. This novel formulation we
called the AMI protocol (Authentication via Multi-Agent Interaction).

Our work not only provided a multi-agent solution for the above cryptographic
problems, but also built upon them via (empirical) investigation to answer rel-
evant research questions, often finding solutions which follow a different line of
construction than seen in existing approaches for symmetric AKE. In Chapter
4, we answered the question of how secure the AMI protocol is against a variety
of common attacks from the security literature, the most significant of which is
the key recovery attack via opponent modeling. In Chapter 5, we introduced a
way for parties to authenticate each other without using the master key directly
in its application; this property distinguishes it from common authentication
procedures typically seen in symmetric AKE. We accomplished this via a pre-
trained neural network which makes the authentication decision without using
the master key at run-time.

In Chapter 6, we explained the relevance of information-theoretic security to
the AMI protocol and its security against key recovery as well as quantum-
based attacks; this is a different branch of security than that typically seen in
symmetric cryptography. In Chapter 8, we demonstrated one of the beneficial
capabilities of agent-based master keys - that they are trainable via machine
learning for a variety of purposes, including protocol optimization. Additionally,
in Chapter 10, we answered the question of how scalable the AMI protocol is,

154

extending it to different architectures for a group setting which contain more
than only two parties. Finally, in Chapter 11, we looked to answer how feasible
the AMI protocol is in a real-world setting, demonstrating how the protocol
may be run over a live network just as its contemporaries in symmetric AKE
can.

12.1 Key Results

In specific, we point to a few key results which highlight this thesis’s most
significant contributions to the scientific literature.

Autonomous Agents for Symmetric AKE
The most foundational result upon which the rest of our work is built is the
formulation of communicating parties as autonomous agents governed by be-
havioral models which are used as long-term master keys. This formulation
and subsequent application is a novel and significant result in the literature on
symmetric AKE. To the best of our knowledge, this thesis provides the first
such intersection between agents/multi-agent system and this specific branch
of cryptographic protocols. It opens up the symmetric AKE space to differ-
ent techniques from multi-agent systems, such as those shown in this thesis:
multi-agent interaction, agent-based decision making, and machine learning-
based optimization. Furthermore, we consider even our own agent design to
be simplistic in comparison to other autonomous agent architectures in the lit-
erature. Certainly there are more expressive and powerful agent architectures
which can be applied to handle more advanced situations and problems which
arise in symmetric AKE.

Authentication Test based on Multi-Agent Interaction
We consider the sampling-based authentication via frequentist hypothesis test-
ing to be the AMI protocol’s most significant component, after its multi-agent
interaction. Applying the algorithm for model criticism from [6] provides an
authentication test based on multi-agent interaction, which we demonstrated
is highly accurate in identifying not only legitimate parties but also a variety
of adversarial strategies acting against the protocol. We also showed how this
authentication test is strongly resistant to key recovery attempts via model
reconstruction.

We also consider our alternative authentication test via a trained neural network
classifier to be an important result, given the training process’ unique prop-
erty of encoding the parameters required for authentication decisions within
the classifier itself. This is a significant result which demonstrates how a mas-
ter key need not be directly used during authentication. As such, should an
agent’s abstracted authentication component be compromised, it would not be
a straightforward task to discover the master key from the classifier itself.

PyAMI Software Package

155

We developed and released the PyAMI software package as a way to demon-
strate how the AMI protocol may be feasibly implemented over real computer
networks. The package supports the different multi-agent system architectures
described in this thesis, as well as the respective algorithms for AMI’s interac-
tion, authentication and key agreement. We also showed that the multi-agent
interaction (according to the AMI protocol), when performed between remote
machines, is done in reasonable time if the machines are located within the same
geographic region.

12.2 Directions for Future Work

Much of the work in this thesis, both theoretical and experimental, was intended
to introduce symmetric AKE to agents and multi-agent systems. It was not
intended to an act as a final, definitive version of the the relevant topics it
covered. As such, there is certain room for further research based on this thesis’s
contributions. Some of the thesis chapters such as Chapter 5 and Chapter 8
already contain a discussion of further research which can extend their existing
content. We now point to other important areas within the thesis which can
be further developed, some through theoretical methods and others through
additional experimentation.

12.2.1 A More Capable Adversary

In this thesis, we modeled an adversary for the AMI protocol with a certain
range of abilities. A natural way to strengthen the security of AMI is to lessen
some of the restrictions on the AMI adversary, and develop methods to protect
the protocol against this more capable adversary. One such capability is that
of performing man-in-the-middle attacks, which includes disrupting or other-
wise affecting the AMI protocol’s interaction stage between a server agent and
(legitimate) client agent.

A man-in-the-middle attack could, for example, block a certain message from
arriving at its intended destination or perhaps swap it out with an entirely dif-
ferent message. Here we refer to messages as the random samples sent between
client and server. One way to protect against this attack is to use message au-
thentication codes (MAC). A message could then consists of: msg||MAC(msg),
where the receiving party is able to key the same MAC function with its long-
term master key to ensure that the message has not been tampered with. The
message itself could also contain a time stamp or message index, so the receiving
party has a way to ensure that messages are arriving as intended by the other
party (i.e. arriving in the correct order).

156

12.2.2 Agent Models: Type and Size

Although this thesis focused primarily on the use of probabilistic decision trees
(PDTs) as agent models to be used as master keys, the AMI protocol is flexible in
its choice of agent model. A natural extension to the experiments performed in
Chapter 4 is to evaluate the primary authentication test (frequentist hypothesis
test) on different agent models such as a neural network or probabilistic finite-
state automata. It would be interesting to see whether the manually-defined
score functions used in this authentication test are affected by the inclusion of
different agent models. Likewise, it would also be interesting to see how the
performance of the neural network classifier, as trained by either supervised
learning or a generative adversarial network (as seen in Chapter 5) is affected.

Another significant research question regarding agent models is with respect to
their size: what is the smallest possible agent model (i.e. master key) required
for the AMI protocol to maintain the high authentication accuracy results seen
in Section 4.2? This has important implications for protocol efficiency. In
Section 4.3, we discussed parameter subset selection methods to deal with the
large and complex agent models required for protocol security. Certainly it is
desirable to use master keys which achieve efficient storage while maintaining
the protocol’s level of security (resistance to adversarial attacks).

An important further experiment is to repeat the authentication accuracy ex-
periments in Section 4.2 for a range of differently sized models. For example, if
testing PDT models, to increase the depth across {1, 2, .., 10} and action space
size {2, 3, ..10}, and discover the smallest achievable model which still permits
the same level of authentication accuracy. It is also important to repeat this
procedure across a range of interaction transcript lengths to investigate: for
differently sized agent models, exactly how many actions (i.e. random sam-
ples in the transcript) on average are required for the AMI authentication test
to achieve high accuracy? Our current results point to a range between 25-50
actions for desirable results, but it would be important to discover the exact
number, or at least a smaller range, for different model sizes.

12.2.3 Key Agreement Methods

In Section 4.3, we provided a method for AMI key agreement parameterized
by the interaction transcript and the shared secret master key. Although we
consider the established key to be protected against malicious use of the inter-
action transcript, we also suggested an alternative key agreement method which
provides more separation between the master key and the established session
key. It is certainly possible to implement in AMI such methods which do not
use the transcript and may be preferable from a security standpoint. This is
an interesting area for further work, to extend our existing contribution. Such
work would investigate efficient methods for parameter subset selection from
the agent model, in a way which does not rely on the interaction transcript. It

157

would also investigate possible ways to maintain session freshness through the
use of randomly generated values used in the key agreement scheme.

12.2.4 Model Reconstruction for Key Recovery

With respect to Chapter 6, we highlight two important areas for further research,
both regarding protocol security. First, Chapter 6 discussed the resolution of
the opponent modeling problem, mentioning difficulty of reconstructing a master
key from its random samples, with sufficient accuracy. We defined ‘sufficient
accuracy’ as estimating the master key (the shared secret) according to the size
of the floating point values used for the secret’s model parameters. For example,
this would entail recreating a distribution [0.75, 0.01, 0.24] to the same number
of digits after the decimal point. An important research question is as follows:
for differently sized agent models, how many random samples are required to
recreate them with sufficient accuracy, for varying floating point sizes of the
parameters? And do some model reconstruction methods (MLE, etc.) achieve
this accuracy with fewer samples than others?

The latter question regarding different model reconstruction methods brings us
to another relevant area of investigation. In Chapter 6, we studied the efficacy
of Maximum Likelihood Estimation1 for estimating a master from its samples,
such that it could challenge the AMI authentication test. An interesting further
experiment would recreate the same study, this time using a neural network
to estimate the distribution of the observed master key, instead of the MLE
method. Note that here, the neural network is not trained as an authenticator as
in Chapter 5, it is instead trained to learn the behavior of the client model. The
neural network would be trained via supervised learning on a set of interaction
transcripts consisting of samples from the client model. The objective of the
study would be investigate how many samples, or how many transcripts are
required for the neural network to learn the distribution of the shared secret
well enough such that it can meaningfully challenge the AMI authentication
test by mimicking the client model when interacting with the server.

1It should also be noted that there exist a variety of other statistical inference methods for
estimating the parameters of an assumed probability distribution.

158

Bibliography

[1] IEEE standard specifications for password-based public-key cryptographic
techniques. IEEE Std 1363.2-2008, pages 1–127, Jan 2009.

[2] NIST reveals 26 algorithms advancing to the post-quantum crypto
semifinals, 2019. https://www.nist.gov/news-events/news/2019/01/nist-
reveals-26-algorithms-advancing-post-quantum-crypto-semifinals.

[3] PQC Standardization Process: Third Round Candidate Announce-
ment, 2020. https://csrc.nist.gov/News/2020/pqc-third-round-candidate-
announcement, Last accessed on 2022-03-30.

[4] R. Ahlswede and I. Csiszar. Common randomness in information the-
ory and cryptography - part i: Secret sharing. IEEE Transactions on
Information Theory, 39(4):1121–1132, 1993.

[5] Stefano Albrecht and Peter Stone. Autonomous agents modelling other
agents: A comprehensive survey and open problems. Artificial Intelli-
gence, 258, 09 2017.

[6] S.V. Albrecht and Subramanian Ramamoorthy. Are you doing what I
think you are doing? criticising uncertain agent models. Uncertainty
in Artificial Intelligence - Proceedings of the 31st Conference, UAI 2015,
pages 52–61, 01 2015.

[7] Patricia Anthony, Gan Soon, Chin On, Rayner Alfred, and Dickson
Lukose. Agent architecture: An overview. Transactions on Science and
Technology, pages 18–35, 01 2014.

[8] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of NP. Journal of the ACM, 45:70–122, 01 1998.

[9] Gildas Avoine, Sébastien Canard, and L. Ferreira. Symmetric-key au-
thenticated key exchange (sake) with perfect forward secrecy. In IACR
Cryptol. ePrint Arch., 2019.

[10] Faezeh Sadat Babamir and Murvet Kirci. Dynamic digest based authenti-
cation for client–server systems using biometric verification. Future Gen-
eration Computer Systems, 101:112–126, 2019.

159

[11] Steven Bellovin and Michael Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. Security and Privacy,
IEEE Symposium on, 0:72, 04 1992.

[12] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography. Na-
ture, 549(7671):188–194, Sep 2017.

[13] M. A. Catur Bhakti, A. Abdullah, and L. T. Jung. Eap-based authentica-
tion with eap method selection mechanism. 2007 International Conference
on Intelligent and Advanced Systems, pages 393–396, 2007.

[14] Andrei Borshchev and Alexei Filippov. From system dynamics and dis-
crete event to practical agent based modeling : Reasons , techniques ,
tools. 2004.

[15] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key
Establishment. Springer-Verlag, Germany, 2003.

[16] Éric Brier and Thomas Peyrin. A forward-secure symmetric-key derivation
protocol - how to improve classical dukpt. In ASIACRYPT, 2010.

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020.

[18] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. Belief-
desire-intention deliberation in artificial soccer. AI Magazine, 19(3):87–87,
1998.

[19] Matthew Campagna, Lidong Chen, Özgür Dagdelen, Jintai Ding, Jen-
nifer K. Fernick, Nicolas Gisin, Donald Hayford, Thomas Jennewein, Nor-
bert Lütkenhaus, Michele Mosca, Brian Neill, Mark Pecen, Ray Perlner,
Grégoire Ribordy, John M. Schanck, Dr Douglas Stebila, Nino Walenta,
William Whyte, and Zhenfei Zhang. Quantum safe cryptography and se-
curity an introduction, benefits, enablers and challenges. Technical report,
June 2015.

[20] Lidong Chen. Recommendation for key derivation using pseudorandom
functions, 2008-11-12 2008.

[21] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography.
Technical report, April 2016.

160

[22] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet x.509 public key infrastructure certificate and certificate revoca-
tion list (crl) profile. RFC 5280, RFC Editor, May 2008.

[23] Hans Delfs and Helmut Knebl. Introduction to cryptography : principles
and applications / H. Delfs, Hans, Helmut Knebl. Information security
and cryptography. Springer, Berlin ;, 2002.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[25] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[26] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced encryption standard
(aes), 2001-11-26 2001.

[27] Scott R Eliason. Maximum Likelihood Estimation Logic and Practice.
Quantitative Applications in the Social Sciences; 96. SAGE, Newbury
Park, CA, USA, 1993.

[28] R Farsani, Ehsan Pazouki, and Jecei Jecei. A transformer self-attention
model for time series forecasting. pages 1–10, 01 2021.

[29] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1:77–94, 06 1988.

[30] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33:792–807, 08 1986.

[31] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[32] I. J. Good. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3-4):237–264, 12 1953.

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Y. Bengio. Genera-
tive adversarial nets. ArXiv, 06 2014.

[34] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. As-
sociation for Computing Machinery.

161

[35] Honghao Guo, Zuo Wang, Benfang Wang, Xiangyang Li, and Devu M
Shila. Fooling a deep-learning based gait behavioral biometric system. In
2020 IEEE Security and Privacy Workshops (SPW), pages 221–227, 2020.

[36] Lein Harn. Group authentication. IEEE Transactions on Computers,
62(9):1893–1898, 2013.

[37] Lein Harn and Ching-Fang Hsu. A novel design of membership authentica-
tion and group key establishment protocol. Security and Communication
Networks, 2017:1–7, 08 2017.

[38] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen
Li, and Humphrey Shi. Escaping the big data paradigm with compact
transformers. CoRR, abs/2104.05704, 2021.

[39] Siteng Huang, Donglin Wang, Xuehan Wu, and Ao Tang. Dsanet: Dual
self-attention network for multivariate time series forecasting. In Pro-
ceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM ’19, page 2129–2132, New York, NY,
USA, 2019. Association for Computing Machinery.

[40] Rasool Jalili and Mohammad Sadeq Dousti. Forsakes: A forward-secure
authenticated key exchange protocol based on symmetric key-evolving
schemes. Advances in Mathematics of Communications, 9:471–514, 11
2015.

[41] Young Kyun Jang and Nam Ik Cho. Deep face image retrieval for can-
celable biometric authentication. In 2019 16th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS), pages
1–8, 2019.

[42] Stef Janssen, Alexei Sharpanskykh, and Richard Curran. Absrim: An
agent-based security risk management approach for airport operations.
Risk Analysis, 39, 02 2019.

[43] KyoHoon Jin, JeongA Wi, EunJu Lee, ShinJin Kang, SooKyun Kim,
and YoungBin Kim. Trafficbert: Pre-trained model with large-scale data
for long-range traffic flow forecasting. Expert Systems with Applications,
186:115738, 2021.

[44] Jorma Jormakka and J.V.E. Molsa. Modelling information warfare as a
game. Journal of Information Warfare, 4:12–25, 01 2005.

[45] Dan Jurafsky and James H. Martin. Speech and language processing: An
introduction to natural language processing, computational linguistics, and
speech recognition. Pearson Prentice Hall, 2009.

[46] David Kahn. The Codebreakers: The comprehensive history of secret com-
munication from ancient times to the internet. Simon and Schuster, 1996.

162

[47] B. Kaliski. Pkcs #5: Password-based cryptography specification ver-
sion 2.0. RFC 2898, RFC Editor, September 2000. http://www.rfc-
editor.org/rfc/rfc2898.txt.

[48] Jonathan Katz. Bridging game theory and cryptography: Recent results
and future directions. volume 4948, pages 251–272, 03 2008.

[49] Jonathan. Katz. Introduction to Modern Cryptography. Chapman
and Hall/CRC Cryptography and Network Security Ser. Chapman and
Hall/CRC, Bosa Roca, 2nd edition edition, 2014.

[50] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[51] Igor Kotenko. Agent-based modeling and simulation of cyber-warfare be-
tween malefactors and security agents in Internet. Simulation in Wider
Europe - 19th European Conference on Modelling and Simulation, ECMS
2005, 01 2005.

[52] Sowndarya Krishnamoorthy, Luis Rueda, Sherif Saad, and Haytham
Elmiligi. Identification of user behavioral biometrics for authentication
using keystroke dynamics and machine learning. ICBEA ’18, page 50–57,
New York, NY, USA, 2018. Association for Computing Machinery.

[53] Joohee Lee, Dongwoo Kim, Duhyeong Kim, Yongsoo Song, Junbum Shin,
and Jung Hee Cheon. Instant privacy-preserving biometric authentication
for hamming distance. Cryptology ePrint Archive, Report 2018/1214,
2018. https://ia.cr/2018/1214.

[54] Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
A survey of pretrained language models based text generation. CoRR,
abs/2201.05273, 2022.

[55] Shi Li, Inshil Doh, and Kijoon Chae. A group authentication scheme based
on lagrange interpolation polynomial. In 2016 10th International Confer-
ence on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), pages 386–391, 2016.

[56] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-
Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecasting. CoRR,
abs/1907.00235, 2019.

[57] Yang Lin, Irena Koprinska, and Mashud Rana. Ssdnet: State space de-
composition neural network for time series forecasting. 2021 IEEE Inter-
national Conference on Data Mining (ICDM), pages 370–378, 2021.

163

[58] Peng Liu, Wanyu Zang, and Meng Yu. Incentive-based modeling and
inference of attacker intent, objectives, and strategies. ACM Trans. Inf.
Syst. Secur., 8:78–118, 02 2005.

[59] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Li, Alex X. Liu, and
Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for
long-range time series modeling and forecasting. International Conference
on Learning Representations (ICLR), 2022.

[60] Ahmed Mahfouz, Tarek M. Mahmoud, and Ahmed Sharaf Eldin. A
survey on behavioral biometric authentication on smartphones. CoRR,
abs/1801.09308, 2018.

[61] Manisha and Nitin Kumar. Cancelable biometrics: a comprehensive sur-
vey. The Artificial Intelligence Review, 53(5):3403–3446, 06 2020. Copy-
right - © Springer Nature B.V. 2019; Last updated - 2020-05-16.

[62] Mohammad Hossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer
Başar, and Jean-Pierre Hubaux. Game theory meets network security
and privacy. 01 2013.

[63] U. Maurer. Information-theoretic cryptography. In CRYPTO, 1999.

[64] Ueli Maurer. Secret key agreement by public discussion. IEEE Transac-
tions on Information Theory, 39(3):733–742, 5 1993.

[65] Dr. Clifford Neuman, Sam Hartman, Kenneth Raeburn, and Taylor Yu.
The Kerberos Network Authentication Service (V5). RFC 4120, July 2005.

[66] Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring proba-
bilistic dependences in stochastic language modelling. Computer Speech
Language, 8(1):1–38, 1994.

[67] Long Nguyen. Rational authentication protocols. IACR Cryptology ePrint
Archive, 2011:70, 01 2011.

[68] Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh,
Pierre L. Dognin, Jerret Ross, Ravi Nair, and Erik Altman. Tabular trans-
formers for modeling multivariate time series. CoRR, abs/2011.01843,
2020.

[69] Asad Amir Pirzada and Chris McDonald. Kerberos assisted authentica-
tion in mobile ad-hoc networks. In Proceedings of the 27th Australasian
Conference on Computer Science - Volume 26, ACSC ’04, page 41–46,
AUS, 2004. Australian Computer Society, Inc.

[70] Jon Postel. Transmission control protocol. STD 7, RFC Editor, September
1981. http://www.rfc-editor.org/rfc/rfc793.txt.

[71] Alec Radford and Karthik Narasimhan. Improving language understand-
ing by generative pre-training. 2018.

164

[72] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[73] E. Rescorla. The transport layer security (TLS) protocol version 1.3. RFC
8446, RFC Editor, August 2018.

[74] Alex Reznik, Yogendra Shah, Laura Luzzi, and Mérouane Debbah.
Information-Theoretic Security in Wireless Systems. Wiley, 09 2012.

[75] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21:120–126,
1978.

[76] Sourajeet Roy, Charles Ellis, S. Shiva, Dipankar Dasgupta, Vivek
Shandilya, and Chase Wu. A survey of game theory as applied to network
security. pages 1 – 10, 02 2010.

[77] Muhammad Asad Saleem, SK Hafizul Islam, Shafiq Ahmed, Khalid Mah-
mood, and Majid Hussain. Provably secure biometric-based client–server
secure communication over unreliable networks. Journal of Information
Security and Applications, 58:102769, 2021.

[78] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. 06 2016.

[79] Bruce Schneier. Applied cryptography : protocols, algorithms, and source
code in C. 1994.

[80] Bruce Schneier and Phil Sutherland. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley Sons, Inc., USA, 2nd
edition, 1995.

[81] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[82] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[83] C. E. Shannon. Communication theory of secrecy systems. The Bell
System Technical Journal, 28(4):656–715, 1949.

[84] Pengxiang Shi, Wenwen Ye, and Zheng Qin. Self-supervised pre-training
for time series classification. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8, 2021.

[85] Peter Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Review, 41, 05 1997.

[86] Madhu Sudan. Probabilistically checkable proofs. 09 2019.

165

[87] Richard S. Sutton. Reinforcement learning : an introduction / Richard
S. Sutton and Andrew G. Barto. Adaptive computation and machine
learning. MIT Press, Cambridge, Massachusetts, 1998.

[88] Binh Tang and David S Matteson. Probabilistic transformer for time series
analysis. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 23592–23608. Curran Associates, Inc., 2021.

[89] Shuai Tao, Xiaowei Zhang, Huaying Cai, Zeping Lv, Caiyou Hu, and
Haiqun Xie. Gait based biometric personal authentication by using mems
inertial sensors. Journal of Ambient Intelligence and Humanized Comput-
ing, 9, 10 2018.

[90] José Torres, Sergio de los Santos, Efthimios Alepis, and Constantinos
Patsakis. Behavioral biometric authentication in android unlock patterns
through machine learning. In Paolo Mori, Steven Furnell, and Olivier
Camp, editors, Proceedings of the 5th International Conference on In-
formation Systems Security and Privacy, ICISSP 2019, Prague, Czech
Republic, February 23-25, 2019, pages 146–154. SciTePress, 2019.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[92] Neal Wagner, Lippmann R., Michael Winterrose, Riordan J., Yu T., and
William Streilein. Agent-based simulation for assessing network security
risk due to unauthorized hardware. volume 47, 04 2015.

[93] Jiabo Wang, Ling Liu, Shanxiang Lyu, Zheng Wang, Mengfan Zheng,
Fuchun Lin, Zhao Chen, Liuguo Yin, Xiaofu Wu, and Cong Ling.
Quantum-safe cryptography: crossroads of coding theory and cryptog-
raphy. Sci. China Inf. Sci., 65(1), January 2022.

[94] T. Wanyama. Agent-based system architecture and organization. 2003.

[95] Mark N. Wegman and J.Lawrence Carter. New hash functions and their
use in authentication and set equality. Journal of Computer and System
Sciences, 22(3):265–279, 1981.

[96] Gerhard Weiss. Multiagent Systems – A Modern Approach to Distributed
Artificial Intelligence. 01 1999.

[97] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Pub-
lishing, 2nd edition, 2009.

166

[98] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep trans-
former models for time series forecasting: The influenza prevalence case.
CoRR, abs/2001.08317, 2020.

[99] Thomas Wu. The secure remote password protocol. 09 2000.

[100] Yuan Yuan, Lei Lin, Qingshan Liu, Renlong Hang, and Zeng-Guang Zhou.
Sits-former: A pre-trained spatio-spectral-temporal representation model
for sentinel-2 time series classification. International Journal of Applied
Earth Observation and Geoinformation, 106:102651, 2022.

167

	cover sheet.pdf
	IbrahimAhmed_PhDThesis_Final.pdf

